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Molecules in coorbit spaces and boundedness of operators

by

Karlheinz Gröchenig and Mariusz Piotrowski (Wien)

Abstract. We study the notion of molecules in coorbit spaces. The main result states
that if an operator, originally defined on an appropriate space of test functions, maps
atoms to molecules, then it can be extended to a bounded operator on coorbit spaces. For
time-frequency molecules we recover some boundedness results on modulation spaces, for
time-scale molecules we obtain the boundedness on homogeneous Besov spaces.

1. Introduction. A remarkable principle of classical analysis states
that an operator that maps atoms to molecules is bounded. Here an “atom”
is a function on Rd satisfying certain support and moment conditions, and
norm bounds. Atoms arose first in the study of atomic decompositions of
real Hardy spaces [2] and singular integral operators on Hardy spaces (see
[13, 25]. The notion of an atom was later diversified to adapt to the Besov–
Triebel–Lizorkin spaces [10], and then generalized to “molecules”, which are
functions satisfying norm bounds, moment and decay conditions (instead
of support conditions); see [3, 10]. The resulting molecular decompositions
of function spaces have been successfully applied to study the bounded-
ness properties of Calderón–Zygmund operators on Besov–Triebel–Lizorkin
spaces (see [8–11, 27] for some of the main contributions). The technical
part of the proofs is to show that the operator under consideration maps
smooth atoms into smooth molecules. Using norm estimates for atomic and
molecular decompositions, one then obtains the boundedness of the opera-
tor. A similar strategy has been used in [14] to study a class of pseudodif-
ferential operators on Besov–Triebel–Lizorkin spaces.

In this paper we study atoms, molecules, and the boundedness of op-
erators in the context of coorbit theory. In coorbit theory one can attach
to every irreducible, unitary, integrable representation π of a locally com-
pact group G on a Hilbert space H a class of π-invariant Banach spaces
CoY that is parametrized by function spaces Y on the group G. These
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so-called coorbit spaces possess a rich theory ranging from interpolation
properties and duality theory to atomic decompositions and the existence
of frames (see the series of papers [5–7, 15]). The best known examples of
coorbit spaces are the Besov–Triebel–Lizorkin spaces (by choosing the group
of affine transformations on Rd and the representation by translations and
dilations) and the modulation spaces (by choosing the Heisenberg group and
the Schrödinger representation). An interesting recent example is the family
of shearlet spaces of [4].

In the context of general coorbit spaces, the atoms are subsets {π(xi)g :
xi ∈ G} in the orbit of the representation π for suitable g ∈ H. One of the
main results of coorbit theory establishes the existence of atomic decompo-
sitions with respect to such atoms [6, 15]. In the standard examples, these
atomic decompositions imply the non-orthogonal wavelet expansions of the
homogeneous Besov spaces and the Gabor-type expansions of modulation
spaces.

Our contribution is the introduction of molecules in general coorbit
spaces and the study of their properties. Roughly speaking, a set of molecules
is determined by an envelope function H on the group G and a discrete sub-
set {xi} of positions in G. See Section 3 for the precise definition. Our main
result then shows that any operator that maps a set of atoms π(xi)g to a
set of molecules is bounded on the associated coorbit spaces (Theorem 3.5).

We then investigate what the abstract theorem says for the concrete ex-
amples of the Schrödinger representation of the Heisenberg group and for the
group of affine transformations. For the Heisenberg group we recover the no-
tion of time-frequency molecules which were introduced already in [1,17,20].
Our main theorem implies the boundedness of pseudodifferential operators
on modulation spaces [18, 20]. The use of time-frequency molecules sheds
a new light on mapping properties of pseudodifferential operators. For the
group of affine transformations we investigate explicit time-scale molecules.
Our main insight shows that classical smooth molecules are also time-scale
molecules in the sense of coorbit theory. As an effortless application of our
main result, we verify the boundedness of the Hilbert transform on homo-
geneous Besov spaces.

The paper is organized as follows. In Section 2 we summarize some of
the standard facts of coorbit space theory from [6,15]. We recall the neces-
sary definitions of function spaces on locally compact groups and of coorbit
spaces, and then describe their atomic decompositions and Banach frames.
In Section 3 we introduce the notion of molecules in the context of coorbit
spaces and study their fundamental properties. This section contains our
main result about the boundedness of operators acting on coorbit spaces: if
an operator maps atoms to coorbit molecules, then it can be extended to a
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bounded operator on the corresponding coorbit spaces. Section 4 is devoted
to making the abstract theory explicit for the case of the Heisenberg group
and of the group of affine transformations.

2. Coorbit space theory. First we recall the concepts and required
results from the theory of coorbit spaces. We work with function spaces and
representations on a locally compact group.

2.1. Preliminaries and notation. Throughout, G will be a locally com-
pact group with identity e. Integration on G will always be with respect to
the left Haar measure, and ∆ is the the Haar modulus on G. We denote by
LxF (y) = F (x−1y) and RxF (y) = F (yx), x, y ∈ G, the operators of left and
right translation. Further, we also need the involution F∨(x) = F (x−1). The
space of all bounded functions on G with compact support will be denoted
by L∞0 (G). Let χU be the characteristic function of the set U .

2.2. Banach function spaces on G. We work in the context of Banach
function spaces. We assume that Y is a Banach space consisting of functions
on G equipped with the norm ‖· |Y ‖ and that Y has the following properties.

(i) Y is continuously embedded into L1
loc(G), the locally integrable func-

tions on G.
(ii) Y is solid, i.e., if F ∈ Y , G is measurable and satisfies |G(x)| ≤
|F (x)| a.e., then G ∈ Y and ‖G |Y ‖ ≤ ‖F |Y ‖.

(iii) Y is invariant under left and right translations, i.e. LxY ⊆ Y and
RxY ⊆ Y for all x ∈ G. If we set u(x) = |||Lx |Y ||| and v(x) =
∆(x−1)|||Rx−1 |Y |||, the operator norms of translations on Y , then
we require that

L1
u ∗ Y ⊆ Y and Y ∗ L1

v ⊆ Y.
We only work with pairs (Y,w), where the weight function w on G satisfies

(1)
w(x) ≥ C max{u(x), u(x−1), v(x), ∆(x−1)v(x−1)},
w(x) = w(x−1)∆(x−1)

for some constant C > 0. In particular, w(x) ≥ 1, ‖f |L1
w‖ = ‖f∨ |L1

w‖ and
Y ∗ L1

w ⊂ Y .
We emphasize that the assumptions in coorbit theory concern mostly

the weight w associated to Y ; the main results hold simultaneously for the
entire class of function spaces Y with the same weight w, and not just for a
single Y .

The Lebesgue spaces Lp(G), 1 ≤ p ≤ ∞, and the mixed-norm spaces
Lp,q(G) provide some natural examples of solid Banach spaces on G. If w
is some positive measurable weight function on G, then we define Lpw to be
the set of all measurable function F such that Fw ∈ Lp with ‖F |Lpw‖ :=
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‖Fw |Lp‖. A continuous weight w is called submultiplicative if w(xy) ≤
w(x)w(y) for all x, y ∈ G. A weight function m is called w-moderate if
m(xyz) ≤ Cw(x)m(y)w(z), x, y, z ∈ G. It follows that Lpm is invariant under
left and right translations if and only if m is w-moderate.

As a next ingredient, we need certain discrete sets in G. Let X = (xi)i∈I
be a discrete set of points in G, and U a relatively compact neighborhood
of e in G. Then X is called:

(a) U -dense if G =
⋃
i∈I xiU ;

(b) relatively separated if for all compact sets K ⊂ G there exists a con-
stant CK such that supj∈I #{i ∈ I : xiK ∩ xjK 6= ∅} ≤ CK :

(c) well-spread if it is both relatively separated and U -dense for some U .

Definition 2.1. Given a well-spread family X = (xi)i∈I , and a rela-
tively compact neighborhood U of e ∈ G, we define the sequence space Yd
associated to a solid Banach function space Y to be

Yd := Yd(X) := Yd(X,U) :=
{

(ci)i∈I :
∑
i∈I

ciχxiU ∈ Y
}
,(2)

endowed with the norm ‖(ci)i∈I |Yd‖ := ‖
∑

i∈I ciχxiU |Y ‖.

For instance, if Y = Lpw(G), then Yd = Lpw(G)d = `pew, where w̃ is deter-
mined by w̃i = w(xi).

If L∞0 (G) is dense in Y , then the finite sequences are dense in Yd [6,
Lemma 3.5(a)].

2.3. Wiener amalgam spaces. Let U be some relatively compact neigh-
borhood of e ∈ G. We define the local maximum function of F by

(3) F](x) := sup
y∈xU

|F (y)|, x ∈ G,

whenever F is locally bounded, in symbols F ∈ L∞loc. Given a Banach
space Y of functions on G satisfying 2.2(i)–(iii), the Wiener amalgam space
W (L∞, Y ) is defined by

W (L∞, Y ) := {F ∈ L∞loc : F] ∈ Y }

and equipped with the norm

(4) ‖F |W (L∞, Y )‖ := ‖F] |Y ‖.

Similarly, the right local maximum function is FR] (x) = supy∈U−1x−1 |F (y)|
and the right Wiener amalgam space WR(L∞, Y ) is defined by the norm
‖F |WR(L∞, Y )‖ := ‖FR] |Y ‖. By WR(C, Y ) we denote the closed subspace
of WR(L∞, Y ) consisting of continuous functions. In several arguments we
need the following convolution relation from [6, Proposition 5.2].
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Proposition 2.2. If (ci)i∈I ∈ Yd and H ∈WR(L∞, L1
w), then the sum∑

i∈I ciLxiH is in Y and∥∥∥∑
i∈I

ciLxiH
∣∣∣ Y ∥∥∥ ≤ C‖(ci)i∈I |Yd‖ ‖H |WR(L∞, L1

w)‖.(5)

The sum
∑

i∈I ciLxiH converges unconditionally in Y if L∞0 is dense in Y ,
and otherwise converges w∗ in the σ(Y,L1

w)-topology.

2.4. Coorbit spaces. Let π be an irreducible unitary representation of G
on a Hilbert space H. For a fixed g ∈ H, the abstract wavelet transform is
defined as

Vgf(x) := 〈f, π(x)g〉, f ∈ H, x ∈ G.
The representation π is called square-integrable if there is a non-zero vec-
tor g ∈ H, called an admissible vector , such that Vgg ∈ L2(G). The main
ingredient in coorbit space theory is a reproducing formula of the form

(6) Vgf = Vgf ∗ Vgg for all f ∈ H,
where ∗ denotes the convolution on G. Reproducing formulae are known to
hold for many types of representations. In particular, (6) holds for every
square-integrable, irreducible representation π of G [21] and also for many
reducible square-integrable representations (see [12, 19]). In order to intro-
duce the coorbit spaces we first need to extend the definition of the abstract
wavelet transform to a suitable space of distributions. We define the class
of analyzing vectors,

Aw := {g ∈ H : Vgg ∈ L1
w}.

Let us assume that Aw is non-trivial, i.e., π is integrable; then π is also
square-integrable. For a fixed g ∈ Aw \ {0} we define

H1
w := {f ∈ H : Vgf ∈ L1

w}
endowed with the norm ‖f |H1

w‖ := ‖Vgf |L1
w‖. Further, we denote by

(H1
w)q the anti-dual, i.e., the space of all bounded conjugate-linear func-

tionals on H1
w. An equivalent norm on (H1

w)q is given by ‖Vgf |L∞1/w‖. Since
the inner product on H×H extends to a sesquilinear form on (H1

w)q ×H1
w,

the extended representation coefficients

Vgf(x) = 〈f, π(x)g〉, f ∈ (H1
w)q, g ∈ Aw,

are well-defined. We are now in a position to define coorbit spaces.

Definition 2.3. Let Y be a solid Banach space of functions on G with
canonical weight w. Then for g ∈ Aw, g 6= 0, the coorbit space is defined by

CoY := {f ∈ (H1
w)q : Vgf ∈ Y }

with the norm ‖f |CoY ‖ := ‖Vgf |Y ‖.
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Remark 2.4. H1
w, (H1

w)q, and CoY are π-invariant Banach spaces. If
π is irreducible, then their definitions do not depend on the choice of the
analyzing vector g in the sense that different windows provide equivalent
norms [6, Thm. 4.2].

2.5. Atomic decomposition and Banach frames. Next we describe atomic
decompositions and Banach frames in coorbit spaces as outlined in [6,7,15].
The treatment of coherent frames for CoY requires a further restriction of
the set of analyzing vectors. The set of “better vectors” is given by

Bw := {g ∈ H : Vgg ∈WR(L∞, L1
w)}.

If Aw 6= ∅, then also Bw 6= ∅.
Below we summarize the results about the existence of atomic decom-

positions and frames from [15, Theorem U].

Theorem 2.5. Let Y satisfy 2.2(i)–(iii) with canonical weight w given
by (1) and assume that g ∈ Bw, g 6= 0. Then there exists a neighborhood U
of e such that for any U -dense and relatively separated family X = (xi)i∈I
in G the set {π(xi)g}i∈I provides an atomic decomposition and a Banach
frame for CoY .

(A) (Atomic decomposition) Every f ∈ CoY has an expansion

(7) f =
∑
i∈I

ci(f)π(xi)g,

where the sequence of coefficients (ci(f))i∈I depends linearly on f
and satisfies

‖(ci(f))i∈I |Yd‖ ≤ C‖f |CoY ‖

with a constant C depending only on g. Conversely , if (ci)i∈I ∈ Yd,
then f =

∑
i∈I ciπ(xi)g is in CoY and

‖f |CoY ‖ ≤ C ′‖(ci)i∈I |Yd‖.

The series defining f converges unconditionally in the norm of CoY
if L∞0 (G) is dense in Y , otherwise it converges unconditionally in the
weak∗ topology of (H1

w)q.
(B) (Banach frames) {π(xi)g}i∈I is a Banach frame for CoY . This

means that

(i) There are two constants C1, C2 > 0 depending only on g such
that

C1‖f |CoY ‖ ≤ ‖(〈f, π(xi)g〉)i∈I |Yd‖ ≤ C2‖f |CoY ‖.

(ii) (Reconstruction operator) There exists a bounded mapping R
from Yd(X) onto CoY such that f = R(〈f, π(xi)g〉i∈I).
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(C) (Dual frames) There exists a “dual frame” {ei}i∈I in H1
w such that ,

for every f ∈ CoY ,

f =
∑
i∈I
〈f, ei〉π(xi)g,

and ‖(〈f, ei〉)i∈I |Yd‖ is an equivalent norm on CoY .

3. Molecules in coorbit space theory. In this section we introduce
the notion of molecules in coorbit spaces and state and prove our main
result.

Definition 3.1. Assume that g ∈ Bw, g 6= 0, and let X = (xi)i∈I be a
well-spread family in G. A collection of functions {mi}i∈I ⊂ H is called a
set of molecules if there exists an envelope function H ∈WR(L∞, L1

w) such
that

|Vgmi(z)| ≤ LxiH(z), i ∈ I.(8)

Remark 3.2. We may think of G as a kind of phase space and the
function Vgf (for fixed g 6= 0) as a phase-space representation of f . The
molecule mi is then localized at xi ∈ G and a set of molecules has a uniform
envelope in phase space. In other words, each molecule has the same phase-
space concentration.

Example 3.3. 1. Every set of atoms {π(xi)g}i∈I for g ∈ Bw is a set
of molecules in the sense of Definition 3.1, because |〈π(xi)g, π(z)g〉| =
|〈g, π(x−1

i z)g〉| = Lxi |Vgg(z)| and Vgg ∈WR(L∞, L1
w).

2. Fix g0 ∈ Bw and a positive function H ∈WR(L∞, L1
w), and set

CH := {g ∈ H : |Vg0g(x)| ≤ H(x)}.
If X = (xi)i∈I is well-spread and gi ∈ CH, then

|Vg0(π(xi)gi)(z)| = |〈π(xi)gi, π(z)g0〉| = |LxiVg0g(z)| ≤ LxiH(z),

and so the set {mi = π(xi)gi}i∈I forms a family of H-molecules.

In preparation for the main result, we verify the following basic properties
of molecules.

Lemma 3.4.

(i) The definition of molecules does not depend on the particular choice
of the window g ∈ Bw.

(ii) (Synthesis) Let {mi}i∈I be a set of molecules subordinated to H ∈
WR(L∞, L1

w). The synthesis operator (ci)i∈I 7→
∑

i∈I cimi is bound-
ed from Yd to CoY . If (ci)i∈I ∈ Yd, then f =

∑
i∈I cimi ∈ CoY

and

(9)
∥∥∥∑
i∈I

cimi

∣∣∣ CoY
∥∥∥ ≤ C‖(ci)i∈I |Yd‖ ‖H |WR(L∞, L1

w)‖
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for some constant C. The sum defining f converges uncondition-
ally whenever L∞0 (G) is dense in Y , and in the w∗-sense on (H1

w)q

otherwise.
(iii) (Analysis) If , in addition, H ∈ W (L∞, L1

w), then the coefficient
operator Cf := (〈f,mi〉)i∈I is bounded from CoY to Yd with

‖(〈f,mi〉)i∈I |Yd‖ ≤ C‖f | CoY ‖.
Proof. To prove (i) we assume that g, h ∈ Bw and that {π(zj)g : j ∈ J}

is a (Banach) frame for H1
w. After substituting the frame expansion of h =∑

j∈J〈h, ej〉π(zj)g, where the sequence (cj)j∈I with cj := |〈h, ej〉| is in `1ew,
into (8) we obtain

|Vhmi(z)| = |〈mi, π(z)h〉)| ≤
∑
j∈I
|〈h, ej〉| |〈mi, π(z)π(zj)g〉|

≤
∑
j∈I

cjLxiH(zzj) = Lxi

(∑
j∈I

cjRzjH(z)
)
.

Since WR(L∞, L1
w) is invariant under right translations, we find that H̃ =∑

j∈I cjRzjH ∈ WR(L∞, L1
w), and (8) is satisfied for h in place of g with

the envelope function H̃.
For the proof of (ii) we assume first that L∞0 (G) is dense in Y . In this

case, the finite sequences are dense in Yd by [6, Lemma 3.5] and thus it
suffices to prove (3.4) for finite sequences. If supp(c) is finite, then by the
solidity of Y and the property of molecules we obtain∥∥∥∑
i∈I

cimi

∣∣∣ CoY
∥∥∥=

∥∥∥Vg(∑
i∈I

cimi

) ∣∣∣ Y ∥∥∥ ≤ ∥∥∥∑
i∈I
|ci| |Vgmi|

∣∣∣ Y ∥∥∥
≤
∥∥∥∑
i∈I
|ci|LxiH

∣∣∣ Y ∥∥∥≤C‖(ci)i∈I |Yd‖ ‖H |WR(L∞, L1
w)‖.

The last inequality above follows immediately from Proposition 2.2. This
norm estimate also implies the unconditional convergence in CoY .

If L∞0 (G) is not dense in Y , then still
∑

i∈I |ci|LxiH ∈ Y , but the sum
converges only in the weak∗ sense. Thus the above estimate still holds, and∑

i∈I cimi ∈ CoY is w∗-convergent.
Finally, we show (iii). By virtue of Theorem 2.5, every f ∈ CoY has an

expansion
f =

∑
j∈J

cjπ(zj)g

with (cj)j∈J ∈ Yd and ‖(cj)j∈J |Yd‖ ≤ C‖f |CoY ‖. Plugging in again the
above expansion yields

|〈f,mi〉| ≤
∑
j∈J
|cj | |〈π(zj)g,mi〉| ≤

∑
j∈J

cjH(x−1
i zj) =

∑
j∈J

cjLzjH
∨(xi).
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Consequently, we get

‖(〈f,mi〉)i∈I |Yd‖ ≤
∥∥∥∑
j∈J

cjLzjH
∨ |W (L∞, Y )

∥∥∥
≤ ‖(ci)i∈I |Yd‖ ‖H∨ |WR(L∞, L1

w)‖ ≤ C‖f |CoY ‖.

Now we formulate our main result on the boundedness of operators on
coorbit spaces.

Theorem 3.5. Suppose that g ∈ Bw and that {π(xi)g}i∈I forms a Ba-
nach frame for CoY with canonical dual frame {ei}i∈I (as guaranteed by
Theorem 2.5). Assume that the operator T is bounded from H1

w to (H1
w)q and

that T maps the atoms π(xi)g, i ∈ I, to the molecules mi = T (π(xi)g) with
envelope H ∈WR(L∞, L1

w). Then T extends to a bounded operator on CoY .
Furthermore, the operator norm of T is bounded by ‖H |WR(L∞, L1

w)‖.

Proof. We would like to define Tf =
∑

i∈I ciT (π(xi)g) =
∑

i∈I cimi

for f =
∑

i∈I ciπ(xi)g. Lemma 3.4 then yields the correct norm estimates.
However, in general, the representation of f with respect to {π(xi)g} is not
unique, therefore we have to show that the natural extension procedure is
unique.

Step 1. First we define a canonical extension T̃ of T to CoY via the
frame expansion of f . Let ei ∈ H1

w be the dual frame of π(xi)g, i ∈ I, the
existence of which is asserted in Theorem 2.5(C). Then f ∈ CoY has the
expansion f =

∑
i∈I〈f, ei〉π(xi)g with coefficient sequence (〈f, ei〉)i∈I ∈ Yd

and

‖(〈f, ei〉)i∈I |Yd‖ ≤ C‖f |CoY ‖,(10)

where the constant C > 0 is independent of f . We define T̃ f by

T̃ f =
∑
i∈I
〈f, ei〉T (π(xi)g) =

∑
i∈I
〈f, ei〉mi.(11)

By Lemma 3.4(ii) we find that T̃ f is in CoY and that

‖T̃ f |CoY ‖ ≤ C‖(〈f, ei〉)i∈I |Yd‖ ‖H |WR(L∞, L1
w)‖(12)

≤ C ′‖H |WR(L∞, L1
w)‖ ‖f |CoY ‖.

Furthermore, the series defining T̃ f converges unconditionally in CoY if L∞0
is dense in Y , and w∗ in (H1

w)q otherwise.

Step 2. It remains to show that T̃ coincides with T on H1
w. Here we

exploit the assumed continuity of T from H1
w to (H1

w)q. This means that
the convergence fn → f in H1

w implies the w∗-convergence Tfn → Tf . In
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particular, the net of partial sums

fF =
∑
k∈F
〈π(xi)g, ek〉π(xk)g

converges to π(xi)g as F → I, where (F ) is the net of finite subsets of I
ordered by inclusion. Consequently,

mi = T (π(xi)g) = w∗- lim
F→I

TfF(13)

= w∗- lim
F→I

∑
k∈F
〈π(xi)g, ek〉T (π(xk)g)

= w∗- lim
F→I

∑
k∈F
〈π(xi)g, ek〉mk = T̃ (π(xi)g).

Since the mk’s are molecules, the series in (13) converges also in H1
w by

Lemma 3.4. The identity T (π(xi)g) = T̃ (π(xi)g) implies that Tf = T̃ f
whenever f =

∑
i∈I ciπ(xi)g and (ci)i∈I ∈ `1w.

We now take T̃ as the desired extension of T from H1
w to CoY . By Step 1

this extension is bounded on CoY . This completes the proof.

Remark 3.6. We observe that Theorem 3.5 asserts the simultaneous
boundedness of T on all coorbit spaces CoY with the same associated weight
w given in (1).

Remark 3.7. Theorem 3.5 can probably be formulated for quasi-Banach
spaces as well by using Rauhut’s extension of coorbit space theory [24].

4. Examples and applications

4.1. The Heisenberg group and time-frequency molecules. We now de-
scribe the consequences of Theorem 3.5 in the context of time-frequency
molecules. Time-frequency molecules were introduced in [17, Section 5.3]
and independently in [1] and were studied in detail in [20, Section 7].

We first discuss how the modulation spaces fit into coorbit space setting.
We consider the d-dimensional reduced Heisenberg group GH = Rd×Rd×T
with multiplication

(x, ω, τ)(x′, ω′, τ ′) = (x+ x′, ω + ω′, ττ ′eπi(x
′·ω−x·ω′)).

Let Txf(t) = f(t− x) and Mωf(t) = e2πit·ωf(t) be the operators of transla-
tion and modulation, respectively, and π be the Schrödinger representation
of GH acting on L2(Rd) by time-frequency shifts

π(x, ω, τ) := τeπix·ωTxMω = τe−πix·ωMωTx.

This is an irreducible, unitary and square-integrable representation of GH.
Except for a trivial phase factor the representation coefficient Vgf(x, ω, τ) =
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〈f, π(x, ω, τ)g〉L2(Rd) coincides with the Short-Time Fourier Transform
(STFT) given by

STFTg f(x, ω) = 〈f,MωTxg〉L2(Rd) =
�

Rd

f(t) g(t− x) e−2πiω·t dt,(14)

whenever the integral makes sense. Otherwise, we fix g ∈ S(Rd) and extend
the STFT to tempered distributions S ′(Rd) by interpreting the bracket 〈f, g〉
as a dual pairing between an element f ∈ S ′(Rd) and g ∈ S(Rd). For more
information on the STFT the reader is referred to [16].

We take the liberty to drop the center {0}× {0}×T of GH and consider
function spaces on R2d instead of GH. As a standard example we take the
mixed-norm spaces Lp,qm (R2d) for 1 ≤ p, q ≤ ∞ and some w-moderate weight
function m on R2d with the norm

‖F |Lp,qm (R2d)‖ :=
( �

Rd

( �

Rd

|F (x, ω)|pm(x, ω)p dx
)q/p

dω
)1/q

.

The modulation spaces are obtained as the coorbits of Lp,qm (R2d) with respect
to the Schrödinger representation π,

Mp,q
m (Rd) = CoLp,qm (R2d) = {f ∈ S ′(Rd) : STFTg f ∈ Lp,qm (R2d)}

for fixed non-zero g ∈ S(Rd). For the Heisenberg group many technical sub-
tleties of the general set-up of coorbit space theory disappear. For instance
W (L∞, L1

w)(GH) = WR(L∞, L1
w)(GH) and

Bw = Aw = M1,1
w (R2d)

(cf. [7, Lemma 7.2]). As long as w and m have polynomial growth, one may
use the Schwartz class S(Rd) ⊂ Aw as a convenient space of test functions.

In the context of modulation spaces and the Heisenberg group, the natu-
ral discrete sets are lattices, i.e., discrete co-compact subgroups of the form
Λ = AZ2d for some invertible 2d × 2d-matrix A. Let G(g, Λ) := {π(λ)g :
λ ∈ Λ} be the orbit of g under Λ (a so-called Gabor system).

Given a symbol σ ∈ S ′(R2d), the pseudodifferential operator σw is infor-
mally given by

σwf =
�

Rd

�

Rd

σ̂(ξ, u)e−πiξuT−uMξf du dξ,

whenever the integral makes sense, otherwise it is interpreted in the weak
sense. The mapping σ 7→ σw is called the Weyl transform.

The abstract Definition 3.1 can be rephrased as follows (cf. [17] and
[20, Definition 7.1]).

Definition 4.1. Fix a non-zero g ∈M1,1
w (Rd). A collection {mλ}λ∈Λ of

functions forms a set of time-frequency molecules if there exists a function
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H ∈W (L∞, L1
w)(R2d) such that

|〈mλ, π(z)g〉| ≤ H(z − λ), λ ∈ Λ.

In our language, the main theorem of [18] (cf. also [20, Proposition 7.1])
can be formulated as follows. [We write j for the rotation mapping j(z1, z2) =
(z2,−z1) with (z1, z2) ∈ R2d.]

Proposition 4.2. Fix a non-zero g ∈M1,1
w and suppose that G(g, Λ) is

a Gabor frame for L2(Rd). Then the following are equivalent.

(i) σ ∈M∞,1
w◦j−1(R2d).

(ii) There exists a function H ∈ L1
w(R2d) such that

|〈σwπ(w)g, π(z)g〉| ≤ H(z − w), w, z ∈ R2d.

(iii) There is a function H ∈W (L∞, L1
w)(R2d) such that the correspond-

ing pseudodifferential operator σw maps the time-frequency shifts
{π(λ)g} to time-frequency molecules {mλ}λ∈Λ in the sense of Defi-
nition 4.1 with envelope function H.

Proof. The equivalence (i)⇔(ii) was proved in [17, Thm. 3.2].
(ii)⇔(iii). Let mλ = σw(π(λ)g). Then by (ii) we have |〈mλ, π(z)g〉| ≤

H(z−λ). At first H is only in L1
w(R2d), but it was shown in [17, Thm. 3.2]

that the envelope function H can be chosen in W (L∞, L1
w). Thus the set of

mλ, λ ∈ Λ, is a set of time-frequency molecules in the sense of Definition 4.1.
Conversely, if mλ = σw(π(λ)g) is a set of molecules, then we have

|〈σw(π(λ)g), π(µ)g〉| ≤ H(µ − λ). Again, by [18] this property implies that
σ ∈M∞,1

w◦j−1(R2d).

Since the modulation spaces are the coorbit spaces for the Schrödinger
representation, Theorem 3.5 now implies the boundedness of pseudodiffer-
ential operators with symbol in M∞,1

w◦j−1(R2d) on a large class of modulation
spaces. See [16, Thm. 14.5.6] and [26] for different proofs.

Corollary 4.3. If σ ∈ M∞,1
w◦j−1(R2d), then σw is bounded simultane-

ously on all modulation spaces Mp,q
m (Rd) for 1 ≤ p, q ≤ ∞ and every w-

moderate weight function m.

4.2. The affine group and time-scale molecules. We next consider the
affine group GA = Rd×R+ with multiplication (x, s) · (x′, s′) = (x+ sx′, ss′)
for x, x′ ∈ Rd and s, s′ > 0. Let the dilation operator be given by Dsf(x) =
s−d/2f(s−1x) with s > 0. A unitary representation of GA acts on L2(Rd) by
translations and dilations:

π(x, s)g(t) = TxDsg(t) = s−d/2g

(
t− x
s

)
.
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This representation is square-integrable but reducible. Nevertheless, it
has an abundance of admissible vectors g for which the reproducing for-
mula (6) holds. Another way to deal with the reducibility is to study the ex-
tended affine group Rd×R+×SO(d) and its representations π1(x, s,R)f(t) =
s−d/2f(s−1R−1(t−x)) with R ∈ SO(d). Then π1 is irreducible. For rotation-
invariant functions g we have π1(x, s,R)g = π(x, s)g, so we may as well work
with the reducible π. The representation coefficients of π are nothing other
than the continuous wavelet transform, which is defined by

Wgf(x, s) = 〈f, π(x, s)g〉 = s−d/2
�

Rd

f(t) g
(
t− x
s

)
dt

for f, g ∈ L2(Rd), g 6= 0.
We first identify the coorbit spaces with respect to the representation π

of GA. Let 1 ≤ p, q < ∞ and w(x, s) = s−σ for σ ∈ R. The mixed norm
space Lp,qσ (GA) is defined by the norm

‖F |Lp,qσ (GA)‖ =
(∞�

0

( �

Rd

|F (x, s)|p dx
)q/p

s−σq
ds

sd+1

)1/q

with the usual modifications when p =∞ or q =∞.
Recall the classical definition of the homogeneous Besov spaces. Let ϕ ∈

S(Rd) with supp(ϕ) ⊂ {y ∈ Rd : |y| < 2} and ϕ(x) = 1 if |x| ≤ 1 and set
ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x), j ∈ Z. For 1 ≤ p, q ≤ ∞ and σ ∈ R, the
homogeneous Besov space Ḃσ

pq(Rd) is the set of all tempered distribution
modulo polynomials f ∈ S ′/P(Rd) such that

‖f | Ḃσ
pq(Rd)‖ =

(∑
j∈Z

2jσq‖F−1(ϕj f̂ ) |Lp(Rd)‖q
)1/q

(15)

is finite, with the usual modification for q = ∞. A result of Triebel [29]
yields the equivalent norm on Ḃσ

pq(Rd):(∞�
0

s−q(σ+d/2−d/q)‖Wgf(·, s) |Lp(Rd)‖q ds

sd+1

)1/q

= ‖Wgf |Lp,qσ+d/2−d/q(GA)‖.

Triebel’s result reveals that the homogeneous Besov spaces coincide with
some coorbit spaces of the affine group GA. More precisely,

Ḃσ
pq(Rd) = Co(Lp,qσ+d/2−d/q(GA)).

Next we compare classical molecules as in [11] and the coorbit molecules
according to Definition 3.1. Let us start by describing the classical molecules.
For k = (k1, . . . , kd) ∈ Zd and j ∈ Z, a dyadic cube is given by Q = Qjk =
{(x1, . . . , xd) ∈ Rd : ki ≤ 2jxi < ki+ 1}. Its left corner is xQ = xQjk

= 2−jk,
its side length `(Q) = `(Qjk) = 2−j , and its volume is |Q| = 2−jd. For
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M,N ∈ {−1, 0, 1, 2, . . .} a classical smooth (M,N)-molecule associated to a
dyadic cube Q is a function mQ satisfying the estimates

(16) |DαmQ(x)| ≤ |Q|−1/2−|α|/d
{

1+
|x− xQ|
`(Q)

}−M
for |α| ≤M, x ∈ Rd,

and the moment conditions�

Rd

xβmQ(x) dx = 0 for |β| ≤ N.(17)

This notion of a classical smooth molecule goes back to [9]; see also
[8, 10, 11]. [The atoms in classical analysis are defined similarly with the
decay condition (16) replaced by an appropriate support condition.] To un-
derstand how the conditions (16) and (17) can be expressed by the wavelet
transform, we note that the decay condition (16) can be rephrased as

|DαmQjk
(x)| ≤ 2jd/2+j|α|(1 + |2jx− k|)−M for |α| ≤M(18)

and the moment conditions (17) as

m̂Qjk
(ξ) ≤ Cn|ξ|n |ξ| → 0, for all n ≤ N,

The next proposition describes the decay of wavelet transform of the classical
molecules.

Proposition 4.4. Let g and f satisfy the conditions (18) with j = k= 0
and (17). Then there are numbers α, β, γ ∈ N depending only on M,N and
a constant Cα,β,γ > 0 such that

|Wgf(x, s)| ≤ Cα,β,γsα(1 + s)−β(1 + |x|)−γ .(19)

By improving the quality of the window we can achieve a stronger result.

Remark 4.5. In particular, if g ∈ S(Rd) has all moments vanishing,
then for every α, β, γ ∈ N there is a constant Cα,β,γ > 0 such that

|Wgg(x, s)| ≤ Cα,β,γsα(1 + s)−β(1 + |x|)−γ .(20)

Proposition 4.4 is due to Holschneider [22], though the result is somewhat
hidden in the proofs of his Theorems 11.0.2, 12.0.1, and 19.0.1. ([22] uses a
different normalization of the wavelet transform and treats the dimensions
d = 1 and d > 1 separately.)

The next proposition clarifies the relation between classical molecules
and coorbit molecules for the affine group.

Proposition 4.6. Fix a weight function w on GA. Then for M,N suf-
ficiently large, every set of (M,N)-molecules (mQjk

) is a set of coorbit
molecules in the sense of Definition 3.1.

Proof. Note that the dyadic cube Qjk = 2−j(k + [0, 1]d) is attached to
the point xjk = (2−jk, 2−j) ∈ GA. To show that (mQjk

) is a set of coorbit
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molecules with envelope function H, we need to show that

|WgmQjk
(x, s)| ≤ H((2−jk, 2−j)−1(x, s)) = H(2jx− k, 2js).

In view of estimate (19), the natural candidate for an envelope H is the
function

H(x, s) = sα(1 + s)−β(1 + |x|)−γ

with α, β, γ ∈ N depending on M,N . Our task is to show that H ∈
WR(L∞, L1

w). We must first estimate the local maximum function FR] of H.
We set U = B(0, a)× [b−1, b] with a > 0 and b > 1. Then

FR] (x, s) = sup
(u,v)∈U−1(x,s)−1

|H(u, v)| = sup
(y,r)∈U

H((y, r)−1(x, s)−1)

= sup
(y,r)∈U

∣∣∣∣H(−x+ sy

sr
,

1
sr

)∣∣∣∣
= sup

(y,r)∈U

(
1
sr

)α(
1 +

1
sr

)−β(
1 +
|x+ sy|
sr

)−γ
= sup

y∈B(0,a)
sup

r∈[b−1,b]

(sr)−α+β(1 + sr)−β(1 + |x/sr + y/r|)−γ

≤ Cb sup
y∈B(0,a)

s−α+β(1 + s)−β(1 + |x/s+ y|)−γ

≤ Cabs−α+β(1 + s)−β(1 + |x/s|)−γ .

In the last estimate the moderateness of the weight (1 + | · |)−γ has been
used.

The WR(L∞, L1
w)-norm of H is then

‖H |WR(L∞, L1
w)‖ =

�

Rd

∞�

0

FR] (x, s)s−σ dx
ds

sd+1

≤ Cab
∞�

0

�

R
s−α+β(1 + s)−β(1 + |x/s|)−γs−σ dx ds

sd+1
,

and this integral converges if γ > d and β > α+ σ > 0.

Finally, we apply Theorem 3.5 to study the boundedness of the Hilbert
transform on homogeneous Besov spaces. Recall that the Hilbert transform
H of a function f is given by

Hf(x) = lim
ε→0

1
π

�

|t|≥ε

f(x− t)
t

dt,

provided that the limit exists. The boundedness of H on Besov spaces follows
from Fourier multiplier theorems for Besov spaces (see, e.g., [28]), or from
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Lemarié’s work on Calderón–Zygmund operators on Besov spaces [23]. Here
we show that it is an immediate consequence of Theorem 3.5.

Proposition 4.7. Let 1 ≤ p, q ≤ ∞ and σ ∈ R. Then the Hilbert
transform is bounded on Ḃσ

pq(Rd).

Proof. We choose a basis function g ∈ S(R) such that supp ĝ ⊆
{ω ∈ R : 1/2 ≤ |ω| ≤ 2} and {π(2−jk, 2−j)g : j ∈ Z, k ∈ Zd} is a Ba-
nach frame for Ḃσ

pq(Rd). Since the Hilbert transform commutes with all
translations Tx and dilations Ds, i.e., H(TxDs)f(t) = TxDs(Hf)(t) H maps
the frame π(2−jk, 2−j)g into atoms π(2−jk, 2−j)Hg. Therefore it suffices to
prove that WgHg ∈ WR(L∞, L1

w)(GA) where w(x, s) = s−σ+d/2−d/q; then
K = |WgHg| serves as an envelope for which (8) holds and H(π(2−jk, 2−j))g,
j, k ∈ Z, is a set of molecules. Since both g and Hg are in S with all mo-
ments vanishing, estimate (19) and the proof of Proposition 4.6 show that
WgHg ∈WR(L∞, L1

w)(GA).
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