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A “hidden” characterization of
polyhedral convex sets

by

Taras Banakh (Lviv and Kielce) and Ivan Hetman (Lviv)

Abstract. We prove that a closed convex subset C of a complete linear metric space
X is polyhedral in its closed linear hull if and only if no infinite subset A ⊂ X \C can be
hidden behind C in the sense that [x, y] ∩ C 6= ∅ for any distinct x, y ∈ A.

1. Introduction. A convex subset C of a real linear topological space
L is called polyhedral in L if it can be written as a finite intersection C =⋂n
i=1 f

−1
i ((−∞, ai]) of closed half-spaces determined by some continuous

linear functionals f1, . . . , fn : L → R and some real numbers a1, . . . , an
(see [1]).

This notion also has an algebraic version. We shall say that a convex
subset C of a linear space L is polyhedric in a convex set D ⊃ C of L
if C =

⋂n
i=1Hi for some convex subsets H1, . . . ,Hn ⊂ D having convex

complements D \Hi, i ≤ n.
In this paper polyhedral sets will be characterized with the help of a

combinatorial notion of a hidden set.
We say that a subset A of a linear space L is hidden behind a set C ⊂ L

if A ⊂ L \C and for any distinct points a, b ∈ A the closed segment [a, b] =
{ta+ (1− t)b : t ∈ [0, 1]} meets C. In this case we shall also say that the set
C hides the set A.

The main result of this paper is the following “hidden” characteriza-
tion of closed polyhedral convex sets in complete linear metric spaces. This
characterization has been applied in the paper [2] devoted to recognizing
the topological type of connected components of the hyperspace of closed
convex subsets of a Banach space. Another characterization of polyhedral
convex sets can be found in [10].
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Theorem 1.1. For a closed convex subset C of a complete linear metric
space X the following conditions are equivalent:

(1) C is polyhedral in its closed linear hull lin(C);
(2) C is polyhedric in its affine hull aff(C);
(3) C hides no infinite subset A ⊂ X \ C.

The proof of this theorem is rather long and will be presented in Sec-
tion 3. Now let us show that the assumption of the completeness of the linear
space X in Theorem 1.1 is essential. A counterexample will be constructed
in the (non-complete) normed space

c00 = {(xn)n∈ω ∈ Rω : ∃n ∈ ω ∀m ≥ n xm = 0}
endowed with the sup-norm ‖x‖ = supn∈ω |xn|, where x = (xn)n∈ω ∈ c00.

Example 1.2. The standard infinite-dimensional simplex

∆ =
{

(xn)n∈ω ∈ c00 ∩ [0, 1]ω :
∑
n∈ω

xn = 1
}
⊂ c00

hides no infinite subset of c00 \∆ but is not polyhedral in c00.

Proof. First we show that the simplex ∆ is not polyhedral in c00. As-
suming the opposite, we would find linear functionals f1, . . . , fn : c00 → R
and real numbers a1, . . . , an such that ∆ =

⋂n
i=1 f

−1
i ((−∞, ai]). Consider

the linear subspace X0 =
⋂n
i=1 f

−1
i (0) that has finite codimension in c00. It

follows that for each x0 ∈ ∆, we get x0 + X0 ⊂
⋂n
i=1 f

−1
i ((−∞, ai]) = ∆,

which implies that the set ∆ is unbounded. This contradiction shows that
∆ is not polyhedral in c00.

Now assume that some infinite subset A ⊂ c00 \∆ can be hidden behind
the simplex ∆. Decompose the space c00 into the union c00 = Σ<∪Σ1∪Σ>
of the sets

Σ< =
{

(xn)n∈ω ∈ c00 :
∑
n∈ω

xn < 1
}
,

Σ1 =
{

(xn)n∈ω ∈ c00 :
∑
n∈ω

xn = 1
}
,

Σ> =
{

(xn)n∈ω ∈ c00 :
∑
n∈ω

xn > 1
}
.

Observe that for any two points x, y ∈ Σ< the segment [x, y] does not
intersect ∆. Consequently, |A∩Σ<| ≤ 1. For the same reason, |A∩Σ>| ≤ 1.
So, we lose no generality assuming that A ⊂ Σ1 \∆. For each a ∈ A let

supp+(a) = {n ∈ ω : xn > 0} and supp−(a) = {n ∈ ω : xn < 0}.
It is easy to see that each point a ∈ Σ1 \∆ has non-empty negative support
supp−(a).
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Fix any point b ∈ A. We claim that supp−(a) ⊂ supp+(b) for any a ∈
A \ {b}. In the opposite case the set supp−(a) \ supp+(b) contains some
k ∈ ω and then [a, b[ ⊂ {(xn)n∈ω ∈ c00 : xk < 0} \ ∆, which is impossible
as {a, b} is hidden behind ∆. Since (the power-set of) supp+(b) is finite and
A \ {b} is infinite, the Pigeonhole Principle yields distinct points a, a′ ∈ A
such that supp−(a) = supp−(a′) ⊂ supp+(b). Now we see that for any k ∈
supp−(a) = supp−(a′), we get [a, a′] ⊂ {(xn)n∈ω ∈ c00 : xn < 0} ⊂ c00 \∆,
which contradicts the choice of A as a set hidden behind ∆.

2. Preliminaries. In this section we prove some lemmas which will be
used in the proof of Theorem 1.1.

Lemma 2.1. Let T : X → Y be a continuous linear operator between
linear topological spaces. If a convex subset D ⊂ Y is polyhedral in its closed
linear hull lin(D), then C = T−1(D) is polyhedral in lin(C).

Proof. Write the polyhedral set D as a finite intersection

D =
n⋂
i=1

f−1
i ((−∞, ai])

of closed half-spaces defined by continuous linear functionals f1, . . . , fn :
lin(D) → R and real numbers a1, . . . , an. The continuity of T implies that
T (lin(C)) ⊂ lin(D). Consequently, for every i ≤ n the continuous linear
functional gi = fi ◦ T : lin(C) → R is well-defined. Since C = T−1(D) =⋂n
i=1 g

−1
i ((−∞, ai]), the set C is polyhedral in lin(C).

An operator A : X → Y between linear spaces is called affine if

A(tx+ (1− t)y) = tA(x) + (1− t)A(y) for any x, y ∈ X and t ∈ R.

It is well-known that an operator A : X → Y is affine if and only if the
operator B : X → Y , B : x 7→ A(x)− A(0), is linear. The following lemma
trivially follows from the definition of a hidden set.

Lemma 2.2. Let T : X → Y be an affine operator between linear topo-
logical spaces, D ⊂ Y be a convex set, C = T−1(D), and A ⊂ X \ C be a
subset such that T |A is injective. Then C hides A if and only if D = T (C)
hides T (A).

Let us recall that a convex subset C of a linear topological space X is
called a convex body in X if C has non-empty interior in X.

Lemma 2.3. Let C be an infinite-dimensional closed convex subset of a
complete linear metric space Y . If C is infinite-dimensional, then there is
an injective continuous affine operator T : l2 → Y such that T−1(C) is a
closed convex body in l2.
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Proof. By [7, 1.2.2], the topology of Y is generated by a complete invari-
ant metric d such that the F -norm ‖y‖ = d(y, 0) has the property ‖ty‖ ≤ ‖y‖
for all y ∈ Y and t ∈ [−1, 1].

We lose no generality assuming that 0 ∈ C. In this case for any points
yn ∈ C, n ∈ ω, and any non-negative real numbers tn, n ∈ ω, with∑

n∈ω tn ≤ 1 we get
∑

n∈ω tnyn ∈ C whenever the series
∑∞

n=0 tnyn con-
verges in Y .

The set C is infinite-dimensional and hence contains a linearly indepen-
dent sequence (yn)∞n=1. Multiplying each yn by a small positive real number,
we can additionally assume that ‖yn‖ ≤ 2−n. It follows that the series∑∞

n=1(1/4n)yn converges in Y and its sum s0 =
∑∞

n=1(1/4n)yn belongs to
the closed convex set C as

∑∞
n=1 1/4n = 1/3 ≤ 1.

Let lf2 be the linear hull of the standard orthonormal basis (en)n∈ω in
the separable Hilbert space l2. Define a linear operator S : lf2 → Y letting
S(en) = (1/4n)yn for every n ∈ N. The convergence of the series

∑∞
n=1 ‖yn‖

implies that the operator S is continuous and hence can be extended to
a continuous linear operator S̄ : l2 → Y . Let B1 = {x ∈ l2 : ‖x‖ < 1}. We
claim that S̄(B1) + s0 ⊂ C. Indeed, for every x = (xn)∞n=1 ∈ B1 and every
n ∈ N we get |xn| ≤ 1 and hence

1
4n

+
xn
4n
≥ 1

4n
− 1

4n
= 0.

Taking into account that
∞∑
n=1

(
1
4n

+
xn
4n

)
≤
∞∑
n=1

2
4n

=
2
3
< 1

and 0 ∈ C, we conclude that

s0 + S̄(x) =
∞∑
n=1

1
4n
yn +

∞∑
n=1

xn
4n
yn ∈ C.

Let H = S̄−1(0) and H⊥ be the orthogonal complement of H in l2. It
follows that the affine operator T : H⊥ → Y , T : x 7→ S̄(x) + s0, is injective
and T−1(C) contains the unit ball B1 ∩ H⊥ of the Hilbert space H⊥. So,
T−1(C) is a closed convex body in H⊥. Since S̄(l2) = S̄(K⊥) ⊃ {yn}n∈ω,
the Hilbert space H⊥ is infinite-dimensional and hence can be identified
with l2.

The following lemma is the most important and technically difficult in-
gredient of the proof of Theorem 1.1.

Lemma 2.4. If a closed convex body C̄ in a separable Hilbert space X is
not polyhedral, then C̄ hides some infinite subset A ⊂ X \ C̄.
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Proof. Let 〈·, ·〉 denote the inner product of X. Each element y ∈ X
determines a functional y∗ : x 7→ 〈x, y〉 on X. By the Riesz Representation
Theorem [3, 3.4], the operator y 7→ y∗ is a linear isometry between X and
its dual Hilbert space X∗. Let S = {x ∈ X : ‖x‖ = 1} and S∗ = {x∗ ∈ X∗ :
‖x∗‖ = 1}.

Let C be the interior of the convex body C̄ and ∂C = C̄ \ C be the
boundary of C̄ in X. A functional x∗ ∈ S∗ is said to support C̄ at a point
x ∈ ∂C if x∗(x) = supx∗(C). The Hahn–Banach Theorem guarantees that
for each point x ∈ ∂C there is a supporting functional x∗ ∈ S∗ of C at x.
If such a supporting functional is unique, then the point x is called smooth.
By the classical Mazur’s Theorem [6, 1.20], the set Σ of smooth points is
a dense Gδ in the boundary ∂C of C. By σ : Σ → S∗ we shall denote
the function assigning to each smooth point x ∈ Σ the unique supporting
functional σx ∈ S∗ of C at x. Let us observe that the function σ has closed
graph

Γ := {(x, σx) : x ∈ Σ}
= (Σ × S∗) ∩ {(x, x∗) ∈ C × S∗ : x∗(x) ≥ supx∗(C)}

in the Polish space Σ × S∗. Let pr1 : Γ → Σ and pr2 : Γ → S∗ be the
projections on the respective factors. Observe that pr1 is a bijective and
continuous map between Polish spaces. By the Luzin–Suslin Theorem [5,
15.1], it is a Borel isomorphism, which implies that the map σ = pr2 ◦pr−1

1 :
Σ → S∗ is Borel measurable. By Theorem 8.38 of [5], there is a dense
Gδ-subset G ⊂ Σ such that the restriction σ|G is continuous.

Claim 2.5. The image σ(G) is infinite.

Proof. Assume that σ(G) is finite and find functionals f1, . . . , fn ∈ S∗
such that σ(G)={f1, . . . , fn}. Since the set C̄ (

⋂n
i=1 f

−1
i ((−∞,max fi(C̄)])

is not polyhedral, there is a point x ∈ X \ C̄ such that fi(x) ≤ max fi(C̄)
for all i ≤ n. Fix any point x0 ∈ C. Since C is open, fi(x0) < max fi(C̄)
for all i ≤ n. Since x /∈ C̄, the segment [x, x0] meets ∂C at some point
y = (1 − t)x + tx0 where t ∈ (0, 1). Then fi(y) = (1 − t)fi(x) + tfi(x0) <
max fi(C̄). It follows that the set U =

⋂n
i=1 f

−1
i (−∞,max fi(C̄)) is an open

neighborhood of y in X. Since the set G in dense in ∂C, there is a point
z ∈ G ∩ U . Consider the unique supporting functional σz of C at z. The
inclusion z ∈ U implies that σz ∈ σ(G) \ {f1, . . . , fn}, which is the desired
contradiction.

Depending on the cardinality of the set σ(G) we divide the further proof
of Lemma 2.4 into two Lemmas 2.6 and 2.8.

Lemma 2.6. If σ(G) is uncountable, then the set C hides some infinite
subset of X.
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Proof. The continuous map σ|G induces a closed equivalence relation
E = {(x, y) ∈ G×G : σ(x) = σ(y)} on the Polish space G. Since this equiv-
alence relation has uncountably many equivalence classes, Silver’s Theorem
[8] yields a topological copy K ⊂ G of the Cantor cube {0, 1}ω such that
K has at most one-point intersection with each equivalence class. This is
equivalent to saying that the restriction σ|K is injective. The existence of
such a Cantor set K can also be derived from Feng’s Theorem [4] saying
that the Open Coloring Axiom holds for analytic spaces.

For any x ∈ K let yx ∈ S be the unique vector such that σx(z) = 〈z, yx〉
for all z ∈ X. For ε ∈ [0, 1] consider the open subset Λ(x, ε) = {z ∈ K :
[x+ εyx, z] ∩ C 6= ∅} of the Cantor set K.

Claim 2.7. For any x ∈ K the sets Λ(x, ε) have the following properties:

(1) Λ(x, ε) ⊃ Λ(x, δ) for any 0 < ε ≤ δ ≤ 1;
(2)

⋃
ε∈(0,1] Λ(x, ε) = K \ {x}.

Proof. (1) Fix 0 < ε ≤ δ ≤ 1 and z ∈ Λ(x, δ). By the definition of the
set Λ(x, δ), the segment [x + δyx, z] meets the open convex set C at some
point c. Since the points x, z belong to the convex set C̄ and the point c
belongs to its interior C, the triangle

∆ = {tcc+ txx+ tzz : tc > 0, tx, tz ≥ 0, tc + tx + ty = 1}

lies in C. Since the segment [x + εyx, z] intersects this triangle, it has non-
empty intersection with C.

(2) Take any point z ∈ K \ {x}. Since σ|K is injective, the support-
ing functionals σx and σy are distinct. Then the open segment ]x, z[ =
[x, z] \ {x, z} lies in C. In the opposite case, [x, z] ⊂ ∂C and for the mid-
point 1

2x + 1
2z there would exist a supporting functional x∗, which would

be supporting at each point of the segment [x, y]. This is impossible as the
points x, z are smooth and have unique and distinct supporting function-
als. This contradiction proves that [x, z] meets C. Then for some ε > 0 the
segment [x+ εyx, z] also meets C, which implies that z ∈ Λ(x, ε).

Being homeomorphic to the Cantor cube, the space K carries an atomless
σ-additive Borel probability measure µ. Fix any x0 ∈ K. Using Claim 2.7(2),
find ε0 ∈ (0, 1] such that µ(Λ(x0, ε0)) > 1 − 2−1. Next proceed by induc-
tion and construct a sequence (xn)n∈ω of points and a sequence (εn)n∈ω of
positive real numbers such that for every n ∈ N:

(1) xn ∈
⋂
k<n Λ(xk, εk);

(2) µ(Λ(xn, εn)) > 1− 2−n−1;
(3) [xk + εkyxk

, xn + εnyxn ] ∩ C 6= ∅ for all k < n;
(4) xn + εnyxn /∈ C̄.
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Assume that for some n, the points xk, k < n, and real numbers εk, k < n,
have been constructed. Consider the intersection

⋂
k<n Λ(xk, εk) and observe

that it has positive measure:

µ
( ⋂
k<n

Λ(xk, εk)
)

= 1− µ
(
K \

⋂
k<n

Λ(xk, εk)
)

= 1− µ
( ⋃
k<n

K \ Λ(xk, εk)
)
≥ 1−

∑
k<n

µ(K \ Λ(xk, εk))

= 1−
∑
k<n

(1− µ(Λ(xk, εk)) > 1−
∑
k<n

2−k−1 > 0.

So, this intersection is not empty and we can select a point xn satisfying (1).
For every k < n the definition of Λ(xk, εk) ensures that the segment [xk +
εkyxk

, xn] meets the interior C of the convex set C̄. Consequently, there is
ε′n > 0 such that for every εn ≤ ε′n and every k < n the segment [xk +
εkyxk

, xn + εnyxn ] still meets the open set C. Finally, using Claim 2.7(2),
choose εn ∈ (0, ε′n] such that µ(Λ(xn, ε′n)) > 1− 2−n−1. Observe that

σxn(xn + εnyxn) = σxn(xn) + εnσxn(yxn) ≥ maxσxn(C̄) + εn

and hence xn + εnyxn /∈ C̄. This completes the inductive step.

The conditions (3) and (4) of the inductive construction guarantee that
A = {xn + εnyxn}n∈ω is the required infinite set, hidden behind the convex
set C̄.

Lemma 2.8. If σ(G) is countable, then C̄ hides some infinite subset of X.

Proof. Denote by F the set of f ∈ σ(G) for which f−1(sup f(C)) ∩ C
has non-empty interior in ∂C.

Claim 2.9. The set F is infinite.

Proof. Assume that F is finite, say F = {f1, . . . , fn} for some f1, . . . , fn
∈ S∗. Since C̄ is not polyhedral,

C̄ 6=
n⋂
i=1

f−1
i ((−∞,max fi(C̄)]).

Repeating the argument from Claim 2.5, we can find y ∈ ∂C such that
fi(y) < max fi(C̄) for all i ≤ n. Then U =

⋂n
i=1 f

−1
i ((−∞,max fi(C̄)) is

an open neighborhood of y in X. Since G ∩ U ⊂
⋃
f∈σ(G) f

−1(max f(C̄)),
the Baire Theorem implies that for some f ∈ σ(G) the set f−1(max f(C̄))∩
G ∩ U has non-empty interior in G ∩ U . Since G ∩ U is dense in U ∩ ∂C,
the set f−1(max f(C̄)) ∩ U has non-empty interior in U ∩ ∂C and in ∂C.
Consequently, f ∈ F . Since f−1(max f(C̄)) ∩ U 6= ∅, we conclude that
f ∈ F \ {f1, . . . , fn}, which is the desired contradiction.
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By Claim 2.9, the set F ⊂ σ(G) ⊂ S∗ is infinite and hence contains an
infinite discrete subspace {fn}n∈ω. By the definition of F , for every n ∈ ω we
can choose xn ∈ ∂C and a positive real number εn such that ∂C∩B̄(xn, εn) ⊂
f−1
n (max fn(C̄)). Here B̄(xn, εn) = {x ∈ X : ‖x−xn‖ ≤ ε}. Moreover, since

the subspace {fn}n∈ω of S∗ is discrete, we can additionally assume that
B̄(fn, εn) ∩ B̄(fm, εm) = ∅ for any distinct n,m ∈ ω. For every n ∈ ω let
yn ∈ S be the unique point such that fn(z) = 〈z, yn〉 for all z ∈ X. The
Riesz Representation Theorem guarantees that

‖yn − ym‖ = ‖fn − fm‖ ≥ εn + εm for all n 6= m.

We shall need the following elementary (but not trivial) geometric fact.

Claim 2.10. For any distinct n,m ∈ ω and a positive δn ≤ 1
3ε

2
n the

segment [xn + δnyn, xm] meets the open convex set C.

Proof. Assume for contradiction that [xn+δnyn, xm]∩C = ∅. Taking into
account that f−1

n (fn(xn))∩B̄(xn, εn) ⊂ C̄, we conclude that ‖xn−xm‖ ≥ εn.
Now consider the unit vector

i =
xm − xn
‖xm − xn‖

.

Since 〈xm, yn〉 = fn(xm) ≤ max fn(C̄) = fn(xn) = 〈xn, yn〉, we get
〈xm − xn, yn〉 ≤ 0, which means that the angle between the vectors yn and
i is obtuse. Since [xn + δnyn, xm]∩C = ∅, the unit vector yn is not equal to
−i and hence the unit vector

j =
yn − 〈i, yn〉 · i
‖yn − 〈i, yn〉 · i‖

is well-defined. Let α be the angle between the vectors yn and j. It follows
that yn = − sin(α) i + cos(α) j. Consider the vector y⊥n = cos(α)i + sin(α)j,
which is orthogonal to yn. Looking at the picture below, we can see that α
is less than the angle β between y⊥n and xm − (xn + δnyn).

-
i

q q
xm

C
C
C
C
C
C
C
C
CCO

yn

δn

xn
���

���
���

�: y⊥n
εn q

α

β

6
j

qXXXXXXXXXXXXX
Since xn + εny

⊥
n ∈ f−1

n (fn(xn))∩ B̄(xn, εn) ⊂ C̄ and [xn + δnyn, xm]∩C
= ∅, the angle β is less than arctan(δn/εn). Then

‖yn − j‖ = 2 sin(α/2) ≤ α ≤ β ≤ arctan(δn/εn) ≤ δn/εn ≤ εn/3.



A characterization of polyhedral convex sets 71

Next, we evaluate the distance ‖ym − j‖. It is clear that ‖ym − j‖ =
2 sin(γ/2) where γ is the angle between ym and j.

Let us consider separately two possible cases.
1) The vector ym lies in the plane spanned by i and j. Since fm(x) =

〈x, ym〉 is a supporting functional of C at xm, we get 〈xn−xm, ym〉 ≤ 0 and
hence 〈i, ym〉 ≥ 0.

On the other hand, [xn+δnyn, xm]∩C = ∅ and f−1
m (fm(xm))∩B(xm, εm)

⊂ C̄ imply that 〈xn + δnyn − xm, ym〉 ≥ 0 and 〈xn + δnj − xm, ym〉 ≥ 0.
Consequently, γ < π/2 and ym = sin(γ)i + cos(γ)j. It follows that

−‖xn − xm‖ sin(γ) + δn cos(γ) = 〈xn − xm + δnj, ym〉 ≥ 0

and hence tan(γ) ≤ δn/‖xn − xm‖ ≤ δn/εn and

‖ym − j‖ = 2 sin(γ/2) ≤ γ ≤ tan(γ) ≤ δn/εn ≤ εn/3.
Then

‖fn − fm‖ = ‖yn − ym‖ ≤ ‖yn − j‖+ ‖j− ym‖ ≤ 2εn/3 < εn + εm,

which contradicts the choice of the sequence (εk).
2) The vectors i, j, ym are linearly independent. Let k be a unit vector in

X such that k is orthogonal to i and j and ym = ai + bj + ck for some real
numbers a, b, c. It follows that xn±εnk ∈ f−1

n (fn(xn))∩B̄(xn, εn) ⊂ C̄. Since
fm is a supporting functional of C at xm, we get 0 ≥ 〈xn± εnk−xm, ym〉 =
−‖xn − xm‖a± εnc, which implies

|c| ≤ ‖xn − xm‖
εn

a.

On the other hand, [xn+ δnj, xm]∩C = ∅ implies 0 ≤ 〈xn+ δnj−xm, ym〉 =
−‖xn − xm‖a+ δnb and

a

b
≤ δn
‖xn − xm‖

.

Now we see that

‖ym − j‖ = 2 sin(γ/2) ≤ tan(γ) =
√
a2 + c2

|b|
≤ a

b

√
1 +
‖xn − xm‖2

ε2n

≤ δn
‖xn − xm‖

√
1 +
‖xn − xm‖2

ε2n
≤ δn

√
1

‖xn − xm‖2
+

1
ε2n

≤ δn

√
1
ε2n

+
1
ε2n

=
√

2
δn
εn
≤
√

2
3
εn.

Then ‖fn−fm‖ = ‖yn−ym‖ ≤ ‖yn−j‖+‖j−ym‖ ≤ εn/3+
√

2εn/3 < εn+εm,
which contradicts the choice of the sequence (εk) and completes the proof
of Claim 2.10.
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Now we can continue the proof of Lemma 2.8. By induction for every
n ∈ ω we shall choose a positive real number δn such that

(1) δn ≤ ε2n/3;
(2) [xk + δkyk, xn + δnyn] ∩ C 6= ∅ for any k < n.

To start the inductive construction put δ0 = ε20/3. Assume that for
some n ∈ ω we have constructed positive real numbers δk, k < n, satisfy-
ing the conditions (1)–(2). By Claim 2.10, for every k < n the intersection
[xk + δkyk, xn] ∩ C is not empty. Since the set C is open, we can choose a
positive δn ≤ ε2n/3 so small that for every k < n the intersection
[xk + δkyk, xn + δnyn] ∩ C is still not empty. This completes the inductive
construction.

It follows from (2) that the infinite set A = {xn + δnyn}n∈ω is hidden
behind the convex set C̄.

Lemmas 2.6 and 2.8 complete the proof of Lemma 2.4.

3. Proof of Theorem 1.1. The implications (1)⇒(2)⇒(3)⇒(1) of
Theorem 1.1 are proved in the following three lemmas.

Lemma 3.1. If C is polyhedral in lin(C), then C is polyhedric in aff(C).

Proof. If C is polyhedral in lin(C), then C =
⋂n
i=1 f

−1
i ((−∞, ai]) for

some linear functionals f1, . . . , fn : lin(C) → R and some real numbers
a1, . . . , an. For every i≤n consider the convex setHi=aff(C)∩f−1

i ((−∞, ai])
and observe that its complement aff(C) \ Hi = aff(C) ∩ f−1

i ((ai,+∞)) is
also convex. Since C =

⋂n
i=1Hi, the set C is polyhedric in aff(C).

Lemma 3.2. If a convex subset C of a linear space X is polyhedric in
aff(C), then C hides no infinite subset A ⊂ X \ C.

Proof. Assume for contradiction that some infinite subset A ⊂ X \ C
can be hidden behind C. First we show that A \ aff(C) contains at most
two distinct points. Assume for contradiction that there are three pairwise
distinct points a1, a2, a3 ∈ A\aff(C). Let P = {t1a1 +t2a2 +t3a3 : t1 +t2 +t3
= 1} be the affine subspace of X spanned by a1, a2, a3. The subspace P has
dimension 1 or 2. The intersection P ∩aff(C) is an affine subspace of P that
intersects the open segments ]a1, a2[, ]a1, a3[ and ]a2, a3[ and hence coincides
with P , which is not possible as a1, a2, a3 ∈ P \ aff(C). So, |A \ aff(C)| ≤ 2
and we lose no generality assuming that A ⊂ aff(C).

Being polyhedric in aff(C), the set C can be written as a finite inter-
section C =

⋂n
i=1Hi of convex subsets H1, . . . ,Hn ⊂ aff(C) having convex

complements aff(C) \ Hi, i ≤ n. Since A \ C =
⋃n
i=1 aff(C) \ Hi, by the

Pigeonhole Principle, there is an index i ∈ {1, . . . , n} such that the convex
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set aff(C) \Hi contains two distinct points a, b ∈ A and hence contains the
segment [a, b], which is not possible as [a, b] meets C ⊂ Hi.

Lemma 3.3. If a closed convex subset C of a complete linear metric space
X is not polyhedral in lin(C), then some infinite A ⊂ X \ C can be hidden
behind C.

Proof. Assume that C is not polyhedral in lin(C). It is easy to check
that

Ker(C) = {x ∈ X : ∀c ∈ C ∀t ∈ R c+ tx ∈ C}
is a closed linear subspace of X and C = C+Ker(C). Let Y = X/Ker(C) be
the quotient linear metric space and Q : X → Y be the quotient operator.
By [7, 2.3.1], the operator Q is open, and by [7, 1.4.10], Y is a complete
linear metric space. Let D = Q(C). The equality C = C + Ker(C) implies
that C = Q−1(D) and Y \D = Q(X \ C) is an open set. So, D is a closed
convex set in Y . By Lemma 2.1, the set D is not polyhedral in lin(D).

If the linear space lin(D) is finite-dimensional, then it is isomorphic to
a finite-dimensional Hilbert space H. Let T : H → lin(D) be the corre-
sponding isomorphism. Since D is not polyhedral in lin(D), the preimage
E = T−1(D) is not polyhedral inH. Being finite-dimensional, the closed con-
vex set E is a convex body in aff(E) ⊂ H. Then for every e0 ∈ E the convex
set E0 = E − e0 is a convex body in the linear subspace H0 = aff(E) − e0
of H. Since E is not polyhedral in H, the shift E0 = E−e0 is not polyhedral
in H0. By Lemma 2.4 the set E0 hides an infinite subset A0 ⊂ H0 \E0. Then
E hides the infinite set A0 + e0 and the set T (E) = D hides the infinite
set B = T (A0 + e0). Choose any subset A ⊂ X such that Q|A : A → B is
bijective. By Lemma 2.2 the infinite set A is hidden behind the convex set
C = Q−1(D) and we are done.

Next, assume that lin(D) is infinite-dimensional. Then the convex set D
is also infinite-dimensional. By Lemma 2.3, there is a continuous injective
affine operator T : l2 → lin(D) such that E = T−1(D) is a closed convex
body in l2. Since Ker(D) = {0}, we get Ker(E) = {0}. This implies that E
is not polyhedral in l2. By Lemma 2.4, the convex set E hides some infinite
subset A0 ⊂ l2 \ E. Then the infinite set B = T (A0) ⊂ Y \ D is hidden
behind the convex set D. Choose any subset A ⊂ X such that Q|A : A→ B
is bijective. By Lemma 2.2 the infinite set A is hidden behind the convex
set C = Q−1(D) and we are done.

4. Open problems. It would be interesting to know whether a relative
version of Theorem 1.1 is true.

Problem 4.1. Let C ⊂ D be two closed convex subsets of a complete
linear metric space. Is it true that C hides no infinite subset A ⊂ D \ C if
and only if C is polyhedric in D ∩ aff(C)?
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In fact, the notions of polyhedric and hidden sets can be defined in a
general context of convex structures (see [9]). Let us recall that a convex
structure on a set X is a family C of subsets of X such that

• ∅, X ∈ C;
•
⋂
A ∈ C for any subfamily A ⊂ C;

•
⋃
A ∈ C for any linearly ordered subfamily A ⊂ C.

For a convex structure (X, C) and a subset A ⊂ C the intersection conv(A) =⋂
{C ∈ C : A ⊂ C} is called the convex hull of A.

We say that a subset C ⊂ X hides a subset A ⊂ X if conv({a, b})∩C 6= ∅
for any distinct a, b ∈ A.

A subset C is polyhedric in a subset D ⊂ X if C =
⋂n
i=1Hi for some

subsets H1, . . . ,Hn ⊂ D such that Hi, D \Hi ∈ C for all i ≤ n.

Problem 4.2. Given a convex structure (X, C) (possibly with topology)
characterize (closed) convex sets C ∈ C that hide no infinite subset A ⊂
X \ C.
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