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Compactness properties of weighted summation operators
on trees—the critical case

by

Mikhail Lifshits (St. Petersburg) and Werner Linde (Jena)

Abstract. The aim of this paper is to provide upper bounds for the entropy numbers
of summation operators on trees in a critical case. In a recent paper [Studia Math. 202
(2011)] we elaborated a framework of weighted summation operators on general trees
where we related the entropy of the operator to those of the underlying tree equipped
with an appropriate metric. However, the results were left incomplete in a critical case of
the entropy behavior, because this case requires much more involved techniques. In the
present article we fill this gap. To this end we develop a method, working in the context of
general trees and general weighted summation operators, which was recently proposed by
the first-named author for a particular critical operator on the binary tree. Those problems
appeared in a natural way during the study of compactness properties of certain Volterra
integral operators in a critical case.

1. Introduction. Let T be a tree with partial order structure “�”, i.e.,
t � s whenever t lies on a path leading from the root of T to s. Suppose we
are given two weight functions α, σ : T → (0,∞) satisfying

(1.1) κ := sup
s∈T

(∑
v�s

α(v)q
)1/q

σ(s) <∞

for some q ≥ 1. Then the weighted summation operator Vα,σ is well-defined
by

(1.2) (Vα,σµ)(t) := α(t)
∑
s�t

σ(s)µ(s), t ∈ T ,

for µ ∈ `1(T ) and it is bounded from `1(T ) to `q(T ) with ‖V ‖ ≤ κ.
Our aim is to describe compactness properties of Vα,σ. This turns out to

be a challenging problem because those properties do not only depend on
α, σ and q but also on the structure of the underlying tree. The motivation
for the investigation of those questions stems from [Lif] where compactness
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properties of certain Volterra integral operators were studied; for the latter
subject, see also [Lin]. Probabilistic applications of summation operators on
trees may be found in [LL2].

The basic observation in [LL1] is as follows: The weights α and σ generate
in a natural way a metric d on T , and covering properties of T by d-balls
are tightly related to the degree of compactness of Vα,σ. To be more precise,
for t � s we define their distance as

(1.3) d(t, s) := max
t≺v�s

( ∑
t≺τ�v

α(τ)q
)1/q

σ(v).

If σ is non-increasing, i.e., t � s implies σ(t) ≥ σ(s), then, as shown in [LL1],
the distance d extends to a metric on the whole tree T .

Let N(T, d, ε) be the covering numbers of (T, d), i.e.,

N(T, d, ε) := inf
{
n ≥ 1 : T =

n⋃
j=1

Uε(tj)
}

with (open) ε-balls Uε(tj) for certain tj ∈ T , and let en(Vα,σ) be the sequence
of dyadic entropy numbers of Vα,σ defined as follows: If X and Y are Banach
spaces and V : X → Y is an operator, then the nth entropy number of V is
given by

en(V ) := inf{ε > 0 : {V (x) : ‖x‖X ≤ 1} is covered by at most

2n−1 open ε-balls in Y }.
The operator V is compact if and only if en(V ) → 0 as n → ∞. Thus the
behavior of en(V ) as n → 0 may be viewed as a measure of the degree
of compactness of V . We refer to [CS] or [ET] for more information about
entropy numbers and their properties.

One of the main results in [LL1] is the following; for simplicity, we only
formulate it for 1 < q ≤ 2. Suppose that

N(T, d, ε) ≤ cε−a|log ε|b

for some a > 0 and b ≥ 0. Then

en(Vα,σ : `1(T )→ `q(T )) ≤ c′n−1/a−1/q(log n)b/a.

Here the order of the right-hand side cannot be improved.
One may ask whether or not a similar relation between N(T, d, ε) and

en(Vα,σ) remains valid in the (probably more interesting) case thatN(T, d, ε)
tends to infinity exponentially as ε→ 0. In [LL1] we were able to provide a
partial answer to this question, but some interesting critical case remained
unsolved. More precisely, we proved the following (again we only formulate
the result for 1 < q ≤ 2): Assume

logN(T, d, ε) ≤ cε−a
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for some constant c > 0 and some a > 0. Then

(1.4) en(Vα,σ : `1(T )→ `q(T )) ≤ c′n−1/q′(log n)1/q
′−1/a

provided that a < q′ while for a > q′ we have

(1.5) en(Vα,σ : `1(T )→ `q(T )) ≤ c′n−1/a.

Here and throughout, q′ denotes the conjugate of q defined by 1/q′ = 1−1/q.
Again, both estimates are of the best possible order.

The most interesting critical case a = q′ has remained open; our methods
only led to

(1.6) en(Vα,σ : `1(T )→ `q(T )) ≤ c′n−1/a(log n).

In view of the available lower estimates and the results in [Lif], where a spe-
cial but representative case (binary trees, q = 2 and some special weights)
was handled, we conjectured that the logarithm on the right-hand side
of (1.6) is unnecessary.

The main aim of the present paper is to verify this conjecture. We shall
prove the following.

Theorem 1.1. Let T be an arbitrary tree and let α, σ be weights on
T satisfying (1.1) for some q ∈ (1, 2]. Furthermore, assume σ to be non-
decreasing and let d be the metric on T defined via (1.3). Suppose

(1.7) logN(T, d, ε) ≤ c0ε−q
′

with some c0 > 0. Then

en(Vα,σ : `1(T )→ `q(T )) ≤ cc1− 1/q
0 n−(1−1/q)

for some c = c(q) independent of α, σ and T .

As an illustration, let us show that the main result of [Lif] is a direct
corollary of Theorem 1.1.

Corollary 1.2. Let T be an infinite binary tree and let the weights on
T be defined by

σ(t) = 1, α(t) = (|t|+ 1)−1, t ∈ T,
where | · | denotes the order of an element in the tree (cf. (2.1) below). Then
there exists a finite positive c such that for all positive integers n we have

en(Vα,σ : `1(T )→ `2(T )) ≤ cn−1/2.

Proof. Take any positive integer k and let Tk be the union of the levels
less than or equal to k, i.e., Tk := {t ∈ T : |t| ≤ k}. Then

#Tk =
k∑
j=0

2j < 2k+1.
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On the other hand, it is obvious that (with q = 2 in the definition of the
metric d)

sup
s∈T

inf
t∈Tk

d(t, s)2 <
∞∑

j=k+1

(j + 1)−2 ≤ (k + 1)−1.

It follows that logN(T, d, (k + 1)−1/2) ≤ (k + 1) · log 2, thus Theorem 1.1
applies with q = 2 and yields the assertion of the corollary.

Let us briefly explain why the methods of [LL1] are not appropriate for
the proof of Theorem 1.1 and why, therefore, a completely new approach is
needed. A basic step in the proof of (1.4) and (1.5) is an estimate for the
entropy of the convex hull of a certain subset of `q(T ). Estimates of this type
are well-known (see e.g. [CKP] or [CSt]). But here a critical case appears
which exactly corresponds to a = q′ in our situation. As shown for q = 2
in [Ga] and for type q-spaces in [CSt], in this critical case estimates of the
entropy of convex hulls give an extra log-term which, in general, cannot be
avoided. Thus, in order to prove Theorem 1.1 one has to show that such
an extra log-term does not appear for the entropy of convex hulls provided
the sets under investigation are related to weighted summation operators
on trees. This demands a completely new approach which was for the first
time used in [Lif] and which we elaborate here further. The basic idea is to
approximate an operator defined on a Banach space X (in our situation we
have X = `1(T )) by a family of operators depending on the elements in X.
To this end one has to control at the same time the entropy numbers of the
approximating operators as well as the number of those operators.

2. Trees. Let us recall some basic notation related to trees which will be
used later on. In what follows, T always denotes a finite or an infinite tree.
We suppose that T has a unique root which we denote by 0 and that each
element t ∈ T has a finite number of offsprings. We do not exclude that some
elements do not possess any offspring, i.e., the progeny of some elements may
“die out”. The tree structure leads in a natural way to a partial order “�”
by letting t � s, or s � t, provided there are t = t0, t1, . . . , tm = s in T
such that for 1 ≤ j ≤ m the element tj is an offspring of tj−1. The strict
inequalities have the same meaning with the additional assumption t 6= s.
Two elements t, s ∈ T are said to be comparable if either t � s or s � t.

Given t ∈ T with t 6= 0 we denote by t− the (unique) parent element
of t, i.e., t is supposed to be an offspring of t−.

For t, s ∈ T with t � s the order interval [t, s] is defined by

[t, s] := {v ∈ T : t � v � s}

and in a similar way we define (t, s] and (t, s).
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A subset B ⊆ T is said to be a branch provided that all elements in B
are comparable and, moreover, if t � v � s with t, s ∈ B, then v ∈ B as
well. Of course, finite branches are of the form [t, s] for suitable t � s.

A set B ⊆ T is called a tree provided it is a tree with respect to the
structure of T ; in particular, if r ∈ B is its root, then [r, s] ⊆ B for each
s ∈ B with s � r. If 0 is the root of the tree, then B is called a subtree of T .
Given a tree B ⊆ T , an element t ∈ B is said to be terminal provided that
s /∈ B for all offsprings s of t.

Finally, for any s ∈ T its order |s| ≥ 0 is defined by

(2.1) |s| := #{t ∈ T : t ≺ s}.

3. Reduction of the problem. An easy scaling argument shows that
we may assume that estimate (1.7) holds with c0 = 1. Another quantity
that naturally appears in our bounds is κ defined in (1.1). Notice that for
any ε > κ we have N(T, d, ε) ≥ 2. Therefore, (1.7) yields κ ≤ (c0/log 2)q

′
,

hence the scaling of c0 implies that κ > 0 is uniformly bounded. After this
scaling is done, all the constants appearing in the proof of Theorem 1.1 only
depend on q. We will denote them by c without further distinction.

First reduction. A first important simplification of the problem is as
follows: Without losing generality we may assume that σ attains only values
in {2−k : k ∈ Z}. Although this has been proved in [LL1], let us briefly
repeat the argument. Set

Ik := {t ∈ T : 2−k−1 < σ(t) ≤ 2−k}
and define a new weight σ̂ by

σ̂ :=
∑
k∈Z

2−k1Ik .

Then en(Vα,σ) ≤ en(Vα,σ̂), and if d̂ denotes the metric on T defined via
(1.3) with σ̂ instead of σ, then N(T, d̂, ε) ≤ N(T, d, 2ε). Moreover, if σ is
non-increasing, then so is σ̂. Clearly, this shows that it suffices to prove
Theorem 1.1 for weights σ only attaining values in {2−k : k ∈ Z}.

Second reduction. Suppose that σ is of the special form

(3.1) σ =
∑
k∈Z

2−k1Ik

for certain disjoint Ik ⊆ T , k ∈ Z. Since σ is assumed to be non-decreasing,
the collection I := (Ik)k∈Z of subsets in T has the following properties:

(1) The Ik are disjoint and T =
⋃
k∈Z Ik, i.e., I is a partition of T .

(2) For each s ∈ T the set Ik ∩ [0, s] is either empty or a branch. More-
over, the Ik are ordered in the right way, i.e., if l < k and vl ∈ Il∩[0, s]
and vk ∈ Ik ∩ [0, s], then vl ≺ vk.



80 M. Lifshits and W. Linde

(3) Since σ is bounded, it follows of course that Ik = ∅ whenever k ≤ k0

for a certain k0 ∈ Z.

Using this partition I of T we construct an operator W : `1(T )→ `q(T )
which may be viewed as a localization of Vα,σ. It is defined as follows: If
µ ∈ `1(T ), then

(3.2) (Wµ)(t) := α(t)
∑
s�t
s∈Ik

σ(s)µ(s) = α(t) 2−k
∑
s�t
s∈Ik

µ(s), t ∈ Ik.

Note that for each k ∈ Z and t ∈ Ik the value of (Wµ)(t) depends only on
the values of µ(s) for s � t and s ∈ Ik. This is in complete contrast to the
definition of Vα,σ because here the value of (Vα,σµ)(t) depends on the values
of µ(s) for all s � t. Nevertheless, as shown in [LL1, Proposition 4.3] the
following is valid.

Proposition 3.1. We have

en(Vα,σ : `1(T )→ `q(T )) ≤ 2en(W : `1(T )→ `q(T )).

As a consequence, it suffices to estimate the entropy numbers of W suit-
ably.

Third reduction. Given ε > 0 a set S ⊂ T is said to be an ε-order net if
for each t ∈ T there is an s ∈ S with s � t and d(s, t) < ε. Let

Ñ(T, d, ε) := inf{#S : S is an ε-order net of T}
be the corresponding order covering numbers. Clearly,

N(T, d, ε) ≤ Ñ(T, d, ε).

But, surprisingly, also a reverse estimate holds as shown in [LL1, Proposi-
tion 3.3]. More precisely, we always have

Ñ(T, d, 2ε) ≤ N(T, d, ε).

Summing up, it follows that it suffices to prove the following variant of
Theorem 1.1:

Theorem 3.2. Suppose that σ is non-increasing and of the special
form (3.1). Define W as in (3.2) with respect to the partition I generated
by σ. If

log Ñ(T, d, ε) ≤ ε−q′

for some q ∈ (1, 2], then

en(W : `1(T )→ `q(T )) ≤ cn−(1−1/q).

4. Proof of Theorem 3.2. We start by explaining the strategy for
proving Theorem 3.2. This is done by a quite general approximation proce-
dure, which, to our knowledge, for the first time appeared in [Lif].
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Proposition 4.1. Let V be a bounded linear operator between the Ba-
nach spaces X and Y and let {Vγ : γ ∈ Γ} be a (finite) collection of operators
from X to Y . Set M := [log2(#Γ )] + 1. Then, for each k ≥ 1,

(4.1) ek+M (V ) ≤ sup
γ∈Γ

ek(Vγ) + sup
‖x‖X≤1

inf
γ∈Γ
‖V x− Vγx‖Y .

How this proposition is applied? Let a > 0 and suppose for each n ≥ 1
there exist operators {V n

γ : γ ∈ Γn} from X to Y such that log(#Γn) ≤ c1n
and e[ρn](V n

γ ) ≤ c2n−a for some ρ ≥ 1. If, furthermore, for each x ∈ X with
‖x‖X ≤ 1 there is a γ = γ(x) ∈ Γn with

‖V x− V n
γ x‖Y ≤ c3n−a,

then an application of Proposition 4.1 with k = [ρn] immediately leads to
ec4n(V ) ≤ c5n−a for n ∈ N, hence by the monotonicity of entropy numbers,
en(V ) ≤ cn−a for n ≥ 1.

Thus, in order to apply this general approximation scheme to W defined
in (3.2) and with a = 1 − 1/q, for each n ≥ 1 we have to construct a
suitable collection {Wn

γ : γ ∈ Γn} of operators from `1(T ) to `q(T ) with
log(#Γn) ≤ c1n,

(4.2) inf
γ∈Γn

‖Wµ−Wn
γ µ‖q ≤ c3n−(1−1/q), ‖µ‖1 ≤ 1,

such that

(4.3) e[ρn](W
n
γ ) ≤ c2n−(1−1/q), n ≥ 1,

for a certain ρ ≥ 1.
Let us briefly describe the strategy of this quite involved construction.

In a first step, we build an auxiliary structure on the tree T . Namely, we
construct a system (Bm)m≥0 of refining tree partitions of T based on the
weights α and σ. This is done in Subsections 4.1 and 4.2.

Next, given n ∈ N, we construct a set Ln of partitions of T that will
play the role of the parameter set Γn mentioned above. Namely, for any
µ ∈ `1(T ) with ‖µ‖1 ≤ 1 we construct a special partition Lµ = Lµ(n) of T .
Any element of the partition Lµ belongs to a suitable partition Bm built
in the first step. This construction is presented in Subsection 4.3. We let
Ln = {Lµ : µ ∈ `1(T ), ‖µ‖1 ≤ 1}. The size of Ln has an exponential bound
as required above.

Furthermore, each partition L ∈ Ln generates a representation W =∑4
i=1W

i
L, as explained in (4.22) below. We show that the sums

∑3
i=1W

i
L can

be used as approximating operators as in (4.2) and they admit the bound for
the entropy numbers as in (4.3). Algebraic properties of the entropy numbers
imply that it suffices to verify en(W i

L) ≤ cin−(1−1/q) for i = 1, 2, 3. The proof
of these estimates will be presented in Subsection 4.4. Surprisingly, each of
the three operators must be treated by a different method.
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Hence, let us start with the investigation of a special type of partition
of T .

4.1. Tree partitions. Suppose we are given a subset R ⊆ T with 0 ∈ R.
If r ∈ R, set

Br := {s ∈ T : s � r and (r, s] ∩R = ∅}.
Then Br is a tree in T with root r ∈ R. Letting B := {Br : r ∈ R}, the
family B is a partition of T where each partition element is a tree. We call B
a tree partition of T . Notice that each tree partition of T may be represented
as described before with R being the set of roots of B ∈ B.

Given two tree partitions B1 and B2, we say that B2 refines B1 provided
that each B2 ∈ B2 is contained in a suitable B1 ∈ B1. Clearly, this is
equivalent to R1 ⊆ R2 with generating (or root) sets R1 and R2 of B1

and B2, respectively.
Suppose now that (Bm)m≥0 is a sequence of tree partitions satisfying

B0 = {T} such that for each m ≥ 1 the partition Bm refines Bm−1. Of
course, this is equivalent to

{0} = R0 ⊆ R1 ⊆ · · ·
with the Rm being the corresponding root sets. In order to distinguish the
sets in different levels let us write

Bm = {Br,m : r ∈ Rm}
where Br,m is an element of Bm with the root r ∈ Rm. Finally, set

(4.4) B∞ := {Br,m : r ∈ Rm, m ≥ 0}.
Given Br,m and Br′,m′ in B∞ we say that the latter tree is an offspring of
the former one provided that m′ = m + 1 and Br′,m′ ⊆ Br,m. In that way
B∞ becomes a tree with root B0,0 = {T}. If we denote the generated partial
order in B∞ by “�” (and by “�” the strict order), then Br,m�Br′,m′ if and
only if m′ ≥ m and Br′,m′ ⊆ Br,m. Notice a minor abuse of notation: We
may have Br,m = Br,m′ as sets but they are equal in B∞ only if m = m′,
i.e., the same set may appear in different levels and is then treated as a
multitude of different elements in B∞.

In particular, all notions concerning trees apply to B∞. For example, if
we define the order of an element in B∞ as in (2.1), then we have

{B ∈ B∞ : |B| = m} = Bm.
Let us mention a special property of B∞. Suppose that m′ ≥ m. Then, if
B,B′ ∈ B∞ have orders m,m′, respectively, then either B�B′ or B∩B′ = ∅.

4.2. Construction of tree partitions. Suppose we are given weights
α and σ on T where σ is assumed to be as in (3.1) with partition I = (Ik)k∈Z.
Let d be the metric constructed by (1.3) with respect to α, σ and q. One of
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the main difficulties is that the metric d and the partition I do not match.
For example, if t � s, t ∈ Ik−1 and s ∈ Ik, then we get

(4.5) d(t, s) = max
{

2−(k−1)
( ∑
t≺v≺λ(s)

α(v)q
)1/q

, 2−k
( ∑
t≺v�s

α(v)q
)1/q}

where λ(s) is defined by Ik ∩ [0, s] = [λ(s), s]. Since we do not have any
information about the inner sums, this expression is difficult to handle.
Observe that for general t, s ∈ T with t � s expression (4.5) becomes even
more complicated. Therefore we modify d in a way better suited to I and
set

dI(t, s) :=
{

min{d(λ(s), s), d(t, s)}, t � s,
+∞, otherwise,

with λ(s) as before. Let us reformulate this expression. To this end we define
an equivalence relation on T by setting t ≡ s provided that there is a k ∈ Z
with t, s ∈ Ik. Then, if t � s, we may write dI(t, s) as

dI(t, s) = σ(s)
( ∑
t≺v�s
v≡s

α(v)q
)1/q

.

Thus dI may be viewed as a localization of d. Although in general dI is not
a metric on T , we will use it later on to measure some “distances”.

We suppose now that T is a tree satisfying

(4.6) log Ñ(T, d, ε) ≤ ε−q′ .
The next objective is to construct tree partitions suited to our problem. We
do so by defining the corresponding root sets. For each m ≥ 1 set

εm := (m log 2)−(1−1/q).

In view of (4.6) this choice immediately provides

(4.7) Ñ(T, d, εm) ≤ 2m.

Proposition 4.2. Suppose (4.6). Then there are subsets (Rm)m≥0 of T
with the following properties:

(1) {0} = R0 ⊆ R1 ⊆ · · · .
(2) For each m ≥ 0 one has

(4.8) #Rm ≤ 2m+1.

(3) The sets Rm are εm-order nets with respect to dI , i.e.

(4.9) sup
s∈T

min
r∈Rm

dI(r, s) < εm.

(4) The sets Rm are minimal with respect to the order in T in the fol-
lowing sense: Whenever τ ∈ Rm \ Rm−1, hence τ 6= 0, thus τ− is
well-defined, then Rτm := (Rm \{τ})∪{τ−} no longer satisfies (4.9).
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Proof. We construct the sets Rm by induction. Take R0 := {0} and
suppose that for some m ≥ 1 we have already defined R0, . . . , Rm−1 with
the desired properties. Let

Am :=
{
A ⊆ T : #A ≤ 2m and sup

s∈T
min

r∈A∪Rm−1

dI(r, s) < εm

}
.

First of all, we establish that Am 6= ∅. Indeed, due to (4.7) there exist
εm-order nets of cardinality less than or equal to 2m. Moreover, any such net
belongs to Am, due to the definition of order nets and since dI(r, s) ≤ d(r, s)
whenever r � s.

Next define
A0
m := {A ∈ Am : #A is minimal}

and distinguish between the following two cases:

First case: ∅ ∈ A0
m. This happens whenever Rm−1 satisfies (4.9) not

only for εm−1 but also for εm. In that case we set Rm := Rm−1. Of course,
the first three properties are satisfied and the fourth one holds trivially.

Second case: ∅ /∈ A0
m. Then all sets in A0

m have the same positive car-
dinality p ≤ 2m. For any A ∈ A0

m let F (A) :=
∑

τ∈A |τ | and choose a set
A∗m ∈ A0

m such that
F (A∗m) = min

A∈A0
m

F (A).

Set
Rm := Rm−1 ∪A∗m.

Clearly, Rm−1 ⊆ Rm. Next,

#Rm = #Rm−1 + #A∗m ≤ 2m + p ≤ 2m + 2m = 2m+1,

as asserted in property (2). Since A∗m ∈ Am, condition (4.9) required in
property (3) holds as well.

It remains to check property (4). Fix any τ ∈ A∗m. Note that neces-
sarily τ /∈ Rm−1 because otherwise, by dropping τ , we could diminish the
cardinality of the set and stay in Am. In particular, we get τ 6= 0.

Next, set Aτm := (A∗m \ {τ}) ∪ {τ−}. Clearly, F (Aτm) < F (A∗m). Since
F attains its minimum on A0

m at A∗m, we infer that Aτm 6∈ A0
m. Moreover,

since #Aτm = #A∗m = p, it follows that Aτm 6∈ Am. Consequently, because
of A∗m = Rm \Rm−1, property (4) of the proposition holds. This completes
the proof.

Before proceeding further, let us recall that the Rm constructed above
lead to tree partitions Bm of T with Bm = {Br,m : r ∈ Rm} where s ∈ Br,m
if and only if s � r and (r, s] ∩Rm = ∅. We have

(4.10) dI(r, s) < εm whenever s ∈ Br,m.
Moreover, each partition Bm refines Bm−1.
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Next we turn to the crucial estimate for the tree partitions constructed
in Proposition 4.2. Here property (4) plays an important role.

Proposition 4.3. Let the Rm be as in Proposition 4.2 with correspond-
ing tree partitions Bm = {Br,m : r ∈ Rm}. Fix m ≥ 1 and let r ∈ Rm−1,
τ ∈ Rm with r ≺ τ and τ ∈ Br,m−1. Then

σ(τ)
( ∑
r≺v�τ−
v≡τ

α(v)q
)1/q

≤ cm−1.

Proof. First note that τ ∈ Br,m−1 yields always τ /∈ Rm−1, so τ ∈
Rm \ Rm−1 and we are in the situation of property (4) of Proposition 4.2.
Hence there is an s ∈ T such that with Rτm := (Rm \ {τ}) ∪ {τ−} we get

(4.11) min
v∈Rτm

dI(v, s) ≥ εm.

On the other hand, by property (3) of Proposition 4.2,

(4.12) min
v∈Rm

dI(v, s) < εm.

Since Rm and Rτm differ only by one point, namely, by τ or τ−, the two
minima in (4.11) and (4.12) may only be different if τ is the maximal element
in [0, s] ∩Rm. This implies s ∈ Bτ,m as well as

(4.13) dI(τ−, s) ≥ εm and dI(τ, s) < εm.

Furthermore, τ ≡ s. Indeed, if they were not equivalent, then this would
imply

dI(τ, s) = d(λ(s), s) = dI(τ−, s),

which contradicts (4.13). Recall that for s ∈ Ik we denoted by λ(s) the
minimal element in [0, s] ∩ Ik. Now from s ≡ τ we derive

εqm ≤ dI(τ−, s)q = σ(s)q
∑

τ−≺v�s

α(v)q.

On the other hand, we have s ∈ Bτ,m ⊆ Br,m−1, hence by (4.10),

σ(s)q
∑
r≺v�s
v≡s

α(v)q = dI(r, s)q < εqm−1.

By subtraction we obtain

σ(τ)q
∑

r≺v�τ−
v≡τ

α(v)q = σ(s)q
∑

r≺v�τ−
v≡s

α(v)q

= σ(s)q
( ∑
r≺v�s
v≡s

α(v)q −
∑

τ−≺v�s

α(v)q
)

≤ εqm−1 − ε
q
m = c((m− 1)−(q−1) −m−(q−1)) ≤ cm−q,

as required.
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4.3. Heavy and light domains. Suppose we are given a sequence Bm
of tree partitions as before, i.e., B0 = {T} and Bm refines Bm−1. For the
moment those tree partitions may be quite general, but later on we will
take the special partitions constructed via Proposition 4.2.

We fix a number n ≥ 1; everything done now will depend on this number
n (although we do not reflect this dependence in the notation). Let µ ∈ `1(T )
be an arbitrary non-zero element with ‖µ‖1 ≤ 1. Define B∞ as in (4.4).
A subset B ∈ B∞ is said to be heavy (with respect to µ) provided that

|µ|(B) > |B|/n;

here and later on |µ|(B) :=
∑

t∈B |µ(t)|. Recall that |B| = m means that
B ∈ Bm. Otherwise, i.e., if

(4.14) |µ|(B) ≤ |B|/n,

we call B ∈ B∞ light. If

(4.15) B•µ := {B ∈ B∞ : B is heavy with respect to µ},

it follows that B•µ ⊆ {B ∈ B∞ : |B| ≤ n}. We have B0,0 ∈ B•µ, and moreover,
whenever B ∈ B•µ and B′ ∈ B∞ satisfy B′ � B, then this implies B′ ∈ B•µ
as well. In other words, B•µ is a subtree of B∞ and we call it, in accordance
with the terminology of [Lif], the essential tree in B∞ (with respect to µ
and n).

Among the light subsets of B∞ we choose the extremal ones as follows:

(4.16) Lµ := {L ∈ B∞ :L is light and all B ∈B∞ with B�L are heavy}.

In other words, a set Br,m ∈ B∞ belongs to Lµ if and only if Br,m is light
and each Br′,m′ ∈ B∞ with m′ < m and Br,m ⊆ Br′,m′ is heavy. Of course,
it suffices if this property is valid for m′ = m− 1.

Proposition 4.4. The set Lµ ⊆ B∞ is a tree partition of T .

Proof. First we show that for L,L′ ∈ Lµ we have either L = L′ or
L ∩ L′ = ∅. Thus suppose L 6= L′. If L ∈ Bm and L′ ∈ Bm′ , then m = m′

yields L∩L′ = ∅ and we are done. Assume now m′ < m. In that case either
L ∩ L′ = ∅ or L′ � L. But since L ∈ Lµ and L′ is light, the latter case is
impossible and this shows L ∩ L′ = ∅ as asserted.

Take now an arbitrary s ∈ T and let Bm(s) ∈ Bm be the unique set in
Bm with s ∈ Bm(s). Then

T = B0(s) �B1(s) � · · · .

Since B0(s) is heavy, there is a smallest m0 = m0(s) such that Bm0(s) is
light. Of course, Bm0(s) ∈ Lµ, showing that T =

⋃
L∈Lµ L. This completes

the proof.
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Remark. Observe that Lµ is completely determined by B•µ. Indeed, we
have L ∈ Lµ if and only if L /∈ B•µ and there is a B ∈ B•µ such that L is an
offspring of B. In other words, given µ1, µ2 ∈ `1(T ), we have Lµ1 = Lµ2 if
and only if B•µ1

= B•µ2
.

The size of each essential tree and the total number of all possible essen-
tial trees (if we let µ vary) are strongly bounded. For completeness, let us
repeat the corresponding arguments from [Lif].

Lemma 4.5. Let µ ∈ `1(T ) with ‖µ‖1 ≤ 1 and denote by Q ⊆ B∞ the
set of terminal domains of the subtree B•µ. Then

(4.17)
∑
B∈Q
|B| < n.

Moreover,

(4.18) #B•µ ≤ n.

Proof. Since all terminal domains are disjoint and they are all heavy, we
have

1 ≥ ‖µ‖1 ≥
∑
B∈Q
|µ|(B) >

∑
B∈Q

|B|
n
.

It follows that
∑

B∈Q |B| < n, as asserted in (4.17).
Since any node in a finite tree precedes at least one terminal node, we

have

#B•µ = 1 +
∑

B∈B•µ, |B|>0

1 ≤ 1 +
∑

B∈B•µ, |B|>0

#{B′ ∈ Q : B �B′}

= 1 +
∑
B′∈Q

#{B : |B| > 0, B �B′} = 1 +
∑
B′∈Q

|B′|,

thus (4.18) follows from (4.17).

Till now the sequence (Bm)m≥0 of tree partitions could be quite general,
i.e. we only assumed B0 = {T} and that Bm refines Bm−1 for m ≥ 1.
To proceed we have to know something about the size of the sets Bm. In
particular, this is the case if the Bm are constructed from root sets Rm with
the properties of Proposition 4.2. Thus let us deal with those special tree
partitions.

Lemma 4.6. The number of subtrees of B∞ whose terminal set Q sat-
isfies (4.17) does not exceed (8e)n.

Proof. Since a subtree is entirely defined by its terminal set, we have to
find out how many sets Q satisfy (4.17). Denote qm = #{Q ∩ Bm}. Then
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(4.17) reads

(4.19)
∑
m

mqm < n.

Since qm < n/m, the number of non-negative integer solutions of this in-
equality does not exceed

(4.20)
n−1∏
m=1

(
1 +

n

m

)
≤

n−1∏
m=1

2n
m

=
(2n)n

n!
≤ (2n)n

(n/e)n
= (2e)n.

Recall the bound for the size levels (4.8), which yields

#Bm = #Rm ≤ 2m+1.

Thus, for a given sequence qm, while constructing a terminal set Q, on the
mth level Bm we have to choose qm elements from at most 2m+1 elements
of Bm. Therefore, because of (4.19), the number of possible sets does not
exceed

(4.21)
n−1∏
m=1

(
2m+1

qm

)
≤

n−1∏
m=1

(2m+1)qm = 2
Pn−1
m=1(m+1)qm ≤ 22n.

Combining (4.20) and (4.21) leads to the desired estimate.

4.4. Approximating operators. As mentioned at the beginning of
Section 4, our objective is to find families of operators from `1(T ) into `q(T )
approximating W in a pointwise sense and such that we are able to control
their entropy numbers. We are going to construct those families now.

Let (Bm)m≥0 be a sequence of tree partitions with root sets (Rm)m≥0 as
in Proposition 4.2. Fix n ≥ 1 and, given µ ∈ `1(T ) with ‖µ‖1 ≤ 1, define the
tree partition Lµ and the subtree B•µ as in (4.16) and (4.15), respectively.
Set

Ln := {Lµ : µ ∈ `1(T ), ‖µ‖1 ≤ 1}
(recall that n plays an important role in the construction of heavy and light
domains, thus the Lµ really depend on n) and observe that by Lemma 4.6,

#Ln ≤ (8e)n.

Fix L ∈ Ln. We are going to define elements (r◦L)L∈L, (r−L )L∈L and (r•L)L∈L
as follows: Take L ∈ L which may be represented as L = Br,m for some
m ≥ 1 and r ∈ Rm. Then we set

(1) r◦L := r, i.e., r◦L is the root of the tree L.
(2) If r◦L 6= 0, then by r−L we denote the parent element of r◦L.
(3) Finally, let Br′,m−1 be the parent element (in B∞) of L = Br,m. Then

we put r•L := r′.

Two cases may appear.
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Generic case. A set L ∈ L is called generic provided that r•L ≺ r◦L. Note
that then even r•L � r

−
L ≺ r◦L.

Degenerate case. A set L ∈ L is called degenerate if r•L = r◦L, i.e., L and
its parent element (in B∞) have the same root.

Fix L ∈ Ln. We now define four operators W 1
L, . . . ,W

4
L depending on L

and acting from `1(T ) to `q(T ) so that

(4.22) W =
4∑
i=1

W i
L.

Given s ∈ T we denote by δs ∈ `1(T ) the unit vector at s, i.e., δs(t) = 0
if t 6= s and δs(s) = 1. Then the operator W defined in (3.2) is completely
described by

(4.23) (Wδs)(t) = σ(s)α(t) 1{t≡s} 1[0,s](t), s, t ∈ T.
The representation of W as a sum is related to a splitting of the branch
[0, s] (and of the corresponding indicator 1[0,s] which appears in (4.23)) into
four pieces as described below.

For each s ∈ T choose the unique element L ∈ L such that s ∈ L. If this
light set L with s ∈ L is generic, then we split [0, s] as follows:

(4.24) [0, s] = [0, r•L] ∪ (r•L, r
−
L ] ∪ {r◦L} ∪ (r◦L, s].

Accordingly, we let

(W 1
L δs)(t) := σ(s)α(t) 1{t≡s} 1[0,r•L](t), t ∈ T ;(4.25)

(W 2
L δs)(t) := σ(s)α(t) 1{t≡s} 1(r•L,r

−
L ](t), t ∈ T ;(4.26)

(W 3
L δs)(t) := σ(s)α(t) 1{t≡s} 1{r◦L}(t), t ∈ T ;(4.27)

(W 4
L δs)(t) := σ(s)α(t) 1{t≡s} 1(r◦L,s]

(t), t ∈ T.
But if L ∈ L with s ∈ L is degenerate, i.e., r•L = r◦L, then we simply have

[0, s] = [0, r◦L] ∪ (r◦L, s] = [0, r•L] ∪ (r◦L, s].

Accordingly, we define W 1
Lδs and W 4

Lδs as in the generic case, while now
W 2
Lδs = W 3

Lδs = 0. The representation (4.22) is straightforward.
Setting

WL :=
3∑
i=1

W i
L

we get W −WL = W 4
L, hence in view of log(#Ln) ≤ cn it suffices to prove

that for µ ∈ `1(T ) with ‖µ‖1 ≤ 1 always

(4.28) inf
L∈Ln

‖W 4
Lµ‖q ≤ cn−(1−1/q)
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as well as

(4.29) sup
L∈Ln

e[ρn](WL) ≤ cn−(1−1/q)

for a certain ρ ≥ 1.
We begin by proving the first assertion.

Proposition 4.7. There is a c = c(q) such that (4.28) holds for each
µ ∈ `1(T ) with ‖µ‖1 ≤ 1.

Proof. In a first step we estimate ‖W 4
Lµ‖q for arbitrary L ∈ Ln and

µ ∈ `1(T ). Here we have

‖W 4
Lµ‖qq =

∥∥∥∑
s∈T

µ(s)W 4
Lδs

∥∥∥q
q

=
∥∥∥∑
L∈L

∑
s∈L

µ(s)W 4
Lδs

∥∥∥q
q
.

Notice that the interior sums represent elements of `q(T ) with disjoint
supports (each sum is supported by the corresponding domain L). Hence,
using the definitions of W 4

L and of dI it follows that

‖W 4
Lµ‖qq =

∑
L∈L

∥∥∥∑
s∈L

µ(s)W 4
Lδs

∥∥∥q
q
≤
∑
L∈L

[∑
s∈L
|µ(s)| ‖W 4

Lδs‖q
]q

(4.30)

=
∑
L∈L

[∑
s∈L
|µ(s)| dI(r◦L, s)

]q
≤
∑
L∈L
|µ|(L)q sup

s∈L
dI(r◦L, s)

q

≤
∑
L∈L
|µ|(L)qεq|L|

where in the last step we have used (4.10).
Estimate (4.31) holds for any L ∈ Ln and µ ∈ `1(T ). Next, given µ ∈

`1(T ) with ‖µ‖1 ≤ 1, we specify L by taking L = Lµ for the given µ. By
the construction of Lµ this yields |µ|(L) ≤ |L|/n for each L ∈ Lµ (cf. (4.14)
and (4.16)). Then (4.31) can be further estimated as follows:

‖W 4
Lµµ‖

q
q ≤

∑
L∈Lµ

|µ|(L)qεq|L| =
∑
L∈Lµ

[|µ|(L) · |µ|(L)q−1εq|L|]

≤
∑
L∈Lµ

|µ|(L) · sup
L∈Lµ

|µ|(L)q−1εq|L|

≤ ‖µ‖1 · sup
L∈Lµ

(|L|/n)q−1(log 2 |L|)−(q−1)

≤ cn−(q−1).

Thus our calculations result in

‖W 4
Lµµ‖q ≤ cn

−(1−1/q),

which, of course, implies (4.28) and completes the proof.
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Our next objective is to verify (4.29). Recall that WL = W 1
L+W 2

L+W 3
L

with W i
L, i = 1, 2, 3, defined in (4.25), (4.26) and (4.27), respectively. By

the additivity of the entropy numbers this implies

e3n−2(WL) ≤ en(W 1
L) + en(W 2

L) + en(W 3
L).

Thus, if we are able to verify en(W i
L) ≤ cin−(1−1/q) for i = 1, 2, 3, then this

leads to
e3n−2(WL) ≤ cn−(1−1/q),

hence (4.29) is valid with ρ = 3. Consequently, it suffices to estimate en(W i
L)

for i = 1, 2, 3 separately. We start by estimating en(W 1
L).

Proposition 4.8. There is a constant c = c(q) such that

en(W 1
L) ≤ cn−(1−1/q).

Proof. For s ∈ T let L be the unique domain in L with s ∈ L. Clearly,
r•L � s, hence if s 6≡ r•L, then W 1

Lδs = 0. Thus it suffices to treat the case
s ≡ r•L and then

(4.31) (W 1
Lδs)(t) = α(t)σ(r•L) 1{t�r•L , t≡r•L}.

Let Υ •L := {r•L : L ∈ L} and define an operator VL from `1(Υ •L) into `q(T )
by

(4.32) (VLδr•L)(t) := α(t)σ(r•L) 1{t�r•L , t≡r•L}.

Then, if U1 is the unit ball in `1(T ), by (4.31) and (4.32) it follows that
W 1
L(U1) = VL(U1), hence en(W 1

L) = en(VL). In order to estimate the lat-
ter entropy numbers we will use the following convenient result from [Ca,
Proposition 1]. It provides a control of the entropy numbers for operators
from `1-spaces into those of type q, based on the dimension of the first space.
We refer to [MP] or [Pi] for the definition of type q.

Proposition 4.9. Let V be an operator from `N1 into a Banach space
X of type q. Then for all n = 1, 2, . . . ,

en(V ) ≤ c(X)f(n,N, q)‖V ‖
where the constant c(X) depends only on the type q constant of the space X
and

f(n,N, q) := 2−max(n/N ;1) min
{

1;
[
max

(
log
(
N/n+ 1

)
n

;
1
N

)]1− 1/q}
.

Suppose now n ≥ N . Then

f(n,N, q) = 2−n/NN−(1−1/q) ≤ c(q)n−(1−1/q)

and we arrive at

(4.33) en(V ) ≤ c(X, q)n−(1−1/q)
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whenever n ≥ N . Here c(X, q) only depends on q and the type q constant
of X.

In our case the operator V := VL is defined on `NL1 = `1(Υ •L) with
NL := #Υ •L and it acts into the space `q(T ), which (cf. [MP]) for 1 < q ≤ 2
is of type q with type q constant bounded by

√
q. Therefore, the important

dimension parameter is NL. Here by (4.17) we have

(4.34) NL = #Υ •L ≤ #B•µ ≤ n
where µ ∈ `1(T ) and L ∈ Ln are related via L = Lµ. Thus (4.33) applies
and leads to

en(W 1
L) = en(VL) ≤ c‖VL‖ n−(1−1/q) ≤ c‖W‖n−(1−1/q)

with c only depending on q. In view of Proposition 3.1, this completes the
proof of Proposition 4.8 since ‖W‖ ≤ 2‖Vα,σ‖ ≤ 2κ.

Our next objective is to estimate en(W 2
L). Here Proposition 4.3 will play

an important role.

Proposition 4.10. There is a constant c = c(q) such that

(4.35) en(W 2
L) ≤ cn−(1−1/q).

Proof. Take s ∈ T and choose as before the corresponding L ∈ L with
s ∈ L. In the case where L is degenerate we have W 2

Lδs = 0, thus it suffices
to investigate those s ∈ T for which the corresponding L is generic, i.e., we
have r•L � r

−
L ≺ r◦L. Furthermore, whenever s 6≡ r−L , then W 2

Lδs = 0 as well.
On the other hand, if s ≡ r−L , then σ(s) = σ(r−L ) = σ(r◦L) and

1{r•L≺t�r−L , t≡s} = 1{r•L≺t�r−L , t≡r◦L}.

For generic L ∈ L we define elements xL ∈ `q(T ) by

xL(t) := α(t)σ(r◦L) 1{r•L≺t�r−L , t≡r◦L}
and a set CL ⊆ `q(T ) by

CL := {xL : L ∈ L is generic}.
Then

en(W 2
L) = en(aco(CL))

where aco(CL) denotes the absolutely convex hull of CL ⊆ `q(T ).
Take a generic L ∈ L. Then there is an m ≥ 1 such that L = Bτ,m with

τ := r◦L ∈ Rm. Set r := r•L. Then r ∈ Rm−1, r ≺ τ , τ ∈ Rm \ Rm−1 and
τ ∈ Br,m−1. Thus we are exactly in the situation of Proposition 4.3 with
τ = r◦L and r = r•L, which implies

(4.36) ‖xL‖q = σ(r◦L)
( ∑
r•L≺v�r

−
L

v≡r◦L

α(v)q
)1/q

≤ cm−1 = c|L|−1.
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Hence, for any h > 0,

(4.37) #{L ∈ L : ‖xL‖q ≥ h} ≤ #{L ∈ L : |L| ≤ c/h} ≤ 2c/h+2

where we have used #{L ∈ L : |L| = m} ≤ #Rm ≤ 2m+1 in the last
estimate.

By [CKP, Proposition 6.2], which handles the entropy of convex hulls in
type q spaces in the non-critical case, estimate (4.37) yields

ek(aco(CL)) ≤ ck−(1−1/q)(log k)−1/q, k ≥ 1.

For k = n we have

en(W 2
L) = en(aco(CL)) ≤ cn−(1−1/q)(log n)−1/q.

This is even slightly better than required in (4.35) and completes the proof.

Our final objective is to estimate en(W 3
L) suitably.

Proposition 4.11. There is a constant c = c(q) such that

en(W 3
L) ≤ cn−(1−1/q).

Proof. Take s ∈ T and L ∈ L with s ∈ L. If L is degenerate, then
W 3
Lδs = 0. This is so too if s 6≡ r◦L. Consequently,

{W 3
Lδs : s ∈ T}
= {σ(s)α(r◦L)δr◦L : s ≡ r◦L, L with s ∈ L is generic, s ∈ T} ∪ {0}
= {σ(r◦L)α(r◦L)δr◦L : L is generic} ∪ {0}.

Set
GL := {r◦L : L is generic}

and define a diagonal operator D3
L : `1(GL)→ `q(GL) by

D3
L(δr◦L) := γL δr◦L , L generic,

where γL := σ(r◦L)α(r◦L). Then en(W 3
L) = en(D3

L) and it suffices to estimate
the γL suitably.

Recall that r◦L and r•L belong to the same element of the partition B|L|−1,
hence, if L is generic, i.e., if r•L ≺ r◦L, by (4.10) we obtain

γL := σ(r◦L)α(r◦L) ≤ dI(r•L, r◦L) ≤ ε|L|−1.

It follows that

#{L : γL ≥ εm} ≤ #{L : |L| ≤ m+ 1} ≤ 2m+3.

Again we have used #{L ∈ L : |L| = m} ≤ #Rm ≤ 2m+1 in the last step. If
{γ∗k}k≥1 is the non-increasing rearrangement of {γL}L∈L, we have

γ∗k ≤ c(log k)−(1−1/q).
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By using [Ku, Proposition 3.1] where the entropy of critical diagonal oper-
ators with logarithmic diagonal is handled, we obtain

ek(W 3
L) = ek(D3

L) ≤ ck−(1−1/q), k ≥ 1.

For k = n we have

en(W 3
L) = en(D3

L) ≤ cn−(1−1/q)

as asserted.

5. Final remarks. We must acknowledge that the proof of The-
orem 1.1, or Theorem 3.2, is quite complicated. One of the reasons for this
is that so many operators W i

L are involved. Thus a natural question is why
two or three operators do not suffice. Indeed, once a very natural bound
for W 4

L (Proposition 4.7) is obtained, it is tempting to use (for the generic
case) a splitting into two pieces instead of four as in (4.24), i.e., to split [0, s]
only as

[0, s] = [0, r◦L] ∪ (r◦L, r].

In other words, why cannot we add up W 1
L,W

2
L,W

3
L into one operator

and deal with it as we did with W 1
L? In fact, the corresponding bound is

dimension-based. Therefore, proceeding in this way, we must replace the di-
mension bound (4.34) with some bound for #Υ ◦L where Υ ◦L := {r◦L : L ∈ L}.
Unfortunately, #Υ ◦L = #L, the number of extremal light domains, does not
admit any uniform estimate, unlike the number of heavy domains we used in
the proof. The only chance to estimate #Υ ◦L is to make further assumptions
about the structure of the underlying tree T . Therefore, the splitting into
two pieces does not work for general trees.

Once this difficulty is understood, the next natural idea is to use a split-
ting into three pieces,

[0, s] = [0, r•L] ∪ (r•L, r
◦
L] ∪ (r◦L, r].

In other words, why cannot we add up W 2
L and W 3

L into one operator and
deal with it as we did with W 2

L? Recall that the corresponding bound from
Proposition 4.10 is based on the size evaluation ‖xL‖q ≤ c |L|−1 from (4.36).
That one in turn was built upon the tricky property (4) from Proposi-
tion 4.2. Once we use the three-piece splitting, we can only use (4.10) for
the evaluation of ‖xL‖, as we did when working with W 3

L. In this way we
only obtain ‖xL‖ ≤ ε|L|−1 = c|L|−(1−1/q). Unfortunately, we do not know
whether or not this weaker bound provides the necessary bound cn−(1−1/q)

for the entropy numbers of the convex hull of a sequence. To the best of
our knowledge, the required result is missing in the literature for subsets of
spaces of type q (or even for subsets of `q-spaces). Thus it is this gap that
forced us to struggle with partition constructions having property (4), and
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then extract the well studied diagonal operators W 3
L or D3

L by the further
splitting (r•L, r

◦
L] = (r•L, r

−
L ]∪{r◦L}, eventually coming to the proof presented

here. Let us mention that for q = 2, i.e., for sets in Hilbert spaces, such
entropy estimates for convex hulls of sequences are known (cf. Proposition 4
in [CE]). Hence, if q = 2, we may add up W 2

L and W 3
L into one operator,

which slightly simplifies the proof in that case because here we need neither
property (4) of Proposition 4.2 nor Proposition 4.3.

Another difficulty comes from the partition I of T generated by the
weight σ. This forced us to replace the metric d on T by the localized
“distance” dI . Of course, this additional difficulty does not appear for one-
weight summation operators Vα,σ with σ(t) = 1, t ∈ T . Hence, also in that
case the proof of Theorem 1.1 becomes slightly less involved.
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