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A semi-discrete Littlewood—Paley inequality
by

J. M. WiLsoN (Burlington, VT)

Abstract. We apply a decomposition lemma of Uchiyama and results of the author
to obtain good weighted Littlewood—Paley estimates for linear sums of functions satisfying
reasonable decay, smoothness, and cancellation conditions. The heart of our application
is a combinatorial trick treating m-fold dilates of dyadic cubes. We use our estimates to
obtain new weighted inequalities for Bergman-type spaces defined on upper half-spaces in
one and two parameters, extending earlier work of R. L. Wheeden and the author.

1. Introduction. This paper treats the following rather general prob-
lem. Suppose that we have a family {¢ )} of real-valued functions, defined

on R?, indexed over the collection D of dyadic cubes I C R%. Each Gry s
smooth and satisfies

(1.1) by (@) < Y21+ | — ] /0(1) 7,

(1.2) Vo (@) < 60721+ |a — | /0(1) M,

for all x € R%, where M is some fized number strictly bigger than d; we are
using ¢(I) to denote I’s sidelength and x; to mean its center; as usual, we

are using |E| to denote the Lebesgue measure of a set £. Finally, each ¢ r)
also has

(1.3) qu([) = 0.

It is well-known that the properties (1.1)—(1.3) ensure the “almost-ortho-
gonality” of the family {¢)}1; i.e., the property that if

(1.4) flz)= ZAI¢(I)(37)
T

({Ar}1r C R) is any finite sum, then
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(1.5) VP de < C(M,d)> " [A]%
I

In this paper we investigate the extent to which (1.5) remains true, or
must be modified, when the Lebesgue measure on the left in (1.5) is replaced
with a non-constant weight.

The most natural weighted generalization of (1.5) would be this: For
every non-negative v € L (R?), there exist constants v(I, M,v) such that,
for every sum (1.4),

(1.6) VIfPvde < C(M,d) Y |\ [Pv(I, M,v).

In this paper we prove a version of (1.6) for arbitrary v (see Theorem 2.2
below). We deduce as a corollary that, if v belongs to the Muckenhoupt A,
class, then the constants v(I, M, v) have an especially nice form: they can
be taken to be

) NI § =

R4
for any € > 0 (the constant C(v,e) also depends on the A,, “parameters”

of v). Recall that a weight v belongs to A if there exist positive constants
a and b such that, for all cubes I C R? and measurable subsets E C I,

There are several equivalent characterizations of Ao, (see [GR]). The one
we will use in this paper is the following: There exist positive constants C
and 7 such that, for all cubes I,

S v(z)log" (e + v(x)/vr)) do < CSv(a:) dx,
I I
where we are using vy to denote v’s average over I.

The reader should note that (1.7) is within shouting distance of best
possible, since, if the sum in (1.6) had only one term, the exponent would
be 2M.

Our interest in inequalities like (1.6) is three-fold.

Singular integrals and wavelet expansions. Let {wr)}r be a family of
smooth functions indexed on D. We suppose that each w ) is supported
in 71, the 7-fold dilate of I (where 7 > 1 is fixed), and satisfies

lwinllee < HITV2, IVw@lloo < 6)HIITY2, Nwiry dz = 0.

(Note that we do not require the w(r)’s to be translates/dilates of each
other.) Let h = > ; Arw(r) be a finite sum, and consider what happens when
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we convolve h with a Calderéon—-Zygmund kernel K. The product will not,
in general, have the form ) ; Ajw(yy, because the functions K *w(;y will not
have compact support. However, it will be, up to a multiplicative constant, a
sum like (1.4). Now, in many cases it is possible to write K'xh = Y ; Arw(y),
where the A;’s depend in some messy (but linear) way on the A;’s. We
can then estimate the size of the X[’S, and use these estimates to bound
K x h. These estimates, unfortunately, tend to be rather unsatisfactory (as
Richard Wheeden and the author discovered in their work on Bergman
spaces [WW1], where they used an approach like this). The reason is that
the estimates one gets for the A 1’s are of the form

Al <> ensll,
J

for certain positive constants ¢y ; (roughly speaking, c; j ~ |§w (K *
w(.J))|; the relation is an equality when the w(;)’s are an orthonormal ba-
sis). If we then wish to control K * h in terms of the size of the original
coefficients Ay, we must resort to something like Schur’s Lemma. This is
extremely inefficient. The positivity of the ¢ ;’s indicates that we are not
making optimal use of the cancellation in the K * w’s. Indeed, so much
gets thrown away that the necessary endpoint estimates for the Schur’s
Lemma interpolation (see (3.8)—(3.10) and the accompanying estimates from
[WW1]) require an unacceptable amount of decay in the convolution kernel
K. But this approach is unsatisfactory for another reason as well. In many
applications, the original function h is defined by the coefficients Aj; this
was the situation in [WW1]. In such a case, understanding K’s behavior
really does mean getting a good bound on K x h directly in terms of the
Ar’s. The main theorems in Section 2 provide such a bound.

Bergman-type inequalities. In [WW1], Richard Wheeden and the author
studied the weighted-norm inequality

a9 (] IV ylane) < (§irod)”

d+1 d
RY R

where u = P, f(z), the Poisson integral of f, o € L{ (R?) is a non-negative

weight, 1 is a Borel measure, and 1 < p < ¢ < oo. The authors looked for
necessary and sufficient conditions on v and p for the inequality (1.8) to
hold for all f in a reasonable test class (1).

The authors approached (1.8) by first considering a dual form. Each
derivative of u arises from convolution with a kernel y~!4),, that has smooth-
ness, good (but not infinite!) decay, and cancellation. (Note: we are using

(1) E.g., in L™ and with compact support, or Ui<p<oo LP(RY).
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Yy (z) = y~%(x/y) to denote the usual y-dilation of .) For each such 1,
define the dual operator Ty,

Tyg(x)= | g(t,y)y"vy(t — z) du(t,y),
R+

acting on bounded, compactly supported functions g : Riﬂ — R. Let p/

and ¢’ be the dual exponents to p and ¢, and set v = ol-r Inequality (1.8)
will hold if

(1.9) (§ Iszng'vd:c)l/p/ <c( § lgt.yl” du(t,y))

d d+1
R RY

1/q'

holds for all g in our test class, and for each .

For the moment, fix p = ¢ = 2. We are about to make (1.9) look like (1.6).
For each I € D, set T(I) = I x (¢(I)/2,£(I)] (the usual “top half” of the
Carleson box “over” I). Write

Tyg(x)=>_ | g(t,n)y vyt — z) du(t,y);

I T(I)

note that the sum is finite, because of ¢g’s compact support. We may now
rewrite the sum in the form of (1.4),

Tyg(z) = Z A19(1),
I

where each A\ satisfies

|Ar] < C’( S lg(t, y)|? du(t,y))1/2M(T(I))1/2€(I)_1_d/2-

T(I)
Suppose we have (1.6). Then (1.9) will hold (for p = ¢ = 2) if
(1.10) W(T (D) 2L, M, ) < (1) +9/?

for all dyadic cubes I. The reader should notice that the better (i.e., larger)
the exponent in (1.6), the stronger will be the corresponding sufficient con-
dition (1.10). In [WW1], Richard Wheeden and the author attacked (1.9)
via a Schur’s Lemma argument, and the exponent they obtained, for general
kernels v, was rather small: M, when M > d + 2 and p = ¢ = 2. Unfortu-
nately, this did not quite cover the case of the Poisson integral (see below).
Theorem 2.2 in the present paper gives an exponent of 2M — (d + €) when
p = q = 2; in addition, it is valid for any M > d, and it does handle the
Poisson integral. For the more general LP — LY problem, the results of this
paper yield an exponent of p’ M — (p'/2)(d + €), which is almost always an
improvement over the general result (Theorem 3, p. 936) from [WW1]. Why
we do not always get an improvement remains a mystery.
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The problem of limited decay. There are a number of theorems in anal-
ysis which state, “You can do so-and-so with this kernel, if it has ‘enough’
decay.” One such result is the following, from [FKP] (Theorem 3.1):

THEOREM FKP. Suppose that w is a doubling weight on R% with dou-
bling constant o. There exists an Ny = Ny(o) such that w € A if and
only if, for some constant C' and some ¢ € An,(R?) [defined below)], with
(¢ =1, and ¢ = V¢, we have

t
. by s (@) ds
I T e TRt

x: |lx—zo|<t
for all zg € R* and t > 0.

The family Ay, (R?) is a collection of “bump” functions, which Fefferman
and Stein used to define their so-called “grand” maximal function in [F'S].
To wit:

Any®Y) = {6 € S®RY) : | [D6(@)2 (1+[a)™ do <1, |a] < No}.
Rd

The number Ny is liable to be pretty big. Indeed, the author at first con-
sidered using some variant of Theorem FKP in his attack on (1.6), but he
gave that up when he saw no way to eliminate the requirement of excessive
decay. Wheeden and the author encountered a like difficulty in their work
in [WW1]. They had a general theorem which treated kernels that decayed
at infinity to order |z|~*, for M > d + 2. Unfortunately, the convolution
kernel that generates the y-derivative of w = P, * f only decays to order
|z|~¢~1!. They had to concoct a special argument, using harmonicity and
the semigroup property, to handle this term in Vu. (Even with the argu-
ment, though, their result was not entirely satisfactory.)

The present paper attempts to fill this unmet (and, the author believes,
only apparently arcane) need for good quadratic estimates on sums like (1.4),
in which the functions ¢y decay at specific, limited rates.

The paper is laid out as follows. In Section 2 we state and prove our
main theorems, and we derive two corollaries for weighted Bergman-space
inequalities of the type treated in [WW1]. In Section 3 we state and prove
a two-parameter analogue of the L? — L? case of our Theorem 2.2, and we
give a corollary related to two-parameter Bergman-type inequalities.

2. The main theorems. In this section, D is the family of dyadic cubes
I C R?. The sidelength of any cube I is denoted by #(I) and its center is 2.
If I is any cube and 7 > 1, then 7/ is the cube concentric with I and with
sidelength 7¢(1).
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Our main theorem (Theorem 2.2) deals with families {¢ ()} of smooth
functions, defined on R?, indexed over D, and satisfying (1.1)—(1.3), for some
M > d which only depends on the family.

The statement of our main theorem requires one more technical defini-
tion.

DEFINITION 2.1. Let > 0. If I C R is a cube and v € L{ _(R?) is
non-negative, we set

(I, n) =\ v(x)log" (e + v(x) /vr) da
I
where vy is v’s average over I.

We shall follow the usual convention that if v is a weight and E C R? is
measurable, then v(FE) denotes S 5 U; i.e., the “v-measure” of F.

THEOREM 2.2. Let {¢()}1 be a family satisfying (1.1)-(1.3) for some
M >d. Let n > 1 and let 2M —d > e > 0. There is a C = C(M,d,n,e)
such that for all f as in (1.4) and all non-negative v € LL (R?),

(2.1) S ]f]2vdm<CZ’ 23 2MjH(d+e)ig (391, ).

Rd ’I|
In particular, if v € A, then
(2.2) x |f)?vdx
Rd
A 2
< C/(Mv d,E,U) S |:Z | |;’| (1 + ‘JZ - xf‘/g(j))_@M_(d—i_E)) vdx.
R4 I

The proof of Theorem 2.2 hinges on a decomposition due to Uchiyama
(Lemma 3.5 from [U]) and two lemmas from [W1] and [W2]. Our Lemma 2.7
(see below) is essentially (2.8) from [W2]. The reader should notice that the
only thing used in the proof of (2.8) in [W2] is the “goodness” (see the
definition below) of the family of dyadic cubes.

LEMMA 2.3. Each ¢y can be decomposed as
oy = C(M,d) Z 37 Mo 4
§=0

where each @1 ; is smooth and satisfies:

< |17/,

supp d(ry; C 31, o) jleo
IVl < (3) 72, o, de =0,
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Uchiyama proves his Lemma 3.5 for M = d + 1, but it is easy to see
that the proof goes through for any M > d. He also states it for 27’s instead
of 37’s; what is important here is the lacunarity. We want 37’s because of
Lemma 2.5 below.

The reader should notice that our ¢)’s differ from Uchiyama’s by factors
of |I]*/2.

DEFINITION 2.4. A family G of cubes is said to be good if: (a) for all @
and Q' in G, either Q C Q’, Q' C Q, or QN Q' = 0; (b) if Q and Q' belong
t0G,QCQ,and Q£ Q, then £(Q) < 5¢(Q').

LEMMA 2.5. Let m be an odd positive integer and let F be the family of
all m-fold dilates of dyadic cubes. The family F can be decomposed as

md
f - U gi)
i=1
where the G;’s are pairwise disjoint and each G; is good.

Proof. This is essentially Lemma 2.1 from [W1], which deals with m = 3
(see also [G], p. 416). The general case is similar.

It is enough to prove the lemma when d = 1. Note that, since m is odd,
2 is invertible in the ring Z/mZ. Let [r] stand for the equivalence class of r
modulo m. Abusing notation somewhat, we let [27*] (for k positive) denote
[((m+1)/2)*] (since (m +1)/2 is 2’s multiplicative inverse). Let F denote
those elements of F with sidelength m2~F. Bach F, can be decomposed
into m disjoint subfamilies G (s) (0 < s < m), where each I € Gi(s) has the

form
J Jjtm
I= [2_’“’ 2—’“>

and j = s (modm). A little computation shows that the right and left halves
of such an I belong to Gi41([25]), and that I is either the right or left half
(depending on j’s parity) of an interval in Gp_1([(m + 1)s/2]). Therefore,
the desired families G; (0 < i < m) are

Gi= U Gul[20)- =

DEFINITION 2.6. Let I C R? be a cube. A smooth function a(r is said
to be adapted to I if

suppa(ry C 1, Sa(l) =0,
laclloo < 172, Ve lloe < €(1)~HI|H2.
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The lemma from [W2] is

LEMMA 2.7. Let G be a good family of cubes in R:. Let f =5, Arar)
(A1 € R) be a finite sum such that each I € G and each a(ry is adapted to I.
If n>1 then

§172 v dr < (o d Z’m L)

for all non-negative v € L (RY).
We may now proceed to:

Proof of Theorem 2.2. For j =0,1,2,..., let F; be the collection of all

37-fold dilates of dyadic cubes in R?. For each j, write F; = U?fl G(i,j),
where the G(i,7)’s are disjoint and good (as guaranteed by Lemma 2.5).
Applying Lemma 2.3 to each ¢y, we write

F=Y Moay=CMd)> A>3 Mgy,
I I j=0

oo 37d oo 37d

=033 S 3 Minggy, =CY Y Y 3TMIZIZN G

§=0i=1 37 1€G(i,5) 3=0i=1391€G(4,5)

where gE(I)’j = 3*jd/2¢(1)7j. Notice that each gE(I)’j is adapted to 3/I. By
Cauchy-Schwarz (twice),

37d

S]f\dex<CZ3JE+JdZ |3 sis2ndg,| ve.

i=1Rd 37T€G(i,])

However, by Lemma 2.7,

. ~ 2
H Z 37Mj3jd/2)\1¢(])7j‘ vdr

391€G(i,5)
<C(p,d) > 32Mig ||3f|1| v(31,m)
311€G(1,5)
. ,
=C(n,d) > 32M]|,I|| v(31,m).
371€G(4,5)

Plugging this back into the preceding inequality finishes the proof of (2.1).

To prove (2.2), we note that, when v € A, v(I,n) < C(n,v SI v for all
cubes I. Thus, by (2.1),
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A
| !f\%dazgcz‘ i 23 PMIH )Ty (371, 1)
R4 1

1|
|>‘1| —2M j+(d+e
_C’Z 7] 23 gt(dte) S vdx
391
\)\I\ _ —(2M —(d+e))
g Z i (1+ |z —x7|/0(I)) vdz. m

COROLLARY 2.8. Let M, d, and ¢ be as in Theorem 2.2. Let 1 be a
smooth function satisfying

(@) < L+ 2) ™M, V) < 1+ )M Je=o.

Rd
Consider the Bergman-type inequality

1 q 1/q » 1/p
@3) (] s s@lduey) < (§Isreds)
Rd+l Rd
where v € LIOC(Rd) s mon-negative, p is a Borel measure, and f belongs to
a reasonable test class. Let 1 < p <2 < q < 00, and set 0 = vl_p/, where p’

is p’s dual exponent. Let T > p’ /2. There is a constant ¢ = ¢(M,d,e,p,q,T)
such that (2.3) will hold for all f if there is a weight w such that

o(l,7) < Sw
and I
w(x 2 1
0" (§ e apemE ) S

Rd

for all cubes I.
Proof. Following the pattern of [WW1], we consider the dual form of
(2.3): , 1/p’ , 1/q'
(§rmgl ods) ™ < (| 1oty dutty)) "
R4 Ri+1

where g is bounded and has compact support in Rﬁlfl, and

Tg(x)= | g(t,v)y vyt —x)du(t,y).

Rd+1
¢
Write
(24)  Tgx)=>Y_ | gt.9)y "¢yt — 2)dp(t,y) ZAmbu)
I T(I)

where T'(I) is the usual top half of a Carleson box, each ¢y is as in (2.1),
and the \;’s satisfy
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<o § lal d) " ey,
T(I)
Note that, because of g’s compact support, the sum (2.4) is finite.
Let o be the dual exponent to p’/2, and let h be non-negative and satisfy
(|20 =1.
We wish to estimate {g, |Tg|? ho dx. Let n be a number bigger than 1,
to be chosen presently. By (2.1),

Ar?

(2.5) \ 1Tg* ho da < CZ e i

Rd

Z 372MIH(d+e/2)5 (o) (39T, ).

(The “/2” is not a typo: see below.) By virtue of a trick from [W3] (see
inequality (13) there),

(ho)(371,m) < Co(3/ Iy /2)2/7'.
Choose n = 7/(p'/2) > 1. Then
o(31,7) < S w = w(3’1).

391
Therefore

S |Tg|? ho dx < CZ
R4 I

Ar]?
1]

Z 3~ 2MJ+(d+6/2)Jw(3J[)2/p

Now,
oo

Z 3*2Mj+(d+6/2)jw(3j[)2/p’
§=0
2/p’
<C (Z 3(=2Mj+(d+e)j)p’/2 (3]]))
7=0

< C< S w(z) da:) "
=\ O o = e(n)p M=) :

Thus, the right-hand side of (2.5) is less than or equal to

26) oy I w(z) w)
20 257\ ) TrEarayre e -

SCZ( V19l du 2/Q/N(T(I))2/q€(f)_(2d+2)

T(I)

2/p’
X < S wie) M—(p'/2)(d+e) dx) :
gu (Lt |z — | /(D))= c
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Our hypothesis on p and w is that

(r@)t( \ w(x) . 1/p/ <ot
' Rd (1+ |z — x| /L(I))PM—('/2)(d+e) <
(

)
Therefore, the right-hand side of (2.6) is less than or equal to

X (] lal an)"" < lateal? duten)”"

I T) Riﬂ
where the inequality follows because 2/q’ > 1. This proves the corollary. m

Theorem 2.2 is an L? — L? result. By carefully examining certain of the
proofs from [W1], we can see how the (essential) conclusion of Theorem 2.2
may be reshaped into an LP — LP result.

DEFINITION 2.9. For 0 < p < oo, define

2/p—1 if0<p<l,
cp)=<1 if1l<p<2,
2/p ifp>2.

REMARK. Notice that ¢(p) is a continuous function of p and that it is
always > 1.

THEOREM 2.10. Let 0 < p < oo and let n > p/2. Suppose that M > d
and 2M —dc(p) > € > 0. There is a constant C = C(M,e,n,p,d) such if v
and w are non-negative functions in LIIOC(Rd) satisfying

v(l,n) < w(l)
for all cubes I, then
e <c ] [0
R AL
for all finite sums (1.4).

p/2
( ) ) 2M+(dc(p)+e) wdz

Proof. The proof closely follows the lines of the proof of Theorem 2.2,
the chief difference being that here we use a somewhat generalized form of
Lemma 2.7; to wit:

LEMMA 2.11. Let G be a good family of cubes in R%. Let f =", Ara(r)
(A1 € R) be a finite sum such that each I € G and each a(ry is adapted to I.
Suppose that 0 < p < oo, n > p/2, and v and w are weights in L _(R?)
satisfying

(2.7) v(I,n) <w(I)
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for all cubes I. There is a constant C = C(n,p,d) such that

/2
S |f|pvdx§CS <Z|)|\;|| ) wdx.
Rd

Proof. For 0 < p < 2, this is done explicitly in [W1] (Theorem 2.5). For
p > 2, it is done implicitly in the proof of Theorem 2.7 there. Using the
notation from that paper, set R(j) = 27, where 7 > 0 is small and will be
chosen presently. Then our desired norm inequality will hold if

§, v(x)log(e + v(x)/vr) du\ TP/
v([l)

for all cubes I. By Holder’s inequality, this will happen if (2.7) holds and

T+ p/2 < n. This proves the lemma.

To continue with proof of the theorem, we distinguish three cases:
() 0<p<1;(b)1<p<2(c)p>2

v(I) <w(I)

CASE (a): 0 < p < 1. Proceeding as in the proof of Theorem 2.2, we
write

f= Z A1y = C(M,d) Z A1 Z 37 Mg,
T T =0

oo 3%d oo 39d
=022 2 3MAew,; =03 5 D 3G,
J=0i=1391€G(4,5) §=0i=13i1€G(4,5)

where everything has the same meaning that it had in the earlier proof.
Thus

39d
/17 < Ce 2336 SN 3G,
1=131€G(i,5)
39d _ P
<C. 23362‘ 3MIZI2N G 5l

i=1 391€G(i,j)

where the second inequality follows because p < 1.
Temporarily fix ¢ and j. Because of Lemma 2.11 and our hypotheses on
v and w,

.. ~ p
Y s, v
R4 I:391€G(i,5)

M o\
SC(p,M,d,n)S Z W?) X391 wdz.
Rd N39TEG(4,5)
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Now, with j still fixed, we sum on i from 1 to 37¢. Recall that, if 0 < r < 1
and a; > 0, then

N N i,
Zaz < (Zak) Nt
k=1 k=1

In our case, 7 = p/2 and N = 3’¢. Thus

37d

S Z‘ Z 37Mj3jd/2)\15(1)’j‘pvda:

Re i=1 [:351€G(4,j)

) )\ p/2
< C(p,M,d,n) | 3”“”/2)(2’,},’ 3" QMJX3jI> wdz
Rd

A p/2
= C(p, M, d,n) S <Z | |;’| 3—2Mj+(2/p— l)JdX jI> wde

A\ B p/2
= C(p7 M7 d7 77) S (Z | |;’| 3 2M]+c(p)]dX3j[> wdzx.
R4

Now sum on j for j = 0 to co. At the expense of having a slightly larger ¢,
we end up with

)\ P/2
S |fIPvda < Cl(e,p, M, d,n) S <Z ’ I’ 233( 2M+C(P)d+£) > wdr.

o W

It is easy to see that

Z3j(_2M+E(p)d+E)X3jI($) <C(l+|z— x[|/£(]))—2M+E(p)d+E‘
=0

This finishes the proof in case (a).
CAsE (b): 1 < p < 2. We begin somewhat as we did with case (a),
writing

37d

IfIP < C. 23]5‘2 Z 3—Mj3jd/2)\15(1)7j"’

i=13i1€G(i,5)
39d

< C. Z3JE3JdP/P Z‘ Z 3—Mj3jd/2)\15(1)7j p7

=1 39I€G(i,j)

where the second inequality now follows from Hélder’s inequality. We rewrite
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the right-hand side of this inequality as

37d

023182‘ S iy g )

=1 391€G(i,5)
Once again, we fix ¢ and j, and we apply Lemma 2.11. We obtain

R 3i1€G(4,5)

A p/2
S O(M7 d7p7 T]) S ( Z | |I|| 3 2M]+2]d/p X j[) wdﬂ?
Re “39T€G(4,5)

vdx

Now, still keeping j fixed, we sum on i from 1 to 37d. Since p/2 < 1, we get

37d

i Z‘ 3 37Mj3]’d/2)\1_$(1)7j‘pvdx

Rd i=1 I:39T€G(i,j)

p/2
<C(p,M,d,n) S de(1p/2)<z |)|\;‘| 3” 2M]+2]d/pX a‘]) wdzx
Rd

)\ P/2
_ C(p, M,d 77 S (Z | ’;‘| 3~ 2Mj+(2/p—1)jd+2j5d/p’ Y3 J'I> wder.

We note that, for 1 <p <2, 2/p—1+2/p' =1 ==¢(p) (!). Therefore, we
may rewrite the last quantity as

A ~ p/2
C(p, M, d. ) g(z'|;|' R

The rest of the proof proceeds exactly as in case (a).

CASE (c): p > 2. We begin as with case (b):

37d

fI7 < Ce ZBJE]Z S 3 Mgy gl

=1 371€G(i,5)
39d

<C. Zg]gg]dp/p Z‘ Z 3~ Mjgjd/Q)\Id)(I) ‘

i=1 391€G(i.g)

37d

ON VY| T g, [

i=1 3I1€G(i,j)
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Fixing ¢ and j, and applying Lemma 2.11, we get

L ;. ~ P
| X0 s g | vda
Rd 33 1€G (i)

2

<C(M,d 3 D P J

<C(M, 7p>77)8 7] 3 X3iT wdx.
Rd “39I1€G(4,5)

We now sum on 4 from 1 to 37¢. We use the fact that, if » > 1 and az > 0,

then .
Z ay < (Z ak) .
For us, r = p/2 > 1. Thus, with j still fixed,

37d

SZ’ Y 3G,

Rd i=1 I:391€G(i,5)

2

< C(p.M.d Arf? —2Mj+25d/p" ., v/ d

>~ (pv ) 777)8 Z |I| 3 X3i1 w ax
R4 1

p
vdx

2

— C(p.M.d [As]” —2Mj+25d/p’ ., v/ d

- (p7 ’ 777)8 Z |I| 3 X3i1 wax
R4 1

2

— C(p.M.d ’)‘1’2 g—2Mj+e(p)id,, . v/ d

- <p7 ) 777)8 Z ’I‘ X331 w ax.
Rd I

The proof now concludes as with the two preceding cases. Theorem 2.10 is
proved. m

REMARKS. The conclusion of Theorem 2.10 should be distinguished
from the chief result from [W4]. That paper treats linear sums

f= Z A1d(1)
T
in which the functions ¢y, indexed over the family D, are assumed to satisfy
(2.8a) by (@) + LDV ey ()] < 11721+ o —ar| /0(1) ™M

for some M > d/2 (although, in practice, one usually requires M > d),
along with an a priori almost-orthogonality condition; namely, that for all
finite linear sums ) ; vz, one has

(2.8b) [ o de< 3l
I I

The result obtained in that paper is:
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THEOREM 2.12. Let F = {omy}1 be a family of functions satisfying
(2.8a) and (2.8b). Let o € L _(RY) belong to the Muckenhoupt A, class.
Suppose that 2M —d > ¢ > 0, and 0 < p < oo. There is a constant
C = C(o,¢,p) such that, for all finite sums f =3 ; A1¢(r),

VIfPode<C | (9" () oda,
Rd Rd
where

1/2
(Z |)|‘;|| +|x—x1|/g(1))—2M+(d+5)> '

Note that the “decay exponent” in the definition of ¢* is —2M + d + ¢,
valid for all p; whereas the corresponding quantity in Theorem 2.10 is —2M +
¢(p)d+e. We observed earlier that ¢(p) > 1 always, with equality only when
1 < p < 2. Theorem 2.12 also requires weaker hypotheses on the family of
¢(r)’s than does Theorem 2.10. Thus, for A, weights, Theorem 2.12 gives a
stronger result. The author finds it surprising that Theorem 2.10, in which
the analysis is relatively soft, gives as good an exponent as Theorem 2.12
does even for the range 1 < p < 2.

With the help of Theorem 2.10, we can now prove sufficient conditions
for Bergman-space inequalities in the full range of p’s and ¢’s treated in
[WW1].

COROLLARY 2.13. Let M, d and ¢ be as in Theorem 2.2. Let v be a
smooth function satisfying

@) < 1+ )™, Vo) <A+ [zh)~ M fy=o.
Rd
Consider the Bergman-type inequality

1/q 1/p
29) (| wie s s@ldutey) < (§Ireds)
Ri—u Rd

where v € L _(RY) is non-negative, j1 is a Borel measure, and f belongs to
a reasonable test class. Let 2 < p < q < oo, and set 0 = vl_p/, where p' is

p’s dual exponent. In order that (2.9) should hold for all f, it is sufficient
that there exist a number T > p'/2 and a weight w such that

o(l,7) < Sw
and I
" w(x) v 1
HT ) <R§d (1+ |z — x| /L(1))P M= /2)(d+e) dﬂ”) < el(D)*

for all cubes I.
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Proof. As with the earlier corollary, our proof reduces to showing

(§1rel oan)™ < (] lottt” dutt.w) "
B

RI+L
+
for g bounded and with compact support in Rﬁlfl, where
Tg(x)= | g(t.y)y vyt — ) du(t,y).

R
Proceeding as we did there, we also write
Tg(x)=>_ | glt,y)y ¢yt — 2)dult,y) kaﬁ(z)
I T(I)
where each ¢(j) is as in (2.1), and the A;’s satisfy
’ l/q/
Al < e § 1ol dp) ()t
T(I)

By virtue of Theorem 2.10 and our hypothesis on ¢ and w (recall that
1<p <2),

: RYERS IV
|TglP odx <C ( 3m2Mitgatiey wdz.
S de ZI: 1| Z 31

Rd

Since p’/2 < 1, this last quantity is less than or equal to

Ar2]7 jdte)p’
¢ S Z [ } BUTBMIHIETIN Py w da

Rd 1,5 ’I‘
’)\1’2 p'/2 N
: Z[ 1] } 823(72M]+]d+j8)p 2xgirwdzr
I Rd j
2
-c [MT/ w(z) |
A S (Lt Jz — ] LD M=)

The proof now concludes as with the previous corollary. m

3. Two parameters. Somewhat surprisingly, the method of Theo-
rem 2.2 carries over directly to handle analogous two-parameter sums, at
least for L? — L?. This generalization is possible because of a result from
[W2], which gives a good Littlewood—Paley estimate for linear sums of (two-
parameter) adapted functions. These are analogous to the adapted functions
discussed above, but they satisfy some extra smoothness and cancellation
conditions.
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Before stating the result from [W2], and giving the requisite definitions,
we shall first describe in detail the two-parameter problem we want to apply
it to.

We are working on R% x R% | which we think of as consisting of ordered
pairs (z,y), with 2 € R4 and y € R%. We let D; denote the family of
dyadic cubes in R%. We shall not be concerned with functions which are,
like the ¢(1)’s above, centered around the dyadic cubes in R4 x R% | but,
rather, with functions that are, in a certain sense, centered on rectangles
R =1xJ, where I € D; and J € D5. We suppose that, for every such R,
we have a function ¢(g)(z,y). This function satisfies, for all  and y,

|Gy (2, 9)| < 1720+ [ — ag| /0(1)) M| |72
X (14 ly —ysl/e(7) =,
Vo) (x,y)| < )21+ |2 — 2y (1)~ Mg 72
X (1+ |y =yl /e(1) Mz,
IVydrmy (@, 9)| < 172 (1 + |2 — 2| /0(1) M
X AT+ Jy =yl /0T M
VoV (w, )| < €IV + o — | (1) M
X A THI[TR + [y — gl ()M,
for some exponents M; > d; which are fired. Moreover, each ¢(g) satisfies
Spar 1) (2, y) do = 0 for all y and (g., dir)(z,y) dy = 0 for all .
Note that the bounds satisfied by each ¢(g)(z,y) = ¢rxs(x,y) are also
satisfied by tensor products of the form ¢ () - ¢()(y). However, the func-
tions ¢gj(x,y) need not be tensor products; and, in our application to

Bergman spaces below, they will not be.
We consider finite linear sums of the form

R

In order to state our main result we shall need a slightly modified form
of one of our definitions from Section 2.

DEFINITION 3.1. Let > 0. If R =1 x J C R% x R% is a rectangle, as
described above, and v € Li (R% x R%) is non-negative, we set

5(R,n) = | v(z,y)log" (e + v(x,y) /vr) dz dy,
R

where vg is v’s average over R.

Our main result in this section is the following:
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THEOREM 3.2. Let {¢[r)}r be as described above. Let € > 0 satisfy
2M; —d; > ¢ > 0 for ¢ = 1,2. Let n > 2. There is a constant C =
C(My, My, e,n,dy,ds) so that, for every finite sum (3.1),

VP vdedy

R%1 xR92

9 o o
< OZ ‘)‘\g; Z Z 3*M1j1*M2j2+j1d1+j2d2+(j1+j2)65(3j1I % 3j2J’ 77)
R

j1=0j2=0
In particular, if v(z,y) is uniformly As in x and y, then

S |f1?vdx dy

R%1 xR42

Ar|?
< ! | R _ —2M;+di1+e
<o | (;mw 7 (1 o = a11/6(0)

R41 x R92
X (1+y— yJ!/é(J))2M2+d2+5> vdz dy,

for a constant C’ which depends only on My, Ms, dyi, do, €, and the Ay
parameters of v.

The result we shall use from [W2]—to which we alluded at the beginning
of this section—depends on a two-parameter version of the adapted functions
we used in Section 2.

DEFINITION 3.3. Let R = Q1 X @2, where the Q; are cubes in R% (not
necessarily dyadic). We say that ajp)(z,y) is adapted to R if ajp) is smooth
and satisfies:

(i) supp ajg) C R;

(ii) §ap) (@, y) dz =0 for all y € Q;

(iil) §apr)(z,y) dy = 0 for all z € Qq;

(iv) IV Vyarlloo < Q1) 1(Q2) | R|~1/2.

Here is the result we need from [W2] (Theorem 2.2 in that paper; also
see the remark on page 434, after the end of the proof).

THEOREM 3.4. For i = 1,2, let G; be a good family of cubes in R%
Set G ={R=0Q1 XxQz:Q; € G;}. Let n > 2. There is a constant C =
C(dy,da,n) such that, if

flz,y) = Z ARa(g)(7,y)
ReG

is any finite linear sum, where each ag) is adapted to R, and v is any
non-negative weight defined on R4 x R% | then
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V120 dwdy < CZ | “f;" (R, 7).

The constant C' does not depend on the family G.

Proof of Theorem 3.2. We note that the “in particular” (see the state-
ment of the theorem) follows immediately from the first conclusion, since if
v is uniformly A, in both variables, then ¥(R,7) < C(v,n) §, v for all rect-
angles R. The result then follows from interchanging the order of summation
and integration, much as in the proof of Theorem 2.2.

We begin by applying Lemma 2.3 to each ¢g|(z,y) separately in the x
and y variables. If we keep y fixed, we may write

oo
bir)(z,y) = C(My,d1) Z 3= Mgy (2, ),
j1=1
where each ¢(g) ;, (7,7) has z-support contained in 31T (recall that R =
I x J), has zero integral along each x and y slice, and satisfies:

(G150 (@, )| < 1722+ Ty = ol /0T

Vatimg (e, w)| < @) IV fy = gl /) M
Vbt (2 9)| < LI THT T fy = gl )T
VoV ydrry ()] < (370(1) 711|712

X O THITVR L+ y = yal/e()) M
for all x and y. These estimates hold because, as is evident from Uchiyama’s
proof of Lemma 2.3, the functions ¢ ; depend smoothly on the function
¢(r); for the sake of completeness, we have included a justification of this
statement in an appendix. Now we may apply Lemma 2.3 to each ¢(g)
(in y, keeping z fixed this time), and obtain, after putting everything back
together,

S (2, y) = C(My,dy, My, dp) > Y 37 Mg~ Mgy oo (2,y),
120 j»=0

where each ¢g) ;, j, (z,y) has support contained in 3711 x 372 J, has integral
zero along its x and y slices, and satisfies:

|BR1.51.50 (7. y)| < |RI7H2,
V2 ®r g2 (2, 9)] < (374(1) Y RT3,
V(1.0 ()] < (3720(1)) MRV,
VoV y i1, .e (@, y)] < (3700(1)) 1 (3724(T) MR 7/2,

for all z and y.
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Thus we may rewrite (3.1):

f(z,y) = C(My, My, dy,dy) Z 3~ Mg —Mzj2 Z)\Rﬁb[R],Jmfz(gﬁ Y)-
J1,J2

We now apply Lemma 2.5 in z and y separately. The collection of cubes
of the form 3711 are divided into 3/1% pairwise disjoint, good families g;l
(1 <k < 3j1d1), and the cubes of the form 372.J are divided into 37292
pairwise disjoint, good families g,% (1 < ky < 37292) If R is a rectangle of
the form R = 3711 x 372.J, where 3/'] € Qk and 372J € Qk , we will assign
R to the family le k- Note that the families le k, are pairwise disjoint
and there are 371415242 of them,

We rewrite our sum as

C(My, My, dy,ds2)

x> D > 3BT Ry 5y g (2, 9)-

J1:d2 ky=1,...,391% 351 [x 392 J€Gy, &,
ko=1,...,3924d2

Following the notational convention we used in the proof of Theorem 2.2,
we rewrite this last quantity as

C(Mla M25 d17 d2) X
> X Y. 3T Mgt G (),

J1:J2 ky=1,...,3919 R=3111x392 JEGy, 1,
ko=1,...,392d2

where now each QS[R] 1 .j» is adapted (in the “rectangle” sense) to 31T x3%2].
Now we shall use Theorem 3.4, quoted earlier. Each of the sums

SR
R=3911x372 J€g~kl,k2
has the form
> Vr-bme (@),
R*=I*xJ*
I*egGy,J*egs

where the families Gi and G5 are good, each $[R*] is adapted to R* =
3711 x 372 J, and we have set yp- = 3~ M1i1—M2j23(1d1+52d2)/2 )\ |, Therefore,
for every n > 2, there is a constant C' = C(n,d;, ds) such that

~ 2
| ‘ > ’YR*¢[R*}(937?J)‘ vdx dy
Ré1 xR42 R*=I"xJ*
I*egy, J*egs

|’7R*2 ~
<C ————(I[* x J*
< > I*|_J*’v( x J*,n),
R*=I*xJ*
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valid for any non-negative weight v. Applied to our original sum, this yields

S ‘ Z 3—M1]1szjz3(J1d1+J2d2)/2)\R¢[R}’jl7j2(:17’y) vdzx dy
R91 xR92 R=IxJ
3011%392 JE€Gy ks
] MRl )
< C(n, dy, dy) ) 3 ﬁ P
R=IxJ

3911%372 JE€G, 1y

for each ordered pair (j1,72), and when 1 < k1 < 37141 and 1 < ky < 37292,
The rest of the proof now follows from two applications of the Cauchy-
Schwarz inequality, exactly as in the proof of Theorem 2.2. m

Theorem 3.2 leads directly to a two-parameter generalization of the corol-
lary from the previous section, at least when 1 < p <2 < g < o0.

For the rest of the paper, in order to make the statements of our results a
little more compact, and to adhere to the tradition which says that y must
always represent a dilation parameter, we will be changing our notation
somewhat. Henceforth, points in R% x R will be denoted by (x1,x5), and
y1 and y» will denote positive numbers. Thus

Riﬁl X Riﬁl = {(z1, 91, T2, y2) : 7; € R¥, y; > 0}.
COROLLARY 3.5. Let My, Ms, dy, do, and & be as in Theorem 3.2. For
i = 1,2, let ¢; be smooth functions defined on R% and satisfying (for x;
€ R%)
i) < L+ 2)™™, Vsl < (L4 Jz) ™M, | gida =0
R4

For y; > 0, define y = (y1,y2) and set @y (x1,22) = ($1)y, (1) - (P2)y, (22).
Consider the two-parameter Bergman-type inequality

/
62 (§ i e gy e duter,esy)

dq+1 do+1
R+ ><R+

1/q
<(§ rededs)
R41 xR%2
where w is a Borel measure defined on ]Rflfr1 X Rf“, f is assumed to
belong to a reasonable test class, and v is a non-negative, locally integrable
function defined on RM x R%. Let 1 < p <2< ¢ < oo and set 0 = olP
In order that (3.2) should hold for all f, it is sufficient that there exist a
number T > p’, an € > 0, and a weight w such that

g(R,T) < S w
R
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and

1/p’
T(I) x T(J))/4 Md d
uI ) x T(T)) <Rdl§<Rd2 [s(xq,10)]P'/2 e
< cl(I)htip(g)ydatl
for all rectangles R =1 x J, where

8(:1:17:1;2)
= (14 [ — ) (D)D) (L g — () /()22 02+9)
Proof. We consider the dual form of (3.2):

’

~ ’ l/p’ ’ 1/‘1
(§ 1Tol odedn) " < (] lgltate )l duttaty)
Rd1 xRd2 Ril‘ﬂ ><]Ri2+1
RilJrl « le_frl

where ¢ is bounded and has compact support in , and

Tg(w, w2) = S g(t1,t2,y) vy 'y ' Pyt — 21,12 — 2) dpu(ty, t2,y).

d 1 d 1
R XRIZY

Set © = (x1,x2), t = (t1,t2), and write
(33) Tg(x)
=> | gtwuty ot —2)du(ty) ZARqﬁ
R T(I)xT(J)

where T'(I) and T'(J)’s are the usual top halves of Carleson boxes, each ¢p
satisfies the hypotheses of Theorem 3.2, and the Ag’s satisfy

/ 1/q
el <e( | gl du) T a(T) < T )0 D)),
TI)xT(J)
Note that, because of g’s compact support, the sum (3.3) is finite.
Let o be the dual exponent to p’/2, and let h be non-negative and satisfy
{|h]2 0 = 1. We need to show that

/

~ / 2/q
VITgl* ho dwy das < ( | lg(t1,t2, )| dﬂ(t17t27y)> :

Rt ><Rd2+1
+ +
independent of the particular choice of h. We now apply Main Theorem 3,
setting v = ho. We get
S 1Tg|? ho dzy dzs
CZ |)\R| Z Z 3—2M1j1—2M2j2+j1d1+j2d2+(j1+j2)€(7{;)(3]'1IX3j2J’ 77)’

|R| J1=0j2=0
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where we have chosen n = 27/p’ > 2 (i.e., 7 = np’/2). The argument from
[W3] shows that, for any rectangle R,

(ho)(R) < C(dy, da, p)&F(R,np' /2)2'" .

But this last quantity is less than or equal to Cw(R)z/ P Thus, we may
dominate our sum by

2 o oo

C Z |>\g’ Z Z 3*2M171*2M2j2+]—1d1+72d2+(j1+j2)5w(3j1I % 3j2J)2/P/‘
R=IxJ Rl §1=0 j2=0

At the cost of slightly increasing €, we may dominate

oo o0
E E 3*2M1j1*2M2]’2+j1d1+72d2+(j1+j2)€w<371I % 3j2J)2/P'
J1=0j2=0

2/p’
Cg( S Mdmxz) 7

war oy (@1, m2) P72

where s(x1,x2) is as in the statement of the corollary. (Note: here we are fol-
lowing, almost verbatim, the procedure of Corollary 2.8; see above.) There-
fore,

~ Ap|2 2/p’
S]Tg[2had:c1 dry < C Z Ar| ( S %dajl dm2> ,
rirs Bl \gu fga, (3021, 72)]

where the A\g’s have the bounds given above. The rest of the proof is now ez-
actly like that from Corollary 2.8, and we leave it to the interested reader. m

FINAL REMARKS. In [WW1], Richard Wheeden and the author proved
sufficient conditions, on weights v and measures pu, for the Bergman-type
inequality

( V vy *f(fﬁ)’qdﬂ(x,y))l/q < ( | \f‘pvdm)l/p

d+1 d
R R

to hold for all f in a reasonable test class, and for certain smooth convolution
kernels v that satisfied 81[) = 0. It may be instructive to compare the results
obtained in [WW1] to those proved here. In most respects, but not all, those
from the present paper are stronger.

1) The general result obtained in [WW1] required that the smooth kernel
1 satisfy:

(@) < (4|2~ UDIV(@) < @+ [z~
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for all z € R, for some M > d + 2. The methods of this paper only require
that M > d. So, in this respect, the results from the present paper are
stronger.

On the other hand:

2) In both [WW1] and the present paper, the sufficient condition ob-
tained was (essentially) of the form

u(m()o(

Rd

w(x)
(1+|z— x|/l

o) < ouay

for all cubes I C RY, for certain exponents ¢ and v, depending (possibly) on
P, ¢, and d; we say “essentially” because the result from [WW1] also included
a power of a logarithm in the numerator of the integrand. The exponent to
watch here is p: the bigger ¢ is (i.e., the more decay in the w-integral), the
better the theorem. In [WW1], 0 = p'/¢’; here, o = p’M — (p'/2)(d + ¢).
Thus, the result from the present paper is better when M > ¢d/2, but
[WW1)’s is better when M < ¢d/2 (unless d < M < d + 2, where [WW1]
gave no general result). The author does not know yet what to make of this
puzzling phenomenon.

REMARK. Just as this paper was being accepted for publication, the
author learned of an argument which improves the value of ¢(p) (see Def-
inition 2.9) in Theorem 2.10, for p outside the range of 1 < p < 2. Unfor-
tunately, this argument offers no improvement for 1 < p < 2, which is the
range needed for our main application (Bergman space inequalities), nor is
it clear at this time that it can be extended to the two-parameter setting.

Appendix: Justification of continuity. We refer the reader to the
proof of Lemma 3.5 in [U].

By dilation and translation, we may assume that we have a smooth
function ¢(z,y), defined on R% x Rz satisfying:

|0z, )] < (1 [a) ™M (1 + [yl) =™,
IVed(z,y)| < (1+|z)) "M =11 + |y|) M2,
IVyd(z,y)| < (14 |a) =M (1 + Jy|) M1,
Vo Vyd(z,y)| < (14 |2)) M1+ |y|) M1,

for some M; > d;. We furthermore assume that ¢ has integral zero along
each of its x and y slices.

Let h € C>°(R) be a non-negative function with support contained in
(.1,.9), and which satisfies

Y n@E =1 fort>1.
7=1
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Set o
1= " h(377),
71=1

Then, for any y € R%,

o(z,y)

= ho(|z))e(z,y) + Y h(37|z)(x, )

Jj=1

Sgan 2oney h(37F[t)o(t, ) dt}
Spay A(JL)) dt

= ity Sman e h(3TFIE) (¢, ) dt
+JZ:;|: 3 ]’$| ) h(3 J+ |l") R SR]; h(3*j+1|t|)dt

_ [ho<|w|>¢<x7y>+h<|$!>

h(377]a])

S]Rdl Zf:jﬂ h(3_k\t])¢(t, ) dt}
$gar R(3771E]) dt

= EO(:E’ y) + Zﬁj(xa y)
j=1

The Bj’s smoothness in z and cancellation (in z), as well as the support
properties, follow as they do in Uchiyama’s proof. Cancellation in y is trivial.
What is not so trivial, but also not hard, is the smoothness in y of the 3;’s
However, it is easy to see (by, say, the Dominated Convergence Theorem)
that

Vo Bz, y)| < C(My,di)377% | |V,¢(t,y)|dt

[t|>c37
< O3 (1 yl) Mg N — M (1 ¢y

with a corresponding estimate for vzvyﬁj. This justifies our statement
about “continuity in ¢.”
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