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Weighted variable L? integral inequalities for
the maximal operator on non-increasing functions

by
C. J. NEUGEBAUER (West Lafayette, IN)
Abstract. Let B, be the Arino-Muckenhoupt weight class which controls the weight-
ed LP-norm inequalities for the Hardy operator on non-increasing functions. We replace

the constant p by a function p(z) and examine the associated LP(®)-norm inequalities of
the Hardy operator.

1. Introduction. The weights w : R,y — Ry for which the Hardy
operator
T

Hf(w) = | f(t) at
0

on non-negative non-increasing functions f (we write simply f|) is bounded:

(1) S Hf(z)Pw(z)dr < c. S f(x)Pw(z)de, 1<p<oo,
0 0

have been characterized by Arino and Muckenhoupt [1] by the condition

T

oo P T
(2) weE By: S <T> w(z)dr < cgw(a:) dx.

r 0
A different proof of (1)< (2) was given by me in [7] where it is also apparent
that in the implication (2)=(1) the constant ¢, can be taken to be (c¢+ 1)P.
For (1)=(2) one uses the test function f = x|, and (2) follows with ¢ = c,.
We also note that for f|, H f(z) equals M f(x), the Hardy—Littlewood max-
imal function.

In the past few years a great deal of attention has been paid to the

problem of the boundedness of M on variable LP-spaces. If p : R™ — [1,00)
and w : R® — R, let LP(*) (w) be the collection of all functions f : R — R
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such that for some A > 0,

| (W;))p@w(@«) dx < oo,
R

equipped with the Luxemburg norm

1l = inf{)\ S0 | <Lf()\a:)!)p(m)w(x) - 1}'

Rn

This makes LP(*) (w) into a Banach space; for the properties of these spaces
see [5]. Cruz-Uribe, Fiorenza, and myself have shown in [3] that for w =1,

(3) 1M fllpezy < ellfllp)
provided 1 < p, < p(x) < oo, and
_
log -1’
p(x) — p(y)| < =l
log(e + |z[)”
and that the condition on p(x) is nearly sharp (see [3] for further details and
additional references).
However, a characterization of the weights w : R®™ — R so that

(B) ||Mf||p(az),w < CHpr(ac),w

is not known. Some necessary and some sufficient conditions are contained
in a forthcoming paper [4]. We are therefore led to the “easier” problem of
characterizing (B) for f| since from (2) the natural condition appears to be

[z -yl <1/2,

lyl = |zl

% 7.\ P(@) r
(C) w € By S (x) w(zx)de < CS w(z) dz.

r 0

The primary purpose of this paper is to establish for certain p : Ry — [1,00)
a connection between (B) and (C), and the related integral inequality

(A) | Mf@)P@w@)de < c| f@)PDw()ds,  fl.
0 0

REMARK. If the hypothesis f| is omitted in (A) and 0 < p(x) < py
< 00, then p(x) is constant. This surprising result is due to A. K. Lerner
[6] for w = 1. The same proof, with only minor changes, works for positive
w(zr). A related result is contained in [2] where a variable exponent By, is
introduced. It is the same as (C) except for an additional parameter s > 0:

?(T)p(x)w(x) dz < c§ w@) 4o

ST p(z)
oS

T
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The main result is that this condition is equivalent to (A) and to p(z) = po,
a constant, if the oscillation of p(x) at = 0 is zero, and then w € By,.

It turns out that there is a relationship between (A), (B), and (C) under
some natural restrictions which are illustrated by the following examples.

(1) Let p(z) = 4x(0,1](%) + 2X[1,00)(®). Then w(z) = 1 is in By,). Let
Joa = ax[o,1- Then

S fal@)P@ dz = o and S H fo(2)P®) dz = o* + o,
0 0

and (A) cannot hold as @ — 0. This explains the restriction that p(z) be
non-decreasing (written pt).
(2) Let now p(x) = 2xX[0,1](%) + 4X[1,00) (7). Again w(z) = 1 is in Byy.

If fv = NX[0,1]7 then

S f(@)P® dz = N?  and S Hfn(z)P™ de = N? + N*/3,

0 0
and (A) cannot hold as N — oco. This shows that in addition to f] we must
assume that 0 < f(x) < 1.

2. The inequality (A). Let w be a weight: w € L{_(R;) and non-
negative, and let p: Ry — [1, 00).

LEMMA 1. w e B

p(z) Uf and only if there exists 0 < ¢ < oo such that
for every r|,

S X" (z) <r(;))p w(z)dr <c S Xr(z) (T)w(7) dx,
0 0
where for a > 0, xq(x) = X[0,q] (x) and x%(x) = X[a,00) (x).

Proof. We only have to show that w € B, implies the condition with
r|, since the reverse follows by taking r(z) = r.

Since y = r(x) is non-increasing and y = x is increasing there is a unique
point 7, such that

(r(x) —z)(i, —x) >0, & #ip.

In fact, i, = sup{z : r(z) > 2} = inf{z : r(z) < z}.
The right side is

R= S w(z)dx = S w(z) dz,
{z:z<r(z)} 0
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and the left side is

I— S (rf))p(x)w@) i < ?(”)pmw(x) i

{z:r(z)<z} (28 v
since for >t > i, we have r(x) < r(t) <t and thus r(z) <i,. =
Let D be the collection of all f| with f(04) < 1, and let
1 x
Hf(x) = —\ f(t)dt = M f(x)
0
be the Hardy operator for f € D. Then H maps D into D.

THEOREM 2. Letp:Ry — [1,00) and pl. Then there exists a constant
0 < ¢ < oo such that

S Hf(2)P®w(z)de < ¢ S f(@)H f(2)P@) " w(z) da
0 0

for every f € D if and only if w € By,.

Proof. The choice f = x, gives one implication, and for the reverse
direction we only need to prove the integral inequality for functions in D
supported in [0, K], continuous and strictly decreasing on [0, K], with a
constant ¢ depending only upon the By, -constant of w. An arbitrary f € D
can be approximated by such functions so that the integral inequality is
obtained as a limit.

Let r : Ry x Ry — R4, t = r(z,y), be decreasing in x for each y and
continuous and strictly decreasing in y for each x. For a fixed z we denote
by r~1(x,t) the inverse of t = r(x,y), i.e. t = r(x,7~(z,t)). Then r~!(x,t)
is decreasing in z for each ¢ and continuous and strictly decreasing in ¢ for
each z. Later we will choose

rH (@, t) = FOH (PO
From Lemma 1 for each r(z,y) as above we have
o0 p(z) o0
r(x Tz, Yy
) (MY ) o < ] o ()
0 0
We integrate this in y and get

00 00 r(z p(z) 00 00
S S Xr(z,y)(x)<<a;y)) w(z)drdy < c S S Xr(z,y) (T)w(7) dv dy.

00 00
We interchange the order of integration and then the left side equals
o
w(x)

L= S S r(z, y)P® dy dx.

0 {y:r(z,y)<z}

xp(x)
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If r=Y(z,2) = i.(x), then {y : 7(z,y) < 2} = [i, (), 00). Thus

L= S S r(x,y)p(x) dy w(z) dx.
;ij(x)
0 ir(x)
The inner integral is
0o 2P(z)
S r(z,y)P® dy = S = a, tVP@)) d — 2P @ (),
ir(x) 0

The substitution t = u?*) gives
(o] X

[ () dy = | o, wp()u @ du — 22, (1)
ir(z) 0

o0 x u p(z)—1
[ o dy =] £ (Var) ple)du - 2 (2)
ir(x) 0 0
z p(z)
= (S f(t) dt) — 2P@)i, (z)
0
Hence o -
L= S Hf(z)P®w(z) de — S ir(x)w(z) dz
0 0
The right side is
R=c S S w(z)dydx = c S ir(x)w(z) de.
0 {y:r(zy)=z} 0
We combine the above estimates and get
| Hf(@)PDw(a)de < (c+1) | ip(2)w(z) da.
0 0

The proof is completed now by noting that
(@) = 1N (@, @) = f(2)H f(x)"@ L,

Note moreover that, if ¢; equals the B, ,)-constant of w, then the con-
stant ¢ of the integral inequality is at most ¢; + 1. m

THEOREM 3. Letp: Ry — [1,00), pT, and 1 < p(z) < p* < co. Then

there 1s a constant 0 < ¢y, < 0o such that
oo o

S Hf(z)P®w(z)de < c, S fa)P@w(z)de, feD,
0 0

if and only if w € Byyy).
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Proof. The choice f = x, proves the necessity. For the sufficiency we
first note that wy = wxy is in B,,(,) with the same constant and hence, by
Theorem 2,

oo
[ H 7@ () de < e | f@P@H PO uy(2)de, [ €D,
0 0
where ¢y > 1 does not depend on N. (Below, we need the integrals to be finite
and that is the reason for the restriction to wy). We now fix A\g > ¢p > 1.
Then f/Xo € D if f € D. Replace f by f/Ao in the above inequality and
use Young’s inequality to obtain

T Hf(z) P) co T plz)—
() vt < 52§ 1 )t

0

< COOSO(f(x)p(”” H(f [ 20) ()"

o\ o T ) )“’N(””)d"”

00 (z)
< O @)@ )dx+C°S(Hf(x>>p wy(z) da,

@)

>

0

OM

where p(z)~! 4+ ¢(x)~! = 1. From this we get

_ T (S @)\ T ppnl)
(1 CO/AO)§< o ) wy(z) do < (S)f@)p wy (z) dz,

and the left side is

> )\)(\]p:ﬁ) OSO Hf(:c)p(x)wN(x) dx.
0 0
Thus
g Hf(x)"Dwy(z)de < e | f2)"Pwy(z) de,
0 0

where ¢, = XJ*co/(Ao — o). Let N — oo to complete the proof. m

REMARK. The constant ¢, can be chosen to depend only on the B, ;)-
constant ¢ of w: in fact, if A\g = 2cq, then ¢, = (2¢0)?" = (2(c + 1))?"

3. The inequality (B)

THEOREM 4. Letp: Ry — [1,00) and w : Ry — Ry. Assume there
exists a constant 1 < ¢, < 0o such that

o) o

(A) S Hf(z)P®w(z)de < e, S fa)P@w(z)de, feD.

0 0
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Then
(B) HHpr(x)ﬂu < c*”f”p(x) w
if either

(i) f €D and || fllp@)w = 1/cx, or
(ii) f is non-increasing on Ry and f(z)/|flp@)w € D

Proof. (i) Since ¢, > 1 we have

|]Hf||p(x)7w:inf{A>0-O§<H«’;(m)>p(f”) (o) ds <1}

e e

ooz e (1) e 1)
ginf{/\ZL()S:(ﬁ;Cz)pf” w(z) dz <1}
cutfearz 1 T (1) o ae<1)

o0 p(z)
= ¢4 inf{a >1/cy: S <f(33)> w(z)dr < 1} < el fllpa),w
o
0
(ii) Let g(x) = f(2)/IIfllpz)w- By hypothesis g € D and [|gl[p(z)w = 1.

Hence
oo oo

S Hyg(z)PPw(z) de < c. S g(2)PPw(z) de < ¢,.
0 0
This implies ||Hpr(:c),w < C*Hf”p(a:),w' .
REMARK. By Theorem 3 the hypothesis of Theorem 4 is satisfied if
1 <p(x) <p* < oo, pT and w € By(,). The constant c. depends only on the

By (z)-constant of w.

ExAMPLE. We will now show that (i) of Theorem 4 does not imply the
norm inequality (B) with a constant depending on the By, (z)-constant of w
only if the LP(I)(w)—norm of f is not bounded away from zero. Let 0 < a < 1
and let p,(x) = 2x4(x) + 4x%(x). It is easily checked that w(z) = 1 is in
By, (x) With constant independent of a. Let f = x,. Then

Pa
Hf”pa(x),w = inf{/\ >0: (S)(/\) dr < 1} =a'/ )
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/7 a\* o\ /4

Hence the norm inequality of Theorem 4 cannot hold with a constant inde-
pendent of a.

and

4. The equivalence (A)<(B)<(C). We need the following lemma.

LEMMA 5. Let f: Ry — Ry with || fllpm),w > 0, where 1 < p(x) <
p* < oo, and let 0 < a < oo. Then there exists 0 < o < oo such that

Hf”p(ac),aw = a.
Proof. For o > 1,

?(Jl@)p(@aw(x) do > ?(Jiffp* JCE

which implies that || f||,(z)0w > al/p*||f||p(x),w. Hence the set S, = {0 > 0:
| fllp(z),0w = @} is not empty. Let og = inf{o : 0 € S,}. Then a straightfor-
ward argument shows that ||f||p(x)700w =a. =

Since the conditions (A) and (C) remain unchanged when w(x) is re-
placed by cw(z), 0 < o < oo, the condition (B) has to be modified to reflect
this.

THEOREM 6. The following statements are equivalent for 1 < p(x) <
p* < oo, pT, and w: Ry — Ry

o There exists 1 < ¢, < 0o such that

(A) S Hf(2)P®w(z) de < c, S (@)@ w(z)de, feD.
0 0

e For each 0 <y <1 there is 1 < ¢y < oo such that

(B) HHpr(m),mu < C’YHf”p(w),ow

for every f € D and every 0 < o < oo for which || f||p(z),0w = 7-
e We have

(C) w e Bp(a:)

Proof. (A)=(B). Let 0 < v < 1 and let ¢, = max(c,1/7). Then
(A) holds with ¢, replaced by c, and w(x) replaced by cw(z). Theorem 4
gives (B).
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(B)=(C). We have to show that

T

OSO(TY(:C)H)(%) dz < c|w(x)da.

x

0
Let f = x». Then f € D. Fix 0 < 7 < 1 and then by Lemma 5 we can
choose 0 < o < 0o such that

S Hf”p(:r:),aw =X <1

r

Then

T

S

0
which implies, since A\g < 1, that

T

Sow(x) dx > )\g*.

0
Let ¢ = max(cy, 1/7). Since ||H f||,(2),0w < cAo, we have

?(WY(Z)M@) dr < 1.

cA
0 0

Because c\g > 1, the left side is

ow(x)

dr =1,

and consequently

1 T\ 1 ¢
— (= dr <1< dz.
(o) § <x> ow(x) dx (S)Jw(:r:) x

Hence w € By, with constant I
(C)=(A). This is contained in Theorem 3. m
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