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Minimal ball-coverings in
Banach spaces and their application

by

Lixin Cheng, Qingjin Cheng and Huihua Shi (Xiamen)

Abstract. By a ball-covering B of a Banach space X, we mean a collection of open
balls off the origin in X and whose union contains the unit sphere of X; a ball-covering
B is called minimal if its cardinality B# is smallest among all ball-coverings of X. This
article, through establishing a characterization for existence of a ball-covering in Banach
spaces, shows that for every n ∈ N with k ≤ n there exists an n-dimensional space
admitting a minimal ball-covering of n + k balls. As an application, we give a new char-
acterization of superreflexive spaces in terms of ball-coverings. Finally, we show that ev-
ery infinite-dimensional Banach space admits an equivalent norm such that there is an
infinite-dimensional quotient space possessing a countable ball-covering.

1. Introduction. The study of geometric and topological properties of
unit balls of normed spaces plays a central rule in the geometry of Banach
spaces. Almost all properties of Banach spaces, such as convexity, smooth-
ness, reflexivity, the Radon–Nikodým property, etc., can be viewed as prop-
erties of the unit ball. We should also mention here several topics concerning
the behavior of families of balls, for example, the Mazur intersection prop-
erty (see, for instance, [14], [16], [17]), the sphere packing problem (see, for
instance, [7] and [13]), and the measure of non-compactness with respect to
topological degree (see, for instance, [1], [2], [10]), which have also attracted
attention of many mathematicians.

Starting from a different viewpoint, this article is devoted to studying
the behavior of families B of open balls off the origin in a Banach space X
whose union contains the unit sphere of X. We call such a family B a ball-
covering of X. This notion was first introduced in [3]. For a ball-covering
B ≡ {B(xi, ri)}i∈I of X, we denote by B# its cardinality and by r(B) the
least upper bound of the radius set {ri}i∈I , and we call it the radius of B.
We say that a ball-covering is minimal if its cardinality is the smallest of
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all cardinalities of ball-coverings. We call a given ball-covering B α-off the
origin if inf{‖x‖ : x ∈

⋃
B} ≥ α.

Cheng [3] showed the following results. Let Bmin = Bmin(X) be any
minimal ball-covering of X. If dimX = n, then n + 1 ≤ B#

min ≤ 2n; if,
in addition, X is smooth, then B#

min = n + 1. For any Banach space X, by
the separation theorem we can easily show that B#

min = N# implies that X∗
is w∗-separable. Cheng, Cheng and Liu [4] proved that the converse is not
true by putting different norms on l∞. Recently, Cheng and Shi [5] further
showed that every Banach space X with a w∗-separable dual admits a 1+ ε-
equivalent norm such that X has a countable ball-covering with respect to
the new norm.

This paper brings the following results.

Theorem 1. Suppose that X is an n-dimensional Banach space. Then
B#

min(X) = n+ k for some k ∈ N if there exist k nontrivial subspaces Xj of
X for j = 1, . . . , k such that

(i) X =
∑k

j=1⊕Xj and ‖x‖ = max1≤j≤k ‖xj‖ for all x =
∑k

j=1 xj with
xj ∈ Xj ;

(ii) B#
min(Xj) = dim(Xj) + 1 for j = 1, . . . , k; and in particular,

(iii) B#
min (X) = 2n if and only if X is isometric to (Rn, ‖ · ‖∞).

Theorem 2. Suppose that X is a Banach space. Then it is supperreflex-
ive if and only if there exists an equivalent norm on X such that (with respect
to the new norm) there are positive-valued functions f, g : N→ R+ such that
for every n ∈ N and every n-dimensional subspace Y , there is a minimal
ball-covering B of Y satisfying

(i) B# = n+ 1;
(ii) r(B) ≤ f(n),
(iii) B is g(n)-off the origin.

Theorem 3. Suppose that X is an infinite-dimensional Banach space.
Then there exists an equivalent norm on X and a closed subspace Y such
that with respect to the new norm, B#

min(X/Y ) = N#.

2. A characterization for existence of ball-coverings. In this pa-
per, the letter X will always stand for a Banach space, and X∗ for its dual.
We denote by B(x, r) (resp. B(x, r)) the open (resp. closed) ball centered
at x with radius r. BX stands for the closed unit ball of X, and SX for the
sphere of BX . B(X) (resp. Bmin(X)) always represents a ball-covering (resp.
minimal ball-covering) of X; we also write simply B (resp. Bmin) for B(X)
(resp. Bmin(X)) if it does not lead to confusion. For any set A, A# denotes
the cardinality of A.
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We recall some definitions which will be used in the following.

Definition 2.1. Suppose that X is a Banach space.
(i) The subdifferential mapping ∂‖ · ‖ of the norm: X → 2BX∗ is defined

by
∂‖x‖ = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖ and 〈x∗, z〉 ≤ ‖z‖ for all z ∈ X}.

(ii) The norm ‖·‖ is said to be Gateaux differentiable at x if ∂‖x‖ ≡ {x∗}
is a singleton; in this situation, x∗ is called the Gateaux derivative of
the norm at x, and this is equivalent to

lim
t→0+

‖x+ ty‖ − ‖x‖
t

= 〈x∗, y〉 for all y ∈ X.

Definition 2.2. Suppose that C is a nonempty closed convex set of a
Banach space X.

(i) x ∈ C is called an exposed point of C if there exists x∗ ∈ X∗ such
that

〈x∗, x〉 > 〈x∗, y〉 for all y ∈ C with y 6= x.

(ii) If C ⊂ X∗, then x ∈ C is called a w∗-exposed point of C if there
exists x∗ ∈ X such that

〈x∗, x〉 > 〈x∗, y〉 for all y ∈ C with y 6= x.

Clearly, a w∗-exposed point is an exposed point, and the two notions
coincide if X is reflexive, in particular, if dimX < ∞. We denote by expC
(resp. w∗-expC) the exposed (resp. w∗-exposed) point set of C.

Definition 2.3. A Banach space X is called a Gateaux differentiability
space (GDS) if every equivalent norm is densely Gateaux differentiable in X.

Proposition 2.4 ([16]). Suppose that X is a Banach space. Then the
norm ‖ · ‖ is Gateaux differentiable at x ∈ X with the Gateaux derivative
d‖x‖ ≡ x∗ ∈ X∗ if and only if x∗ is a w∗-exposed point of BX∗ and it is
exposed by x.

Theorem 2.5 ([16]). Suppose that X is a Banach space. Then X is
a GDS if and only if every nonempty w∗-compact convex set in X∗ is the
w∗-closed convex hull of its w∗-exposed points.

Now, we present the following result.

Theorem 2.6. Suppose that X is a Banach space, I is an index set with
I# = m, and {xi}i∈I ⊂ SX . Then B ≡ {B(yi, ri)}i∈I forms a ball-covering
of X for some yi ∈ R+xi with ‖yi‖ ≥ ri for all i ∈ I if and only if for
every selection φ of the subdifferential mapping ∂‖ · ‖, {φ(xi)}i∈I positively
separates points of X, that is, supi∈I〈φ(xi), x〉 > 0 for every x 6= 0 in X.
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Proof. Sufficiency. We want to prove that there exist {yi}i∈I⊂
⋃

i∈I R+xi

and {ri}i∈I ⊂ R+ with ‖yi‖ ≥ ri such that SX ⊂
⋃

i∈I B(yi, ri).
Let Bij = B(jxi, j − j−1) for all i ∈ I and j ∈ N.
First, we claim that SX ⊂ G ≡

⋃
i∈I, j∈NBij . Suppose, to the contrary,

that there exists y ∈ SX \G. Then
j − j−1 ≤ ‖jxi − y‖ for all j ∈ N and i ∈ I.

For each fixed i ∈ I, let t = j−1. We obtain

−t ≤ ‖xi − ty‖ − ‖xi‖
t

,

and this implies

d+‖xi‖(−y) ≡ lim
t↘0

‖xi − ty‖ − ‖xi‖
t

≥ 0.

Note that

d+‖xi‖(−y) = −d−‖xi‖(y) ≡ − lim
t↗0

‖xi + ty‖ − ‖xi‖
t

and
d−‖xi‖(y) = min{〈x∗, y〉 : x∗ ∈ ∂‖xi‖}.

We know that there exists a selection φ of ∂‖ · ‖ such that

〈φ(xi), y〉 ≤ 0 for all i ∈ I;
this contradicts the hypothesis of sufficiency.

If m ≥ N#, the proof of sufficiency is finished, since {Bij : j ∈ N, i ∈ I}
is the desired ball-covering.

If m ∈ N, then again by the hypothesis of sufficiency, for each selection
φ of ∂‖ · ‖, the set {φ(xi)}i∈I of m vectors in SX∗ positively separates points
of X. Therefore, dimX < ∞. Since for every fixed i ∈ I, Bij ⊂ Bi,j+1 for
all j ∈ N, compactness of SX implies that there exists k ∈ N such that

SX ⊂
⋃
{Bik : i = 1, . . . ,m}.

Now we complete the proof of sufficiency by letting

yi = kxi and ri = k − k−1, i = 1, . . . ,m.

Necessity. Suppose that {Bi}i∈I (with Bi = B(yi, ri) and ‖xi‖ ≥ ri > 0)
is a ball-covering of X. Let φ be a selection of ∂‖ · ‖ such that there exists
y 6= 0 satisfying

〈φ(xi), y〉 ≤ 0 for all i ∈ I.
Let z = y/‖y‖. Then there exists j ∈ I such that z ∈ Bj . Thus

‖xj‖ ≥ rj > ‖xj − z‖ ≥ 〈φ(xj), xj − z〉 ≥ ‖xj‖.
This is a contradiction.
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Proposition 2.7. Suppose that X is a separable Banach space, and I
is an index set with I# = m. If there exists a ball-covering of X consisting
of m balls, then there is a ball-covering B = {B(xi, ri) : i ∈ I} of X such
that {xi}i∈I are Gateaux differentiability points of the norm.

Proof. Our proof is divided into two cases: (i) m =∞, and (ii) m <∞.
(i) Since X is a separable, it is a GDS. The ball BX∗ is w∗-sequentially

compact [9], and it is the w∗-(sequentially) closed convex hull of its
w∗-exposed points w∗-expBX∗ . Let {B(yi, si) : i ∈ I} be a ball-covering
of X. Then, by Theorem 2.6, for every selection φ of the subdifferential
mapping ∂‖ · ‖, {φ(yi)}i∈I positively separates points of X. For each fixed
i ∈ I, there exists a sequence {y∗i,j : j ∈ N} in co(w∗-expBX∗) such

that y∗i,j
w∗→ φ(yi) (j → ∞). For each pair (i, j) in I × N, there are p

(≡ p(i, j) ∈ N) w∗-exposed points Ai,j ≡ {y∗i,j,k}
p
k=1 and p nonnegative

numbers {λk}pk=1 with
∑p

k=1 λk = 1 such that y∗i,j =
∑p

k=1 λky
∗
i,j,k. Let

A =
⋃
{Ai,j : i ∈ I, j ∈ N}. Clearly, A# = I# = m, since I# ≥ N#. It is

also not difficult to check that sup{〈x∗, x〉 : x∗ ∈ A} ≥ sup{〈φ(yi), x〉 : i ∈ I}
for every x ∈ X. Thus A positively separates points of X.

For each y∗i,j,k in A, choose any Gateaux differentiability point yi,j,k ∈ SX

with Gateaux derivative d‖yi,j,k‖ = y∗i,j,k, and let E = {yi,j,k : i ∈ I, j ∈ N,
1 ≤ k ≤ p(i, j)}. Theorem 2.6 asserts that there exists a ball-covering B
with B# = E# = m such that the center of each ball in B is a Gateaux
differentiability point of the norm.

(ii) Assume that {B(yi, si)}i∈I (with I# = m < ∞) is a ball-covering
of X.

Since SX is compact, SX ⊂
⋃

i∈I B(yi, si) implies that there is ε > 0
such that

⋃
i∈I B(yi, si) ⊃ SX + εBX . For each fixed i ∈ I, we can find

a Gateaux differentiability point xi ∈ B(yi, ε) with ‖xi‖ ≥ ‖yi‖ (≥ si).
Therefore SX ⊂

⋃
i∈I B(xi, si), and so B ≡ {B(xi, si)}i∈I is again a ball-

covering of X.

Recall that a nonempty bounded set A ⊂ X∗ is said to be a norming set
of X if there exists α > 0 such that p(x) ≡ σA(x) ≡ supx∗∈A〈x∗, x〉 ≥ α‖x‖
for all x ∈ X. Now, we have

Corollary 2.8. If dimX < ∞, then B#
min ≤ m if and only if there

exists a norming set of X consisting of m w∗-exposed points of BX∗ .

Proof. This is a direct consequence of Theorems 2.6 and 2.7.

Corollary 2.9. If X is isometric to ln∞, then B#
min = 2n.

Proof. Let X = ln∞. By Corollary 2.8, it suffices to note that the set of
all exposed points expBX∗ is just {±ei}ni=1, and every norming set of X
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consisting of exposed points of BX∗ is also {±ei}ni=1, where ei (i = 1, . . . , n)
denote the standard unit vectors in Rn.

3. Structure of n-dimensional spaces with B#
min = n+ k. This sec-

tion presents examples of those n-dimensional spacesX satisfying B#
min(X) =

n+ k for every 1 ≤ k ≤ n.
We first show the following lemma.

Lemma 3.1. Suppose that X is a Gateaux differentiability space and
Xi (i = 1, 2) are two closed subspaces which are again Gateaux differen-
tiability spaces such that X = X1⊕X2. If for every x∗ ∈ w∗-expBX∗ , either
x∗|X1 = 0 or x∗|X2 = 0, then

(i) w∗-expBX∗ = w∗-expBX∗1
∪ w∗-expBX∗2

;
(ii) ‖x‖ = max{‖x1‖, ‖x2‖} for all x = x1 + x2 with x1 ∈ X1 and

x2 ∈ X2;
(iii) B#

min(X) = B#
min(X1) + B#

min(X2).

Proof. (i) It is easy to see that this is true by definition of w∗-exposed
points.

(ii) Note that w∗-expBX∗ is always an exact norming set of X if X
is a Gateaux differentiability space. By (i), for every x = x1 + x2 with
xi ∈ Xi (i = 1, 2),

‖x‖ = sup{〈x∗, x〉 : x∗ ∈ w∗-expBX∗}
= max{〈x∗i , x〉 : x∗i ∈ w∗-expBX∗i

, i = 1, 2}
= max{〈x∗i , xi〉 : x∗i ∈ w∗-expBX∗i

, i = 1, 2}
= max{‖xi‖ : i = 1, 2}.

(iii) Assume B#
min(X) = m. Then, by Theorem 2.7, there exists a subset A

of w∗-exposed points of BX∗ with A# = m such that A positively separates
points ofX. Thus, A positively separates points of bothX1 andX2. Let Ai =
{x∗ ∈ A : x∗|Xi 6=0}, i = 1, 2. By hypothesis, A1 ∩ A2 = ∅ and A = A1 ∪ A2.
Therefore, Ai positively separates points of Xi and Ai ⊂ w∗-expBX∗i

for
i = 1, 2. This says that B#

min(Xi) ≤ A#
i for i = 1, 2, and

B#
min(X) = m = A#

1 +A#
2 ≥ B

#
min(X1) + B#

min(X2).

Conversely, suppose that B#
min(Xi) = mi for i = 1, 2, and that Ai ⊂

w∗- expBX∗i
with A#

i = mi are such that Ai positively separates points of
Xi for i = 1, 2. Then A1∪A2(≡ A ⊂ w∗-expBX∗) positively separates points
of X, which implies that

B#
min(X) ≤ A# = A#

1 +A#
2 = B#

min(X1) + B#
min(X2).
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Theorem 3.2. Let n ∈ N. Then for any n+1 ≤ k ≤ 2n, there is a space
of dimension n admitting a minimal ball-covering of k balls.

Proof. Let X = Rn, X1 =
∑m

i=1⊕Rei and X2 =
∑n

i=m+1⊕Rei, where
m = k − (n+ 1). Put ‖ · ‖ on X by

‖x‖ = max{‖x1‖∞, ‖x2‖2} for x = x1 + x2 ∈ X1 ⊕X2

where ‖ · ‖2 denotes the Euclidean norm. Then
expBX∗ = expBX∗1

∪ expBX∗2
= {±ei}mi=1 ∪ {z ∈ X2 : ‖z‖2 = 1}.

By Lemma 3.1,

B#
min(X) = B#

min(X1) + B#
min(X2) = 2m+ [(n−m) + 1] = k.

By Lemma 3.1, more generally, we have

Theorem 3.3. Suppose that X is an n-dimensional space, and let 1 ≤
m ≤ n. Then Bmin(X) = n +m if there exist m positive integers nj and m
subspaces Xj of X (j = 1, . . . ,m) such that

(i)
∑m

j=1 nj = n;
(ii)

∑m
j=1⊕Xj = X;

(iii) B#
min(Xj) = nj + 1 for j = 1, . . . ,m;

(iv) ‖x‖ = max1≤j≤m ‖xj‖, for X =
∑n

i=1 xj with xj ∈ Xj .

4. A characterization of superreflexive spaces. First, we recall
some definitions.

Definition 4.1 ([11]). A Banach space X is called uniformly nonsquare
if l2∞ cannot be represented in X, that is, there exists ε > 0 such that
for every two-dimensional subspace X2 of X, if T : X2 → l2∞ is a linear
isomorphism, then ‖T‖ ‖T−1‖ ≥ 1 + ε.

Definition 4.2. Suppose that X is a Banach space and B ≡ {B(xi, ri)}
is a ball-covering.

(i) The number r(B) ≡ supi≥1 ri is called the radius of B.
(ii) We say that B is α-off the origin if infi{‖xi‖ − ri} ≥ α.

Theorem 4.3. Suppose that X is a Banach space. If there exist two
constants β, α > 0 such that for every two-dimensional subspace Y of X,
there exists a ball-covering B of Y with B# = 3 which is α-off the origin and
r(B) ≤ β, then X is uniformly nonsquare.

Proof. Let 0 < δ < α/β and assume that there are a two-dimensional
subspace Y ⊂ X and an isomorphism T : Y → l2∞ with ‖T‖ = 1 and
‖T−1‖ < 1 + δ. If V = T−1(Bl2∞

) then

(1) BY ⊂ V ⊂ (1 + δ)BY .
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Clearly, V as a unit ball generates on Y the l2∞-norm. By the assumption of
the theorem,

SY ⊂
3⋃

i=1

(xi + riBY ), ‖xi‖ − ri ≥ α, ri ≤ β, i = 1, 2, 3.

It follows from the left inclusion in (1) that

(2) SY ⊂
3⋃

i=1

(xi + riV ).

Next we write

‖xi‖ − (1 + δ)ri = ‖xi‖ − ri − δi ≥ α− δβ > 0,

which together with the right inclusion in (1) gives 0 6∈ xi + riV , i = 1, 2, 3,
contradicting (2) (for any three l∞-balls on the plane which do not contain
the origin there is a ray starting from the origin that does not meet these
balls).

Definition 4.4. Suppose that X is a Banach space.

(i) The modulus of smoothness of X, %X : R+ → R+, is defined by

%X(τ) = sup
{∥∥∥∥x+ y

2

∥∥∥∥+
∥∥∥∥x− y2

∥∥∥∥− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ τ
}
.

(ii) The space X is called uniformly smooth if

%X(τ)/τ → 0 as τ → 0+.

Clearly, a finite-dimensional space X is uniformly smooth if its norm is
everywhere Gateaux differentiable off the origin, i.e.,X is (Gateaux) smooth.

Lemma 4.5. Suppose that X is an n-dimensional smooth Banach space.
Then there exist n+ 1 exposed points {x∗i }ni=0 of BX∗ such that

max
0≤i≤n

〈x∗i , x〉 ≥
1
3n
‖x‖ for every x ∈ X.

Proof. Note that, in this case, w∗-expBX∗ = expBX∗ = SX∗ . By the
Auerbach Theorem (see, for instance, [12, p. 16]), there exist {xi}ni=1 ⊂ SX

and {x∗i }ni=1 ⊂ SX∗ such that

〈x∗i , xj〉 = δij =
{

1, i = j,
0, i 6= j,

i, j = 1, . . . , n.

Let x∗0 = −‖
∑n

i=1 x
∗
i ‖−1

∑n
i=1 x

∗
i . Then {x∗i }ni=0 are n + 1 exposed points

of BX∗ . We want to show

max
0≤i≤n

〈x∗i , x〉 ≥
1
3n
‖x‖ for all x ∈ X.
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Without loss of generality, we assume that n ≥ 2 and ‖x‖ = 1. Let x =∑n
i=1 αixi. If max1≤i≤n〈x∗i , x〉 = max1≤i≤n αi ≥ 1/3n, then we are done.

Otherwise, let I+
x = {i : αi > 0}. Then

〈x∗0, x〉 = −
∥∥∥ n∑

i=1

x∗i

∥∥∥−1
n∑

i−1

αi =
∥∥∥ n∑

i=1

x∗i

∥∥∥−1[ n∑
i=1

|αi| − 2
∑
i∈I+

x

αi

]

≥
∥∥∥ n∑

i=1

x∗i

∥∥∥−1
[
1− 2

3

]
≥ 1

3n
.

Theorem 4.6. Suppose that X is a uniformly smooth space. Then there
exist functions α, β : N → R+ such that for every n ∈ N and every n-
dimensional subspace Y of X, there exists a ball-covering of Y satisfying

(i) B# = n+ 1,
(ii) r(B) ≤ β(n),
(iii) B is α(n)-off the origin.

Proof. Let %X be the modulus of smoothness of X. Since %X(τ)/τ → 0
as τ → 0+, for each fixed n ∈ N we can choose j ∈ N such that

%X

(
2

j − 1

)
<

1
j − 1

(
1
3n
− 1
j

)
.

Let α(n) = 1/j and β(n) = j. We claim that the functions α, β : N → R+

have the desired properties.
Let Y be an n-dimensional subspace of X, and let {yj}nj=0 ⊂ SY and

{y∗i }ni=1 ⊂ SY ∗ satisfy
(a) 〈y∗i , yj〉 = δij for 1 ≤ i, j ≤ n;
(b) max0≤i≤n〈y∗i , y〉 ≥ (1/3n)‖y‖ for all y ∈ Y.

Then each Bi ≡ B(jyi, j − j−1) is 1/j-off the origin of Y and its radius
satisfies j − j−1 < j = β(n). It remains to show that B ≡ {Bi}ni=0 is a
ball-covering of Y .

For each y ∈ SY , choose y∗i such that 〈y∗i , y〉 ≡ γ ≥ 1/3n. Then there
exists h ∈ Y with 〈y∗i , h〉 = 0 and ‖h‖ ≤ 2 such that y = γyi + h. We assert
that y ∈ Bi. Otherwise,

j − j−1 ≤ ‖jyi − y‖ = ‖(j − γ)yi − h‖.

Let τ = 1/(j − γ). Then we know

‖yi − τh‖ − ‖yi‖
τ

− γ ≥ −j−1.

Note ‖yi + th‖ ≥ 〈y∗i , yi + th〉 = ‖yi‖ = 1 for all t ∈ R.
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Since %X(τ)/τ is nondecreasing in τ ∈ R+,

%X

(
2

j−1

)
1/(j − 1)

≥ %X(2τ)
τ

≥ 2
‖yi + τh‖+ ‖yi − τh‖ − 2

τ‖h‖

≥ 2
‖y1 − τh‖ − 1

τ‖h‖
≥ ‖yi − τh‖ − 1

τ
≥ γ − j−1.

Therefore

%X

(
2

j − 1

)
≥ (j − 1)−1(γ − j−1) ≥ (j − 1)−1

(
1
3n
− 1
j

)
.

This is a contradiction.

Theorem 4.7. Suppose that X is a Banach space. Then it is super-
reflexive if and only if there exist an equivalent norm | · | on X and two
positive-valued functions α, β : N→ R+ such that , with respect to | · |, for ev-
ery n ∈ N and every n-dimensional subspace Y of X, there is a ball-covering
B of Y satisfying

(i) B# = n+ 1;
(ii) r(B) ≤ β(n);
(iii) B is α(n)-off the origin.

Proof. Sufficiency is an immediate consequence of Theorem 4.3, since a
uniformly nonsquare space is necessarily superreflexive [11]. Necessity is con-
tained in Theorem 4.6, since every superreflexive space is uniformly smooth-
able [8].

5. Ball-covering property of quotient spaces. In this section, we
show that every infinite dimensional Banach space can be renormed so that it
has an infinite-dimensional quotient space admitting the ball-covering prop-
erty.

Definition 5.1. We say a Banach spaceX has the ball-covering property
if SX can be covered by a sequence of balls off the origin.

Definition 5.2. Suppose that X is a Banach space.

(i) A pair of sequences {xn}mn=1 in X and {x∗n}mn=1 (m ∈ N ∪ {N#})
is called a biorthogonal system if 〈x∗j , xi〉 = δij for all i, j ∈ N with
i, j ≤ m.

(ii) For a biorthogonal system {(xi, x
∗
i )}mi=1 ⊂ X × X∗, the constant

k = supi ‖x∗i ‖ ‖xi‖ (≤ ∞) is said to be the system constant.
(iii) A biorthogonal system {(xi, x

∗
i )}mi=1 is called normalized if ‖xi‖ = 1

for all i ∈ N with i ≤ m.
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Lemma 5.3. Suppose that X is a Banach space, ε > 0, and {(xi, x
∗
i )}mi=1

is a normalized biorthogonal system with the system constant K ≤ 1 + ε.
Then there exists an equivalent norm | · | on X such that

(i) (1 + ε)−1‖x‖ ≤ |x| ≤ (1 + ε)‖x‖ for all x ∈ X;
(ii) |xi| = 1 = |x∗j | for all i, j ∈ N with i, j ≤ m;
(iii) | · | is Fréchet differentiable at {±xi}mi=1 with the Fréchet derivatives

|±xi|′ = ±x∗i ;
(iv) |y| = (1 + ε)−1‖y‖ for all y ∈ [{x∗j}mj=1]

> ≡ Y, where [{x∗j}mj=1]
> =

{x ∈ X : 〈x∗j , x〉 = 0 for j = 1, . . . ,m}.

Proof. Let C∗ be the w∗-closed convex hull of {±x∗j}mj=1, and let D∗ =
(1+ ε)−1BX∗ (where BX∗ denotes the closed unit ball of X∗ with respect to
the original dual norm ‖·‖). Put B∗ = cow∗(C∗∪D∗) and define | · | : X → R
by

|x| = sup
x∗∈B∗

〈x∗, x〉 for all x ∈ X.

It is not difficult to see that both (i) and (ii) hold.
To show (iii), by Proposition 2.4, it suffices to prove that for each j ∈ N

with j ≤ m, x∗j is a w∗-strongly exposed point of B∗ and w∗-strongly exposed
by xj . Note cow∗(C∗ ∪D∗) = co(C∗ ∪D∗). Let z∗n = λnc

∗
n +(1−λn)d∗n ∈ B∗

be such that 〈z∗n, xj〉 → 〈x∗j , xj〉 = 1. Then

〈z∗n, xj〉 = λn〈c∗n, xj〉+ (1− λn)〈d∗n, xj〉 ≤ λn〈c∗n, xj〉+ (1− λn)(1 + ε)−1

≤ λn + (1− λn)(1 + ε)−1.

Therefore λn → 1 and 〈c∗n, xj〉 → 1.
Next, put C∗k = cow∗{±x∗i }i 6=k. Then

C∗ = co(C∗j ∪ {±x∗j}) and C∗j ⊆ {xj}⊥.

For each n ∈ N, let

c∗n = αn,1c
∗
n,j + αn,2x

∗
j + αn,3(−x∗j )

where αn,i ≥ 0 (i = 1, 2, 3) with
∑3

i=1 αn,i = 1 and c∗n,k ∈ C∗j . So we have

〈c∗n, xj〉 = αn,2 − αn,3 → 1,

which implies that αn,1 → 0, αn,2 → 1 and αn,3 → 0 as n → ∞. Thus, we
have proved z∗n → x∗j and so x∗j is a w∗-strongly exposed point, and it is
w∗-strongly exposed by xj .

(iv) is clear since for all y ∈ Y = [{x∗j}mj=1]
>,

|y| = max{ sup
x∗∈C∗

〈x∗, y〉, sup
x∗∈D∗

〈x∗, y〉} = sup
x∗∈D∗

〈x∗, y〉 = (1 + ε)−1‖y‖.



26 L. X. Cheng et al.

Theorem 5.4. Suppose that X is an infinite-dimensional Banach space.
Then for every ε > 0 there exist an equivalent norm | · | on X and a closed
subspace Y of X with dimX/Y =∞ such that

(i) (1 + ε)−1‖x‖ ≤ |x| ≤ (1 + ε)‖x‖ for all x ∈ X;
(ii) X/Y has the ball-covering property with respect to | · |.

Proof. Without loss of generality we assume that X is nonseparable;
otherwise, X itself has the ball-covering property. Fix any separable infinite-
dimensional closed subspace X0 ⊂ X, and for every 0 < ε < 1, applying
a theorem of Pełczyński [14] to X0, we find that there exists a normalized
biorthogonal system {(xi, x

∗
i )}∞i=1 in X ×X∗ such that

(a) supj∈N ‖x∗j‖ ≤ 1 + ε;
(b) span {xi}∞i=1 is dense in X0;
(c) {x∗j}∞j=1 separates points of X0.

By Lemma 5.3, there exists an equivalent norm | · | on X such that
(d) (1 + ε)−1‖x‖ ≤ |x| ≤ (1 + ε)‖x‖ for all x ∈ X;
(e) |xi| = |x∗j | = 1 for all i, j ∈ N;
(f) | · | is Fréchet differentiable at {±xi} with |±xi|′ = ±x∗i for all i ∈ N;
(g) |y| = (1 + ε)−1‖y‖ for all y ∈ Y ≡ [{x∗i }∞i=1]

>.

Clearly, dimX/Y = ∞. We claim that the quotient space X/Y has the
ball-covering property with respect to | · |.

For every x ∈ X, we write x = x + Y ∈ X/Y. It is easy to check that
|xi| = |x∗i | = 1 for all i ∈ N, and all {±x∗j}∞j=1 are w∗-strongly exposed points
of the unit ball B(X/Y )∗ = BY ⊥ of (X/Y )∗ = Y ⊥, and they are w∗-strongly
exposed by {±xj}∞j=1, respectively. This implies that {±xj}∞j=1 are Fréchet
differentiability points of the quotient norm |· | and with |±xj |′ = ±x∗j for all
j ∈ N. Since {±x∗j}∞j=1 positively separates points of X/Y and since every
selection φ of the subdifferential mapping of the quotient norm | · | satisfies
φ(±xi) = ±x∗i for all i ∈ N, we complete the proof by Theorem 2.6.

Proposition 5.5. A Banach space X admits an infinite-dimensional
separable quotient space if and only if it can be renormed so that , with respect
to the new norm, it admits an infinite-dimensional quotient space whose unit
sphere has a countable ball-covering B with r(B) < 1.

Proof. This can be directly obtained from Theorem 3.1 of [3], where we
prove that every Banach space admitting a countable ball-covering with radii
at most r < 1 is separable.
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