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Embedding relations between local Hardy
and modulation spaces

by

MasAHARU KoBAYASHI (Tokyo), AKIHIKO MivAcHI (Tokyo),
and NaoHiTo TomIiTA (Osaka)

Abstract. A sharp embedding relation between local Hardy spaces and modulation
spaces is given.

1. Introduction. The modulation spaces ML? were introduced by
Feichtinger [2-4] to measure smoothness of a function or distribution in
a way different from Besov spaces, and they are now recognized as appro-
priate function spaces for time-frequency analysis (see Grochenig [8, 9]). To
find simple necessary or sufficient conditions for a function or distribution to
belong to a modulation space is one of the basic problems. For this purpose,
embedding relations between modulation spaces and several other function
spaces were studied. In particular, embedding relations between modulation
spaces and Besov spaces were extensively studied (see Grébner [7], Okoud-
jou [12], Toft [16], Sugimoto-Tomita [14] and Wang-Huang [19]). Although
most of the early research on the modulation spaces MY was restricted to
the case 1 < p,q < oo, they can also be extended to the case 0 < p,q < oo
(see Triebel [17], Kobayashi [10] and Wang—Hudzik [20]). The purpose of
this paper is to consider embedding relations between the modulation spaces
MEP? with p < 1 and the local Hardy spaces h? of Goldberg [6].

Let 1 < p < oo, and let p’ be the conjugate exponent of p (that is,
1/p+1/p' =1). It is known that

Mp,min{p,p’}(Rn) < LP(R") — Mp,maX{p,p’}(]Rn)
(see, for example, [16, Proposition 1.7]). In this paper, we shall give a similar
embedding relation with LP replaced by hP, the local Hardy space. It should

be pointed out that h' < L' and h? = LP if 1 < p < oo, and thus we shall
treat the case 0 < p < 1. The following are our main results:
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THEOREM 1.1. Let0<p<1,0<q<o0ands € R. Then MPI(R") —
hP(R™) if and only if either of the following conditions is satisfied:

(a) p>q and s > 0;

(b) p<qands>n(l/p—1/q).

THEOREM 1.2. Let 0 < p <1,0< g < o0 and s € R. Then h?(R") —
MEPY(R™) if and only if either of the following conditions is satisfied:

(¢c) p>qands< —n(l/p+1/q—1);

(d)p<qgands<-n(l/p+1/q—1).

In the case 0 < p <1 and p < g < 0o, Theorems 1.1 and 1.2 say that
(1.1) MPP(R™) — hP(R") — Mf’g(l/pﬂ/q_l)(]l%”),
and that these embeddings are in a sense optimal. Hence, for the embedding
hP — MP? max{pp’} ¢ hold, the smoothness index s must be negative in the
case 0 < p < 1, while we can take s = 0 in the case p > 1. Here we
understand that p’ = oo in the case 0 < p < 1.

Theorem 1.2 also claims that h!(R") «— Mig /q(R") if 1 < ¢ < oo. This

embedding should be compared with the fact that L!(R") < Mig /q(R") if
1 < ¢ < oo (see Remark 4.6).

It will be interesting to compare our result with the following result of
Wang-Huang [19, Theorem 1.1]: if 0 < p <1 and 0 < g < 00, then
(12) Migon/p-1/gy R = BEHRY) = MZ 4y (RY),
where BY'? is the Besov space. Let 0 < p < 1. Firstly, since BYP(R") —
hP(R™), if p = q, then the right hand embedding of (1.1) improves the right
hand embedding of (1.2). Secondly, if ¢ > 2, then h?(R") — BF?(R"), and
hence the right hand embedding of (1.2) covers the right hand embedding of
(1.1). Thirdly, since BYP(R™) — hP(R™), the left hand embedding of (1.1)
follows from the left hand embedding of (1.2) with p = ¢. These observations
follow from the fact that the local Hardy space h? coincides with the Triebel—
Lizorkin space F}) ’2, and from the embedding relation between F}'? and Bf
(see [13] and [18, Chapter 2]).

Wang—Huang [19, loc. cit.] also proved the necessary conditions for the
embeddings BY? — MP4 — BB The necessity of (a) and (d) of Theo-
rems 1.1 and 1.2 can be derived from the necessary condition of [19]. The
necessity of (b) and (c) does not seem to follow from the latter, however.
We shall give an independent proof for the necessity of our condition in this
paper.

Our paper is organized as follows: In Section 2, we give the definitions
and basic properties of modulation and local Hardy spaces. Sections 3 and
4 are devoted to the proofs of Theorems 1.1 and 1.2, respectively.
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2. Preliminaries. Let S(R™) and S’(R"™) be the Schwartz spaces of
all rapidly decreasing smooth functions and tempered distributions, respec-
tively. We define the Fourier transform F f and the inverse Fourier transform

F=Lf of f € S(R") by
FFE=F© = | e f(a)de and F'f(z)= | mEf(g)de.

R™ Rn
The notation A =< B stands for C™'A < B < CA for some positive con-
stant C.

We first recall the definition of modulation spaces. Let 0 < p,q < oo,
s € R, and let ¢ € S(R™) be such that

(2.1) supp ¢ C [-1,1]" and Z (—k)=1 forall £ R".
kezn

Then the modulation space ME*(R™) consists of all f € §’(R™) such that

1/
sz = (32 (0 + KD le(D ~ B)FIE, ) < oo,

kezZm
where
(D —k)f=F o = k) [] = (My®) * f,

O(z) = Fly and Mpd(z) = e™F2@(x). If s = 0, we write MP9(R")
instead of M{"?(R™). We remark that the definition of M2*Y(R"™) is indepen-
dent of the choice of ¢, MPY(R™) is a quasi Banach space (Banach space
if 1 < p,g < o0), and MZP(R™) — MZ®(R") if p1 < p2, 1 < g2 and
s1 > s9. See Feichtinger [4], Grochenig [8, Chapter 11], Kobayashi [10] and
Triebel [17] for more details on modulation spaces.

We next recall the local Hardy spaces of Goldberg [6]. Let 0 < p < oo,
and let ¥ € S(R™) be such that {3, ¥(x) dz # 0. Then the local Hardy space
hP(R™) consists of all f € S'(R™) such that

[fllne = I sup @ fl{|ze = || sup [(ED)f]][Lr < oo,
0<t<1 0<t<1

where W, (z) = t "W (z/t) and ) = ¥. We remark that h'(R") < L(R™) ([6,
Theorem 2]), hP(R™) = LP(R") if 1 < p < oo ([6, p. 30]), and the definition
of hP(R™) is independent of the choice of ¥ ([6, Theorem 1]). A function a
on R” is said to be an hP-atom of type I if

(2.2) suppa C Q  with |Q <1, laflr= < [Q7V/7,
(2.3) S z%(x)dr =0 forall o < [n(1/p—1)],
Rn

where @ is a cube (that is, Q = xo + [—r,7]" for some xy € R"™ and r > 0),
|Q| is the Lebesgue measure of @, and [n(1/p — 1)] is the integer part of
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n(1/p —1). A function a on R is also said to be an hP-atom of type II if
(2.4) suppa C Q with |Q| > 1, [lafr= < |Q|7*/7.

We simply say that a is an hP-atom if it is an hP-atom of type I or type II.
Note that there exists a constant C' > 0 such that ||a||p» < C for all hP-atoms
a ([6, Lemma 5]). It is known that every f € hP(R™) can be written as a
sum of hP-atoms:

oo
f = Z )\iai in Sl(Rn),
i=1
where {a;} is a collection of hP-atoms and {)\;} is a sequence of complex
numbers with > >°, |\i[? < oo, and moreover,

> 1/p
(2.5) Il =< inf (32 7)™,
i=1
where the infimum is taken over all representations f = ;2 Aja; ([6, Lem-
ma 5]).
We end this section by quoting the following facts which will be used
later on.

LEMMA 2.1 ([11]). Let 0 < p,q < o0 and s € R. If ¢ € S(R™) satisfies
|| > ¢ >0 on [-2,2]", then

/
17z = (32 U+ k6D~ RIS " for all £ € Mpae™).

keZm

LEMMA 2.2 ([20, Proposition 2.5]). Let 0 < p,q1,q2 < oo and sy, 2 € R.
If @ > q2 and s1 — s2 > n(1/qe — 1/q1), then MET(R™) — ML (R™).

3. Proof of Theorem 1.1. The following proposition seems to be
known to many people, but we give a proof for the reader’s convenience.

PROPOSITION 3.1. Let 0 < p < 1, and let ¢ € S(R™) be as in (2.1).
Then

lo(D = k) fllw < (D = k) fl v
for all f € 8'(R™) satisfying ||p(D — k) f|lne < 0o or ||o(D — k) f|lrr < cc.
Proof. Let ¥ € S with {;, ¥(z) dr =1 and supp¥ C {z € R" : |z < 1},
and set ¢ = ¥. We first prove that ||o(D —k)f|z» < C|lo(D — k) f]|p». Since
Y(tD)g =W xg— gin S ast — 0 for all g € S, where ¥;(z) = t~"¥(z/t),
we see that

Y(AD)p(D — k) f(z) = (Mp®) * ($(tD) f)(x)
= (YD) [, (Mp®)(z = -))s'xs = (f, (Mp®P)(z — -))s'xs = p(D — k) f(x)
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as t — 0 for all x € R™. Hence,

lo(D = k) flle < sup [(ED)(p(D = k) )l lw = l[o(D = k) flr-
0<t<1

We next prove that |[@(D — k) f|lne < C|l¢o(D — k) f||ze. To do this, we
recall that, for a compact subset {2 of R® and 0 < r < p, there exists a
constant C' > 0 such that

fla—y)] /e
(3.1) sup e < OMST) @)

for all f € &’ satisfying supp f C §2 and x € R", where M is the Hardy—
Littlewood maximal operator defined by

Mf(w) = sup 1y VIF )l dy

!Q\
(see [18, Theorems 1.3.1 and 1.4.1]). Slnce

@ (p(D = k) ) (@)] = | § 0 /0e(D — k) f (@ — ) dy
Rn

=| | #WeD - bifle - ty)dy] < 7] sup [o(D =~ B)f(@ = )
lyl<1 vl=

for all 0 < t < 1, we have

(3-2) sup |% « (o(D — k) f)(x)| < C sup |o(D — k) f(z —y)l.

0<t<1 lyl<1
On the other hand, since supp F[M_i(o(D —k)f)] C [-1,1]" for all k € Z™,
by (3.1) we have

[o(D = k) f(z —y)|

(3.3) sup [p(D—k)f(z—y)| < C sup

lyl<1 yeRn (1+ Jy))™/r
o IM(o(D— B )
—Co M
< OM(M_(p(D — B) ")) "
1

= OM(|p(D = k) fI")(2)"/".

Note that p/r > 1 and the Hardy-Littlewood maximal operator M is
bounded on LP/" ([1, Theorem 2.5]). Therefore, it follows from (3.2) and
(3.3) that

le(D = k) fllne = || sup [ (o(D = k)f)| e
0<t<1

< CIM(|o(D = B) ) (@) [0 = CIM(|o(D = k) ") @)

< Clll(D — k)30, = Clip(D — k) f|10.
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LEMMA 3.2. Let 0 < p < 1,0 < g < oo and s € R. If MPY(R") —
hP(R™), then there exists a constant C > 0 such that

(3 tewr) " <X @+ b))’

kezZmn kezn
for all finitely supported sequences {c}trezn (that is, ¢ = 0 except for a

finite number of k’s).

Proof. Let n € §\ {0} be such that suppn C [—1/2,1/2]™. For a finitely
supported sequence {¢; }iezn, we set

— Z cl€27ril-xn(x _ l)
lezn

Let ¢ € S be as in ( 1). Since

Z cl€2ﬂz|l|2 —2mil-€ (§ l)

lezn
we see that
(34)  @(D—k)f(x) =D ae?™ | m=DEp e — k)i — 1) de.

ez R

Using

VO +lz—y) ™M+ [y)™Mdy < OO+ )™
Rn

where M > n, and

(=0 | 2™ DEp (e — k)RE — 1) dg

R

= Y Caran | ETEDE@M0)(E — R)(0°27)(€ — 1) de,

a1 toas=« R
we have
(3.5) || 2 ep(e— k)it 1) de| < On 1+ =1 N 1+ [k =)~
R’i’l

for all N > 1. Let N be an integer satisfying N > max{n/p+|s|,n/q+ |s|}.
Then, by (3.4) and (3.5),

|cil
D-k)f@)]<C
p(D = k)J(@) lezzjn L+ |z — DN+ k=N
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which yields

le(D = k) fl7, < CZ

lezn

ICz!

1 —Ip=N
A5 k- LG Rt ) I (v

Hence, since

1/q
||f||M§”‘1:{Z (1+ k)l (D = k)14, |
ez

(@ + D7D~ R )77}

Il
r—’;\

kezn
p q/py 1/q
(At [k — 1) e S el > }
{%ﬁ( | S DY cem ey
14 |1])*2|¢ P a/py 1/q
—of S (2 ,
kezZn Nezn (14 [k — 2N =lsbe

Young’s inequality if ¢/p > 1 and Fubini’s theorem if ¢/p < 1 yield

(3.6)
(14 |1])°P| ¢y |P alpyla
{ 2 <Z (1+ [k~ z|)<Nl—|s|>p> } if¢/p 21

HfHMg,q <C kezn Nezn

(1+[7]) Sqlcz\q Ha .
2T falp <1

kezn lezm™
y C{ 1+ [y~ p}n;{pn{(l el ifa/p>1
= LA ) D (4 e i a/p <1
< O+ ) el

On the other hand, as f € S, we have f(z) = limy_o¢(tD)f(z) for all
xz € R", where ¢ € S satisfies ¢(0) = 1. This implies

(3.7) [fllze < I sup [@(ED)f] e = [ fllne-
0<t<1

Since suppn(- —1) C 1+ [-1/2,1/2]" for all [ € Z", we see that
il P 1/p
38) Il = (V|2 ac® (@ - 1| dz)

R [eZ™

- /
= (1 3l en(a — P dx) " = ol o

Rn lezm™
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By our assumption M?? < hP and (3.6)—(3.8), we obtain
Cil{atlle < [fllwe < Coll fllagza < Csl{ L+ [1])*ci}lea-

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We first prove that MPP — hP. Let ¢ € S be as
n (2.1). By Proposition 3.1,

1 = || e =mf| < > oD = K)fIE,
kezn kez™

<C X Nl = k)l = 11Rsmas
kezn

that is, MPP < hP. On the other hand, if p > g and s > 0, or if p < ¢
and s > n(1/p — 1/q), then M¥? — MPP where we have used Lemma 2.2
in the case p < ¢ and s > n(1/p — 1/q). Hence, condition (a) or (b) gives
MPT— pP,

We next prove that the embedding M£*? < h? implies (a) or (b). Assume
that ML? < hP. Then, from Lemma 3.2,

(3.9 (3 1) < o (3 @+ k) led)

kezZm keznr

for all finitely supported sequences {cj, }xezn. Setting ¢ = (14 |k|)~%|dy|/?,
we see that (3.9) is equivalent to

(3.10) S k)l < o 3 jar)”

kezn kezn

for all finitely supported sequences {d }rczn. If we choose the sequence {dy }
defined by d = 1 when k = (N, 0,...,0) and dy, = 0 when k # (N,0,...,0),
where N is a positive integer, then (3.10) implies (1 + N)™* < C for all
N > 1. This means that necessarily s > 0.

In the case p > ¢, we have nothing to prove any more, that is, we have
condition (a). Assume that p < ¢. In the case p < ¢ < 00, since 1 < ¢/p < o0,
by (3.10) we have

L+ 1D ™ Hlgarmr = Sup’ D A+ [k)"Pdy| < C,
kezn

where the supremum is taken over all finitely supported sequences {dj } kezn
such that ||{di}||se/» = 1. In the same way, we can prove |[{(1+ |k|)~*P}||n
< C when ¢ = oco. Hence, p,q, s must satisfy sp(q/p)’ > n, that is, s >
n(1/p — 1/q). Therefore, we have condition (b). =
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4. Proof of Theorem 1.2

LEMMA 4.1. Let 0 < p <1 and 0 < g < 2. Then there exists a constant
C > 0 such that

, < P _
HGIHMgs(l/p+l/q71) < C  for all hP-atoms a

Proof. Let ¥ € 8 be such that supp® C [~1,1]" and |[¥| > ¢ > 0 on
[—2,2]™ (see the proof of Lemma 4.3 for the existence of such a function),
and set ¢ = ¥ and s = —n(1l/p+1/q—1). In order to prove Lemma 4.1, we
shall prove that there exists a constant C' > 0 such that

1/q
(4.1) (Z (1 + |&])*||4 (D — k)quLp) <C  for all hP-atoms a.
kezm

Before proving (4.1), we shall see that (4.1) implies Lemma 4.1. If a is
an hP-atom of type I (resp. type II) and ¢ > 0 is sufficiently small, then
(0c * a)/(2™]|o||r1) is also an hP-atom of type I (resp. type II), where g €
S satisfies SRn o(x)dx = 1 and supp p is compact, and we have used the
notation p-(z) = e "p(z/e). Thus, (4.1) gives

(12) (3 @+ kDo - Be <o) " <0
kezn

for all sufficiently small e > 0. Let ¢ € S be as in (2.1). Since || > ¢ > 0
on [—2,2]" and g. xa € S C MP? for all € > 0, by Lemma 2.1 we have

1/q
(43)  llo- xallyza = (D2 (1+ k) le(D = k) e- +a)l1,)
kezn

=< (32 A+ IR0~ K(ee < a))t,)
kezm

for all € > 0. Note that o- xa — a in &’ as ¢ — 0, and consequently
(D —k)(gexa)(z) — (D —k)a(z) as € — 0 for all x € R™. Then, by (4.2),
(4.3) and Fatou’s lemma, we see that

SOl e 1/q
lallyza = (D= (1 + k)] lim (D = k) (o- * @)l )

kezZn
1/q
. sq _ 4
<liminf (> (1+ [k)lp(D - k)(o- + a)[{,)
keZn
< Climint( Y (14 ) (D - Ko +ah) <
- e—0 c Ly -

kezn

and this is the desired result.
Let us prove (4.1). By the translation invariance of the quasi-norm ||-||z»,
we may assume that a is an hP-atom with @ = [—r,r|". If a is an hP-atom
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with Q = [—r,7]", then

(4.4) supp (M%) xa C [-1,1]" 4+ [-r,r|" = [-(1 + 1), 1 + 7]",
and Holder’s inequality gives
45)  [(Mp®) = allpe < [[=(1+7), L+ 7] VP7 2| (M) % a2

1 if r <1/2,
|QIY/P=1/2 if r > 1/2.

We first consider the case that a is an hP-atom of type I with Q = [—r, r]"
and note that r < 1/2. We split

Y (L [k~ WPHDI (D — k)al |,
keZm

(X X ) k) () .
kl<|@I=Y/™  [kI>|Q[~1/"
We write N = [n(1/p — 1)]. By (2.3) and Taylor’s formula,

(7) wa(o) = § (e =) = 3 T () aty)ay
R || <N '
1

= | ((N+1) > (_y)aS(l—t)N(8"‘Mku7)(x—ty)dt)a(y)dy.

< o) a2 §

I

l
(6%
ly|<v/nr la|=N+1 0

Since ||0Mp¥||1~ < Co(l + |k|)Iel for all k € Z", by (2.2) we have
I(My@) * al| e < C(L+ [K|)VH N FrrE=n/E,
Hence, from (4.4),
(4.6)  [|(M@) * allp < C(1+ [N FLNFERFI=/R (1 4 ) 14 9] |12
< O(1 + [K))NH Q[N+ /n=(1/p=1)

This implies
(4.7) Yo (U k)T PN (M)« allf,

|kI<|QI=1/

< C|Q[W+1)/n=(1/p=1)}a Z (1 + |k|)IV+H1=n(l/p=D}a—n < ¢

|k|<|Q|~1/m

where we have used the fact that {N + 1 —n(1/p —1)}q > 0. On the other
hand, since a € L? and M?? = L%, by Lemma 2.1, (2.2) and (4.5) we have

(2 100) “”%p)w < (> )« au%)m

kezm kezn
< Clla]lr2 < ClQIM*1P,
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which yields

(4.8) Y (A [k (M) + all,
|k|>|Q|~1/m
1/u a/2
< ( Z (1 + |k2|) n(1/p+1/q— 1)‘1u> ( Z ||(Mk!p) *CLH%p)
|k|>|Q|~1/m |/’f|>\Q|_1/n

< 0|Q|/p+t/a-Na=1/u|(1/2=1/P)a — C|Q|° =

where 1/(2/q) + 1/u = 1 and where we have used the fact that n(1/p+1/q
— 1)qu > n. Combining (4.7) and (4.8), we obtain (4.1) in the case that a
is an hP-atom of type I with @ = [—r,r]™.

We next consider the case where a is an hP-atom of type II with @ =
[—r,7r]", and note that » > 1/2. In the same way as in (4.8), by (2.4) and
(4.5) we have

3" (14 [k AP (M) + a9,

kezn
< ClQIMPTIR N " (1 [k|) T MPH V4| (M) a|
kezn
_ u a/2
< C\Q|(1/7’ 1/2)(1( Z (1+[k)™ n(1/p+1/q—1)q ) ( Z ”(ng)*aH%Q)
kezZn keZm

< ClQIMP 1 a|g, < ClQIMPmDQ2P = 01Q|° =
LEMMA 4.2. Let 0 < p < 1. Then there exists a constant C > 0 such
that

lall aze: oo < C  for all hP-atoms a.

Proof. By the same reason as in the proof of Lemma 4.1, it is enough to
prove that there exists a constant C' > 0 such that

sup(1+ k)P (M) % al|pr < C

for all hP-atoms a, where ¥ € S is as in the proof of Lemma 4.1, and we
may assume that the cube Q) corresponding to the atom a is centered at the
origin.

We first consider the case where a is an hP-atom of type I with @ =
[—r,r]", and note that r < 1/2. By (2.2), (4.4) and Holder’s inequality,

(4.9) [|(Ma®) * allze < Ol (M) # al| 1 < C|| M| 1 all 2 < C1QIP.
We write N = [n(1/p — 1)], and note that N +1 —n(1/p — 1) > 0. Then it
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follows from (4.6) and (4.9) that

(1+ [£)) "=V )[(M2)  al| o
<ofl” [R)N+1=0/=D Q[ (V+D/n=0/r=1) i [k < Q[
T L@ kT IQ P if [k| > Q7"
- { ,Q‘f{(NH)/nf(l/pfl)},Q‘(NH)/nf(l/pfl) if |k| < ‘Q,fl/n
— Lerhettr if [k > Q|71
which implies

sup (14 [k TPV (M) # all o < C.
e n

We next consider the case where a is an hP-atom of type Il with Q) =
[—7,7]", and note that » > 1/2. From (2.4) and (4.5),

I(Ma) # al| o < CQIMP™2||(My) % all 12 < C|QIVP ™ |a]l 12 < C.
Hence,

sup (1 + k)P (MW) % a||» < C sup (1 + k)P < C.
kEZ" keZn

LEMMA 4.3. Lete > 0, and let N be a non-negative integer. Then there
exists a function a € S(R™) such that

suppa C [—¢,¢]",  Jla|lr~ <1,
S z%a(x)dr =0  for all |a| < N,
R

[a(€)|>c>0 forall1/2 <& <2.

Proof. Our proof is based on the argument of [5, Theorem 2.6]. Let
¢ € S be such that suppp C [—1,1]" and $(0) # 0. We may assume
that € > 0 is sufficiently small. For ¢ > 0, we set ¢.(x) = e "p(z/e), and
note that supp p. C [—¢,£]™. Since pz(§) = P(e£) and there exists § > 0
such that |p(&)| > |@(0)]/2 for all |{] < 0, we see that if ¢ < §/2 then
|2=(&)] > |$(0)]/2 > 0 for all |¢] < 2. Hence, there exists ¢ € S such that
suppy C [—¢,¢]" and |7Z(£)| > ¢ > 0 for all |£] < 2. For such a function
v € S and a positive integer M satisfying M > N/2, we set n = (—A)M1p,
where A = Z;‘:l 02/ 8:5?. Then we can check that n € S satisfies suppn C
[—e.,e]™, [7(€)] = ¢ > 0 for all 1/2 < |¢] < 2 and (g, 2%n(x) dz = 0 for all
|a| < N. Therefore, a = n/||n||L satisfies the desired conditions. m

In the proof of the following lemma, we use the fact that there exists
¥ € S(R™) such that

U =1 on[-0/4,6/4]", supp¥ C [-36/8,35/8]",

(4.10) _
W|>c>0 on[-2,2]",
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where 0 < § < 1 is a sufficiently small number. In fact, we can take @ €
S(R™) such that & = 1 on [~1/4,1/4]", supp @ C [—3/8,3/8]" and &(0) # 0.
As in the proof of Lemma 4.3, we can check that ®(x/J) satisfies (4.10) if
0 > 0 is sufficiently small.

LEMMA 4.4. Let 0 < p < 1,0 < ¢ < o0 and s € R. If h?(R") —
MEPYR™), then there exists a constant C' > 0 such that

/
{Z |k|(”(1/P—1)+5)Q< Z ‘C£|p>q p} (Z ’Ck|p>
k£0 Ikl /2<1|<2|k| k40
for all finitely supported sequences {ck}rezm\ (0}

Proof. Let ¥ € S be as in (4.10) with 0 < 6 < 1, and let a € S be as
in Lemma 4.3 with ¢ = /8 and N = [n(1/p — 1)]. For a finitely supported
sequence {c;}ezn\ (0}, We set

(4.11) F@) =" all™Pa(|i|(x - 1)).
1£0
Note that

supp [1]"/Pa(|l|(- — 1)) € L+ [=5/(8]1]), 8/(8]L)]",

HE™Pa(Ul(- = D)o < (8/4)"/7 1+ [=6/(8111), 6/ (81" 717,
| zoll"Pa(l|(z — 1)) dw =0 for all |a| < [n(1/p — 1)),

Bn

and these mean that (6/4)~"/?|I|*Pa(]l|(- — 1)) is an hP-atom of type I for
all [ # 0. Hence,

(4.12) £, <> lalPl ™ Pa(lii(- = D), < C > lal?.
10 I#0

Let us estimate | f|ra. By Lemma 2.1 and the fact that f € S, we
have

iz = (X @+ kD) « 712,)

kezZm
Since 0 < § < 1,

supp a([I|(- = 1)) C L+ [=6/(8[]),0/BlID]" C 1+ [-5/8,5/8]"
for all [ # 0 and
supp¥(z —-) C z +[—35/8,35/8]" C m + [—§/2,6/2]"
for all z € m +[—6/8,9/8]" and m € Z", we see that
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IO4w) « fl, > > § (M)« fo)] da

MEZM m+[—8/8,5/8]"

= e e ) Y el Padiy - D)y da

mMEL m+[—5/8,5/8]" R" 1£0

= Z S ‘ S e 2 kY (1 — y)cm|m\”/pa(]m|(y —m)) dy’pdw.
m#0 m+[—6/8,6/8]" R

If x e m+[—0/8,0/8]" and y € suppa(|/m|(- —m)), then
z—y e (m+[-6/80/8]") = (m+[-6/8,0/8]") = [-0/4,0/4]",
and so ¥(x — y) = 1. Hence,

S| T e — yewlmPa(iml(y - m)) dy| do
m#A0 m+[—6/8,5/8]" R”
=S T [§ e e ratiml(y —m) dy| do
m#0 m+[—6/8,5/8]" R
=3 [emlmlPim|ak/ fm])|” da

m#0 m+[—46/8,6/8]™
= (/4" Y lemlPlm|" """ @(k/|m])I.
m#0
Moreover, using [a(§)| > ¢ > 0 for all 1/2 < |¢| < 2, we obtain
(4.13)  [|(M2) * fl7, = (5/4)" Y lemlPlm|" P [a(k/|m])?
m70

>0/" Y lemPlm[ P ak/|m])?

|k|/2<|m|<2|k|

>C ) ewlPm[*Pr = ORI Y el
[H/2<ml<2lK [M/2<ml<2lK]

for all k # 0. Then

(@19) g = (30 @+ RD20) = £, )

kezn
ZC{Z(1+|k|)Sq<‘k|n—pn Z |Cm|p)q/p}1/q
7 Ik /22 <21

> C{Z !kl(”(l/p—1>+8)q< Z |Cm|p)q/1’}1/q'

k£0 |kl /2<m| <2|k|
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Therefore, by our assumption h? < M9, (4.12) and (4.14),

{Z ’k|(n(1/p—1)+s)q( Z |Cm|p>q/p}1/q

P k] /2<[m|<2[K]

1/p
< Cillfllazs < Callfllnw < G5 leal?)
10

REMARK 4.5. For f defined by (4.11) with p = 1 to belong to L!(R"™)
(instead of h'(R™)), we do not need the condition (g, z*a(z)dz = 0 for
la| < [n(1/p—1)]. Let f be defined by (4.11) with p = 1, and let a € S(R™)
with suppa C [—¢,¢]", ||lal]|z~ < 1 and |a(§)| > ¢ > 0 for all || < 2 (see the
proof of Lemma 4.3 for the existence of such a function). As in the proof of
Lemma 4.4, we can prove that, if L'(R™) < M1 9(R™), then there exists a
constant C' > 0 such that

(1.15) D SICEIED D) B AEre) it
k40

k£0 1>]k]/2

for all finitely supported sequences {c}rezn\j01- In fact, it is enough to
modify (4.12) and (4.13).

Proof of Theorem 1.2. We first prove that h? < M"? (1/p+1/q 1 ifp <gq.
Note that, if 0 < p < 1 and p < ¢, then || f +g||M§,,q < ”f” wpa Hng\/lgq

for all f,g € MP9. Let f = > 2, Nja; € h?, where {q;} is a collection of
hP-atoms and {);} is a sequence of complex numbers with > 7, |\;|P < co.
By Lemmas 4.1 and 4.2, if p < ¢, and if ¢ < 2 or ¢ = 0o, then

[e.9] o0
Hf”zjj\/[p’q < Z ’)‘i|p”a1HMPq < CZ RY

—n(1/p+1/q—1) — n(1/p+1/q—
and (2.5) gives HfHM it /ae) < C|fllne, that is, h? — MP? (1 /p 1 /g—1)
if p <gq, and if ¢ < 2 or ¢ = oo. By interpolation, the embeddings h? —
72 ) 3
an(l/p 1) and AP — MP> n(1/p_1) mply AP — M? q(l/p+1/q jy with 2 <

q < oo. Hence, h? — M n(1/p+1/q—1) if p<gq.
P p,q

In the case p < ¢, since h? — M" n(1/p+1/q—1) and MP? n(1/p+1/g—1)
MPTif s < —n(1/p+1/q — 1), we see that condition (d) gives h? — M.
In the case p > q, since h? — MPP n(2/p—1) and MPP n2/p1) MPTif s <
—n(1l/p+1/q—1) (Lemma 2.2), we also see that condition (c) gives h? —
ML

We next prove that the embedding h? — MZ2*? implies (c¢) or (d). Assume
that h? — MZL?. Then, from Lemma 4.4,
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(n(1/p—1)+s) a/py1/a 1/p
(4.16) {ZU{:’ P q( Z ‘Cl‘p) } < C(kziokkp)

k#0 |kl /2<[1|<2|k]

for all {ck}rezn\foy € P, where we have used the limit argument. If we
choose the sequence {cy}rezn\ (o} defined by ¢, = 1 when [k] < N and
¢, = 0 when |k| > N, where N is a positive integer satisfying N > 2, then
(4.16) implies

ON™P . C( Z 1>1/p _ C(Z ‘Ck|p>1/P

0<|kI<N k#0

> {Z |k|(n(1/p—1)+s)q( 3 |cl,p>Q/p}l/q
k#0 Ik|/2<]U| <2|k|

Z{ Z ‘k|(n(1/p—1)+s)q( Z |Cl|p>q/:n}1/q
0<|k|<N/2 [kl/2<[U<2[K|

:{ Z ‘k|(n(1/p—1)+s)q( Z 1>q/p}1/q
0<|k|<N/2 [kl/2<[U<2[K|

20{ Z |k|(n(2/p—1)+8)q}1/q
0<|k|<N/2

> ONn(Q/pfl)Jrern/q.

Therefore, p,q,n must satisfy n(2/p — 1) + s + n/q < n/p, that is, s <
—n(l/p+1/q—1).

In the case p < ¢, we have nothing to prove any more, that is, we have (d).
Let p > ¢, and assume that s > —n(1/p+1/¢ — 1). We can take € > 0 such
that (1 +¢)q/p < 1. We define {cg }rezn\ [0y Dy

o= [P ORIRD 42
"7 o if k| < N,

where N is a sufficiently large integer. Note that {|k|~"/" (log \k|)_a/’“}‘k‘2N

€ (" if a > 1, and {|k|~™/" (log |k|)_o‘/r}|k|2N ¢ (" if a <1 (see, for example,
[15, Remark 4.3]). Thus,

@1n) (Cer) " = {3 ke og )} < o
k70 L

On the other hand,

(4.18) {Z |k;|(n(1/p—1)+s)q( Z |Cl|p)q/P}1/q -

K0 Ikl /2< 1] <2]k]
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In fact, since n(1/p— 1)+ s> —n/q and (1 +¢)q/p < 1, we see that

{Z |k’(n(1/p—1)+s)q( Z \cl]p>q/p}1/q

w0 Ikl /2 < <2k
/py 1/
Z{ Z ’k‘ n(1l/p—1)+s)q ( Z (|l‘ n/p(log“D (14¢) /p) )qp} q
=2y k25 TI<2lK
ZC{ > \kl("“/”‘”“)q(log|k!)-<1+e)q/p}1/q
|k|>2N
1
- C{ 2 (‘k|_n/q(1og\kl)_{(“f)q/p}/Q)q} "
|k|>2N

However, (4.17) and (4.18) contradict (4.16). Consequently, p, ¢, s must sat-
isfy s < —n(1/p+1/q — 1), that is, we have (c). =

We end this paper by giving the following remark which we already
mentioned in the Introduction.

REMARK 4.6. Let 1 < g < co. As in the proof of Theorem 1.2, we can
prove that, if L(R") < MJ/(R™), then s < —n/q. In fact, if L* «— M9,
then we have (4.15) (Remark 4.5). By choosing ¢, = |k|~™(log|k|)~(1+2)
for |k| large, where ¢ > 0 satisfies eq < 1, we see that (4.15) holds only if
s < —n/q.
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