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A semi-discrete Littlewood–Paley inequality

by

J. M. Wilson (Burlington, VT)

Abstract. We apply a decomposition lemma of Uchiyama and results of the author
to obtain good weighted Littlewood–Paley estimates for linear sums of functions satisfying
reasonable decay, smoothness, and cancellation conditions. The heart of our application
is a combinatorial trick treating m-fold dilates of dyadic cubes. We use our estimates to
obtain new weighted inequalities for Bergman-type spaces defined on upper half-spaces in
one and two parameters, extending earlier work of R. L. Wheeden and the author.

1. Introduction. This paper treats the following rather general prob-
lem. Suppose that we have a family {φ(I)}I of real-valued functions, defined
on Rd, indexed over the collection D of dyadic cubes I ⊂ Rd. Each φ(I) is
smooth and satisfies

|φ(I)(x)| ≤ |I|−1/2(1 + |x− xI |/`(I))−M ,(1.1)

|∇φ(I)(x)| ≤ `(I)−1|I|−1/2(1 + |x− xI |/`(I))−M−1,(1.2)

for all x ∈ Rd, where M is some fixed number strictly bigger than d; we are
using `(I) to denote I’s sidelength and xI to mean its center; as usual, we
are using |E| to denote the Lebesgue measure of a set E. Finally, each φ(I)

also has

(1.3)
�
φ(I) = 0.

It is well-known that the properties (1.1)–(1.3) ensure the “almost-ortho-
gonality” of the family {φ(I)}I ; i.e., the property that if

(1.4) f(x) =
∑

I

λIφ(I)(x)

({λI}I ⊂ R) is any finite sum, then
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(1.5)
�
|f |2 dx ≤ C(M,d)

∑

I

|λI |2.

In this paper we investigate the extent to which (1.5) remains true, or
must be modified, when the Lebesgue measure on the left in (1.5) is replaced
with a non-constant weight.

The most natural weighted generalization of (1.5) would be this: For
every non-negative v ∈ L1

loc(Rd), there exist constants ν(I,M, v) such that,
for every sum (1.4),

(1.6)
�
|f |2 v dx ≤ C(M,d)

∑

I

|λI |2ν(I,M, v).

In this paper we prove a version of (1.6) for arbitrary v (see Theorem 2.2
below). We deduce as a corollary that, if v belongs to the Muckenhoupt A∞
class, then the constants ν(I,M, v) have an especially nice form: they can
be taken to be

(1.7) C(v, ε)|I|−1
�

Rd

v(x)
(1 + |x− xI |/`(I))2M−(d+ε)

dx

for any ε > 0 (the constant C(v, ε) also depends on the A∞ “parameters”
of v). Recall that a weight v belongs to A∞ if there exist positive constants
a and b such that, for all cubes I ⊂ Rd and measurable subsets E ⊂ I,

�
E
v�

I
v
≤ a

( |E|
|I|

)b
.

There are several equivalent characterizations of A∞ (see [GR]). The one
we will use in this paper is the following: There exist positive constants C
and η such that, for all cubes I,

�

I

v(x) logη(e+ v(x)/vI)) dx ≤ C
�

I

v(x) dx,

where we are using vI to denote v’s average over I.
The reader should note that (1.7) is within shouting distance of best

possible, since, if the sum in (1.6) had only one term, the exponent would
be 2M .

Our interest in inequalities like (1.6) is three-fold.

Singular integrals and wavelet expansions. Let {w(I)}I be a family of
smooth functions indexed on D. We suppose that each w(I) is supported
in τI, the τ -fold dilate of I (where τ ≥ 1 is fixed), and satisfies

‖w(I)‖∞ ≤ |I|−1/2, ‖∇w(I)‖∞ ≤ `(I)−1|I|−1/2,
�
w(I) dx = 0.

(Note that we do not require the w(I)’s to be translates/dilates of each
other.) Let h =

∑
I λIw(I) be a finite sum, and consider what happens when
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we convolve h with a Calderón–Zygmund kernel K. The product will not,
in general, have the form

∑
I λIw(I), because the functions K ∗w(I) will not

have compact support. However, it will be, up to a multiplicative constant, a
sum like (1.4). Now, in many cases it is possible to write K ∗h =

∑
I λ̃Iw(I),

where the λ̃I ’s depend in some messy (but linear) way on the λI ’s. We
can then estimate the size of the λ̃I ’s, and use these estimates to bound
K ∗ h. These estimates, unfortunately, tend to be rather unsatisfactory (as
Richard Wheeden and the author discovered in their work on Bergman
spaces [WW1], where they used an approach like this). The reason is that
the estimates one gets for the λ̃I ’s are of the form

|λ̃I | ≤
∑

J

cI,J |λJ |,

for certain positive constants cI,J (roughly speaking, cI,J ∼ |
�
w(I)(K ∗

w(J))|; the relation is an equality when the w(I)’s are an orthonormal ba-
sis). If we then wish to control K ∗ h in terms of the size of the original
coefficients λI , we must resort to something like Schur’s Lemma. This is
extremely inefficient. The positivity of the cI,J ’s indicates that we are not
making optimal use of the cancellation in the K ∗ w(I)’s. Indeed, so much
gets thrown away that the necessary endpoint estimates for the Schur’s
Lemma interpolation (see (3.8)–(3.10) and the accompanying estimates from
[WW1]) require an unacceptable amount of decay in the convolution kernel
K. But this approach is unsatisfactory for another reason as well. In many
applications, the original function h is defined by the coefficients λI ; this
was the situation in [WW1]. In such a case, understanding K’s behavior
really does mean getting a good bound on K ∗ h directly in terms of the
λI ’s. The main theorems in Section 2 provide such a bound.

Bergman-type inequalities. In [WW1], Richard Wheeden and the author
studied the weighted-norm inequality

(1.8)
( �

Rd+1
+

|∇u(x, y)|q dµ(x, y)
)1/q

≤
( �

Rd
|f |p σ dx

)1/p

where u = Py∗f(x), the Poisson integral of f , σ ∈ L1
loc(Rd) is a non-negative

weight, µ is a Borel measure, and 1 < p ≤ q < ∞. The authors looked for
necessary and sufficient conditions on v and µ for the inequality (1.8) to
hold for all f in a reasonable test class (1).

The authors approached (1.8) by first considering a dual form. Each
derivative of u arises from convolution with a kernel y−1ψy that has smooth-
ness, good (but not infinite!) decay, and cancellation. (Note: we are using

(1) E.g., in L∞ and with compact support, or
⋃

1≤p<∞ Lp(Rd).
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ψy(x) ≡ y−dψ(x/y) to denote the usual y-dilation of ψ.) For each such ψ,
define the dual operator Tψ,

Tψg(x) =
�

Rd+1
+

g(t, y)y−1ψy(t− x) dµ(t, y),

acting on bounded, compactly supported functions g : Rd+1
+ → R. Let p′

and q′ be the dual exponents to p and q, and set v = σ1−p′ . Inequality (1.8)
will hold if

(1.9)
( �

Rd
|Tψg|p

′
v dx

)1/p′

≤ C
( �

Rd+1
+

|g(t, y)|q′ dµ(t, y)
)1/q′

holds for all g in our test class, and for each ψ.
For the moment, fix p = q = 2. We are about to make (1.9) look like (1.6).

For each I ∈ D, set T (I) = I × (`(I)/2, `(I)] (the usual “top half” of the
Carleson box “over” I). Write

Tψg(x) =
∑

I

�

T (I)

g(t, y)y−1ψy(t− x) dµ(t, y);

note that the sum is finite, because of g’s compact support. We may now
rewrite the sum in the form of (1.4),

Tψg(x) =
∑

I

λIφ(I),

where each λI satisfies

|λI | ≤ C
( �

T (I)

|g(t, y)|2 dµ(t, y)
)1/2

µ(T (I))1/2`(I)−1−d/2.

Suppose we have (1.6). Then (1.9) will hold (for p = q = 2) if

(1.10) µ(T (I))1/2ν(I,M, v)1/2 ≤ c`(I)1+d/2

for all dyadic cubes I. The reader should notice that the better (i.e., larger)
the exponent in (1.6), the stronger will be the corresponding sufficient con-
dition (1.10). In [WW1], Richard Wheeden and the author attacked (1.9)
via a Schur’s Lemma argument, and the exponent they obtained, for general
kernels ψ, was rather small: M , when M ≥ d + 2 and p = q = 2. Unfortu-
nately, this did not quite cover the case of the Poisson integral (see below).
Theorem 2.2 in the present paper gives an exponent of 2M − (d+ ε) when
p = q = 2; in addition, it is valid for any M > d, and it does handle the
Poisson integral. For the more general Lp → Lq problem, the results of this
paper yield an exponent of p′M − (p′/2)(d+ ε), which is almost always an
improvement over the general result (Theorem 3, p. 936) from [WW1]. Why
we do not always get an improvement remains a mystery.
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The problem of limited decay . There are a number of theorems in anal-
ysis which state, “You can do so-and-so with this kernel, if it has ‘enough’
decay.” One such result is the following, from [FKP] (Theorem 3.1):

Theorem FKP. Suppose that w is a doubling weight on Rd with dou-
bling constant %. There exists an N0 = N0(%) such that w ∈ A∞ if and
only if , for some constant C and some φ ∈ AN0(Rd) [defined below ], with�
φ = 1, and ψ = ∇φ, we have

t−d
t�

0

�

x: |x−x0|<t

|ψs ∗ w(x)|2
|φs ∗ w(x)|2 dx

ds

s
≤ C

for all x0 ∈ Rd and t > 0.

The familyAN0(Rd) is a collection of “bump” functions, which Fefferman
and Stein used to define their so-called “grand” maximal function in [FS].
To wit:

AN0(Rd) =
{
φ ∈ S(Rd) :

�

Rd
|Dαφ(x)|2 (1 + |x|)N0 dx ≤ 1, |α| ≤ N0

}
.

The number N0 is liable to be pretty big. Indeed, the author at first con-
sidered using some variant of Theorem FKP in his attack on (1.6), but he
gave that up when he saw no way to eliminate the requirement of excessive
decay. Wheeden and the author encountered a like difficulty in their work
in [WW1]. They had a general theorem which treated kernels that decayed
at infinity to order |x|−M , for M ≥ d + 2. Unfortunately, the convolution
kernel that generates the y-derivative of u = Py ∗ f only decays to order
|x|−d−1!. They had to concoct a special argument, using harmonicity and
the semigroup property, to handle this term in ∇u. (Even with the argu-
ment, though, their result was not entirely satisfactory.)

The present paper attempts to fill this unmet (and, the author believes,
only apparently arcane) need for good quadratic estimates on sums like (1.4),
in which the functions φ(I) decay at specific, limited rates.

The paper is laid out as follows. In Section 2 we state and prove our
main theorems, and we derive two corollaries for weighted Bergman-space
inequalities of the type treated in [WW1]. In Section 3 we state and prove
a two-parameter analogue of the L2 → L2 case of our Theorem 2.2, and we
give a corollary related to two-parameter Bergman-type inequalities.

2. The main theorems. In this section, D is the family of dyadic cubes
I ⊂ Rd. The sidelength of any cube I is denoted by `(I) and its center is xI .
If I is any cube and τ ≥ 1, then τI is the cube concentric with I and with
sidelength τ`(I).
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Our main theorem (Theorem 2.2) deals with families {φ(I)}I of smooth
functions, defined on Rd, indexed over D, and satisfying (1.1)–(1.3), for some
M > d which only depends on the family.

The statement of our main theorem requires one more technical defini-
tion.

Definition 2.1. Let η > 0. If I ⊂ Rd is a cube and v ∈ L1
loc(Rd) is

non-negative, we set

v(I, η) =
�

I

v(x) logη(e+ v(x)/vI) dx,

where vI is v’s average over I.

We shall follow the usual convention that if v is a weight and E ⊂ Rd is
measurable, then v(E) denotes

�
E
v; i.e., the “v-measure” of E.

Theorem 2.2. Let {φ(I)}I be a family satisfying (1.1)–(1.3) for some
M > d. Let η > 1 and let 2M − d > ε > 0. There is a C = C(M,d, η, ε)
such that for all f as in (1.4) and all non-negative v ∈ L1

loc(Rd),

(2.1)
�

Rd
|f |2 v dx ≤ C

∑

I

|λI |2
|I|

∞∑

j=0

3−2Mj+(d+ε)jv(3jI, η).

In particular , if v ∈ A∞, then

(2.2)
�

Rd
|f |2 v dx

≤ C ′(M,d, ε, v)
�

Rd

[∑

I

|λI |2
|I| (1 + |x− xI |/`(I))−(2M−(d+ε))

]
v dx.

The proof of Theorem 2.2 hinges on a decomposition due to Uchiyama
(Lemma 3.5 from [U]) and two lemmas from [W1] and [W2]. Our Lemma 2.7
(see below) is essentially (2.8) from [W2]. The reader should notice that the
only thing used in the proof of (2.8) in [W2] is the “goodness” (see the
definition below) of the family of dyadic cubes.

Lemma 2.3. Each φ(I) can be decomposed as

φ(I) = C(M,d)
∞∑

j=0

3−Mjφ(I),j ,

where each φ(I),j is smooth and satisfies:

suppφ(I),j ⊂ 3jI, ‖φ(I),j‖∞ ≤ |I|−1/2,

‖∇φ(I),j‖∞ ≤ (3j`(I))−1|I|−1/2,
�
φ(I),j dx = 0.
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Uchiyama proves his Lemma 3.5 for M = d + 1, but it is easy to see
that the proof goes through for any M > d. He also states it for 2j ’s instead
of 3j ’s; what is important here is the lacunarity. We want 3j ’s because of
Lemma 2.5 below.

The reader should notice that our φ(I)’s differ from Uchiyama’s by factors
of |I|1/2.

Definition 2.4. A family G of cubes is said to be good if: (a) for all Q
and Q′ in G, either Q ⊂ Q′, Q′ ⊂ Q, or Q ∩Q′ = ∅; (b) if Q and Q′ belong
to G, Q ⊂ Q′, and Q 6= Q′, then `(Q) ≤ .5`(Q′).

Lemma 2.5. Let m be an odd positive integer and let F be the family of
all m-fold dilates of dyadic cubes. The family F can be decomposed as

F =
md⋃

i=1

Gi,

where the Gi’s are pairwise disjoint and each Gi is good.

Proof. This is essentially Lemma 2.1 from [W1], which deals with m = 3
(see also [G], p. 416). The general case is similar.

It is enough to prove the lemma when d = 1. Note that, since m is odd,
2 is invertible in the ring Z/mZ. Let [r] stand for the equivalence class of r
modulo m. Abusing notation somewhat, we let [2−k] (for k positive) denote
[((m+ 1)/2)k] (since (m+ 1)/2 is 2’s multiplicative inverse). Let Fk denote
those elements of F with sidelength m2−k. Each Fk can be decomposed
into m disjoint subfamilies G̃k(s) (0 ≤ s < m), where each I ∈ G̃k(s) has the
form

I =
[
j

2k
,
j +m

2k

)

and j ≡ s (modm). A little computation shows that the right and left halves
of such an I belong to G̃k+1([2s]), and that I is either the right or left half
(depending on j’s parity) of an interval in G̃k−1([(m + 1)s/2]). Therefore,
the desired families Gi (0 ≤ i < m) are

Gi ≡
∞⋃

k=−∞
G̃k([[2k]i]).

Definition 2.6. Let I ⊂ Rd be a cube. A smooth function a(I) is said
to be adapted to I if

supp a(I) ⊂ I,
�
a(I) = 0,

‖a(I)‖∞ ≤ |I|−1/2, ‖∇a(I)‖∞ ≤ `(I)−1|I|−1/2.
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The lemma from [W2] is:

Lemma 2.7. Let G be a good family of cubes in Rd. Let f =
∑

I λIa(I)
(λI ∈ R) be a finite sum such that each I ∈ G and each a(I) is adapted to I.
If η > 1 then

�
|f |2 v dx ≤ C(η, d)

∑

I

|λI |2
|I| v(I, η)

for all non-negative v ∈ L1
loc(Rd).

We may now proceed to:

Proof of Theorem 2.2. For j = 0, 1, 2, . . . , let Fj be the collection of all

3j-fold dilates of dyadic cubes in Rd. For each j, write Fj =
⋃3jd

i=1 G(i, j),
where the G(i, j)’s are disjoint and good (as guaranteed by Lemma 2.5).
Applying Lemma 2.3 to each φ(I), we write

f =
∑

I

λIφ(I) = C(M,d)
∑

I

λI

∞∑

j=0

3−Mjφ(I),j

= C
∞∑

j=0

3jd∑

i=1

∑

3jI∈G(i,j)

3−MjλIφ(I),j = C
∞∑

j=0

3jd∑

i=1

∑

3jI∈G(i,j)

3−Mj3jd/2λI φ̃(I),j ,

where φ̃(I),j ≡ 3−jd/2φ(I),j . Notice that each φ̃(I),j is adapted to 3jI. By
Cauchy–Schwarz (twice),

�

Rd
|f |2 v dx ≤ C

∞∑

j=0

3jε+jd
3jd∑

i=1

�

Rd

∣∣∣
∑

3jI∈G(i,j)

3−Mj3jd/2λI φ̃(I),j

∣∣∣
2
v dx.

However, by Lemma 2.7,
� ∣∣∣

∑

3jI∈G(i,j)

3−Mj3jd/2λI φ̃(I),j

∣∣∣
2
v dx

≤ C(η, d)
∑

3jI∈G(i,j)

3−2Mj3jd
|λI |2
|3jI| v(3jI, η)

= C(η, d)
∑

3jI∈G(i,j)

3−2Mj |λI |2
|I| v(3jI, η).

Plugging this back into the preceding inequality finishes the proof of (2.1).
To prove (2.2), we note that, when v ∈ A∞, v(I, η) ≤ C(η, v)

�
I
v for all

cubes I. Thus, by (2.1),
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�

Rd
|f |2 v dx ≤ C

∑

I

|λI |2
|I|

∞∑

j=0

3−2Mj+(d+ε)jv(3jI, η)

≤ C
∑

I

|λI |2
|I|

∞∑

j=0

3−2Mj+(d+ε)j
�

3jI

v dx

≤ C
�

Rd

[∑

I

|λI |2
|I| (1 + |x− xI |/`(I))−(2M−(d+ε))

]
v dx.

Corollary 2.8. Let M , d, and ε be as in Theorem 2.2. Let ψ be a
smooth function satisfying

|ψ(x)| ≤ (1 + |x|)−M , |∇ψ(x)| ≤ (1 + |x|)−M−1,
�

Rd
ψ = 0.

Consider the Bergman-type inequality

(2.3)
( �

Rd+1
+

|y−1ψy ∗ f(x)|q dµ(x, y)
)1/q

≤
( �

Rd
|f |p v dx

)1/p
,

where v ∈ L1
loc(Rd) is non-negative, µ is a Borel measure, and f belongs to

a reasonable test class. Let 1 < p ≤ 2 ≤ q <∞, and set σ = v1−p′ , where p′

is p’s dual exponent. Let τ > p′/2. There is a constant c = c(M,d, ε, p, q, τ)
such that (2.3) will hold for all f if there is a weight w such that

σ(I, τ) ≤
�

I

w

and

µ(T (I))1/q
( �

Rd

w(x)
(1 + |x− xI |/`(I))p′M−(p′/2)(d+ε)

dx

)1/p′

≤ c`(I)d+1

for all cubes I.

Proof. Following the pattern of [WW1], we consider the dual form of
(2.3): ( �

Rd
|Tg|p′ σ dx

)1/p′

≤
( �

Rd+1
+

|g(t, y)|q′ dµ(t, y)
)1/q′

,

where g is bounded and has compact support in Rd+1
+ , and

Tg(x) =
�

Rd+1
+

g(t, y) y−1ψy(t− x) dµ(t, y).

Write

(2.4) Tg(x) =
∑

I

�

T (I)

g(t, y) y−1ψy(t− x) dµ(t, y) =
∑

I

λIφ(I)(x),

where T (I) is the usual top half of a Carleson box, each φ(I) is as in (2.1),
and the λI ’s satisfy
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|λI | ≤ c
( �

T (I)

|g|q′ dµ
)1/q′

µ(T (I))1/q`(I)−(1+d/2).

Note that, because of g’s compact support, the sum (2.4) is finite.
Let % be the dual exponent to p′/2, and let h be non-negative and satisfy�
|h|% σ = 1.

We wish to estimate
�
Rd |Tg|2 hσ dx. Let η be a number bigger than 1,

to be chosen presently. By (2.1),

(2.5)
�

Rd
|Tg|2 hσ dx ≤ C

∑

I

|λI |2
|I|

∞∑

j=0

3−2Mj+(d+ε/2)j(hσ)(3jI, η).

(The “ε/2” is not a typo: see below.) By virtue of a trick from [W3] (see
inequality (13) there),

(hσ)(3jI, η) ≤ Cσ(3jI, ηp′/2)2/p′ .

Choose η = τ/(p′/2) > 1. Then

σ(3jI, τ) ≤
�

3jI

w ≡ w(3jI).

Therefore
�

Rd
|Tg|2 hσ dx ≤ C

∑

I

|λI |2
|I|

∞∑

j=0

3−2Mj+(d+ε/2)jw(3jI)2/p′ .

Now,
∞∑

j=0

3−2Mj+(d+ε/2)jw(3jI)2/p′

≤ Cε,p′
( ∞∑

j=0

3(−2Mj+(d+ε)j)p′/2w(3jI)
)2/p′

≤ C
( �

Rd

w(x)
(1 + |x− xI |/`(I))p′M−(p′/2)(d+ε)

dx

)2/p′

.

Thus, the right-hand side of (2.5) is less than or equal to

(2.6) C
∑

I

|λI |2
|I|

( �

Rd

w(x)
(1 + |x− xI |/`(I))p′M−(p′/2)(d+ε)

dx

)2/p′

≤ C
∑

I

( �

T (I)

|g|q′ dµ
)2/q′

µ(T (I))2/q`(I)−(2d+2)

×
( �

Rd

w(x)
(1 + |x− xI |/`(I))p′M−(p′/2)(d+ε)

dx

)2/p′

.
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Our hypothesis on µ and w is that

µ(T (I))1/q
( �

Rd

w(x)
(1 + |x− xI |/`(I))p′M−(p′/2)(d+ε)

dx

)1/p′

≤ c`(I)d+1.

Therefore, the right-hand side of (2.6) is less than or equal to

C
∑

I

( �

T (I)

|g|q′ dµ
)2/q′

≤ C
( �

Rd+1
+

|g(t, y|q′ dµ(t, y)
)2/q′

,

where the inequality follows because 2/q′ ≥ 1. This proves the corollary.

Theorem 2.2 is an L2 → L2 result. By carefully examining certain of the
proofs from [W1], we can see how the (essential) conclusion of Theorem 2.2
may be reshaped into an Lp → Lp result.

Definition 2.9. For 0 < p <∞, define

c̃(p) =





2/p− 1 if 0 < p ≤ 1,
1 if 1 < p ≤ 2,
2/p′ if p > 2.

Remark. Notice that c̃(p) is a continuous function of p and that it is
always ≥ 1.

Theorem 2.10. Let 0 < p < ∞ and let η > p/2. Suppose that M > d
and 2M − dc̃(p) > ε > 0. There is a constant C = C(M, ε, η, p, d) such if v
and w are non-negative functions in L1

loc(Rd) satisfying

v(I, η) ≤ w(I)

for all cubes I, then

�

Rd
|f |p v dx ≤ C

�

Rd

[∑

I

|λI |2
|I| (1 + |x− xI |/`(I)g)−2M+(dc̃(p)+ε)

]p/2
w dx

for all finite sums (1.4).

Proof. The proof closely follows the lines of the proof of Theorem 2.2,
the chief difference being that here we use a somewhat generalized form of
Lemma 2.7; to wit:

Lemma 2.11. Let G be a good family of cubes in Rd. Let f =
∑

I λIa(I)
(λI ∈ R) be a finite sum such that each I ∈ G and each a(I) is adapted to I.
Suppose that 0 < p < ∞, η > p/2, and v and w are weights in L1

loc(Rd)
satisfying

(2.7) v(I, η) ≤ w(I)
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for all cubes I. There is a constant C = C(η, p, d) such that

�

Rd
|f |p v dx ≤ C

�

Rd

(∑ |λI |2
|I| χI(x)

)p/2
w dx.

Proof. For 0 < p ≤ 2, this is done explicitly in [W1] (Theorem 2.5). For
p ≥ 2, it is done implicitly in the proof of Theorem 2.7 there. Using the
notation from that paper, set ℵ(j) = 2τj , where τ > 0 is small and will be
chosen presently. Then our desired norm inequality will hold if

( �
I
v(x) log(e+ v(x)/vI) dx

v(I)

)τ+p/2

v(I) ≤ w(I)

for all cubes I. By Hölder’s inequality, this will happen if (2.7) holds and
τ + p/2 ≤ η. This proves the lemma.

To continue with proof of the theorem, we distinguish three cases:
(a) 0 < p ≤ 1; (b) 1 < p ≤ 2; (c) p > 2.

Case (a): 0 < p ≤ 1. Proceeding as in the proof of Theorem 2.2, we
write

f =
∑

I

λIφ(I) = C(M,d)
∑

I

λI

∞∑

j=0

3−Mjφ(I),j

= C
∞∑

j=0

3jd∑

i=1

∑

3jI∈G(i,j)

3−MjλIφ(I),j = C
∞∑

j=0

3jd∑

i=1

∑

3jI∈G(i,j)

3−Mj3jd/2λI φ̃(I),j ,

where everything has the same meaning that it had in the earlier proof.
Thus

|f |p ≤ Cε
∞∑

j=0

3jε
∣∣∣

3jd∑

i=1

∑

3jI∈G(i,j)

3−Mj3jd/2λI φ̃(I),j

∣∣∣
p

≤ Cε
∞∑

j=0

3jε
3jd∑

i=1

∣∣∣
∑

3jI∈G(i,j)

3−Mj3jd/2λI φ̃(I),j

∣∣∣
p

,

where the second inequality follows because p ≤ 1.
Temporarily fix i and j. Because of Lemma 2.11 and our hypotheses on

v and w,
�

Rd

∣∣∣
∑

I: 3jI∈G(i,j)

3−Mj3jd/2λI φ̃(I),j

∣∣∣
p

v dx

≤ C(p,M, d, η)
�

Rd

( ∑

3jI∈G(i,j)

|λI |2
|I| 3−2Mjχ3jI

)p/2
w dx.
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Now, with j still fixed, we sum on i from 1 to 3jd. Recall that, if 0 < r ≤ 1
and ak ≥ 0, then

N∑

k=1

ark ≤
( N∑

k=1

ak

)r
N1−r.

In our case, r = p/2 and N = 3jd. Thus

�

Rd

3jd∑

i=1

∣∣∣
∑

I: 3jI∈G(i,j)

3−Mj3jd/2λI φ̃(I),j

∣∣∣
p

v dx

≤ C(p,M, d, η)
�

Rd
3jd(1−p/2)

(∑

I

|λI |2
|I| 3−2Mjχ3jI

)p/2
w dx

= C(p,M, d, η)
�

Rd

(∑

I

|λI |2
|I| 3−2Mj+(2/p−1)jdχ3jI

)p/2
w dx

= C(p,M, d, η)
�

Rd

(∑

I

|λI |2
|I| 3−2Mj+c̃(p)jdχ3jI

)p/2
w dx.

Now sum on j for j = 0 to ∞. At the expense of having a slightly larger ε,
we end up with

�

Rd
|f |p v dx≤C(ε, p,M, d, η)

�

Rd

(∑

I

|λI |2
|I|

∞∑

j=0

3j(−2M+c̃(p)d+ε)χ3jI

)p/2
w dx.

It is easy to see that
∞∑

j=0

3j(−2M+c̃(p)d+ε)χ3jI(x) ≤ C(1 + |x− xI |/`(I))−2M+c̃(p)d+ε.

This finishes the proof in case (a).

Case (b): 1 < p ≤ 2. We begin somewhat as we did with case (a),
writing

|f |p ≤ Cε
∞∑

j=0

3jε
∣∣∣

3jd∑

i=1

∑

3jI∈G(i,j)

3−Mj3jd/2λI φ̃(I),j

∣∣∣
p

≤ Cε
∞∑

j=0

3jε3jdp/p
′

3jd∑

i=1

∣∣∣
∑

3jI∈G(i,j)

3−Mj3jd/2λI φ̃(I),j

∣∣∣
p

,

where the second inequality now follows from Hölder’s inequality. We rewrite
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the right-hand side of this inequality as

Cε

∞∑

j=0

3jε
3jd∑

i=1

∣∣∣
∑

3jI∈G(i,j)

3−Mj+jd/p′3jd/2λI φ̃(I),j

∣∣∣
p

.

Once again, we fix i and j, and we apply Lemma 2.11. We obtain
�

Rd

∣∣∣
∑

3jI∈G(i,j)

3−Mj+jd/p′3jd/2λI φ̃(I),j

∣∣∣
p

v dx

≤ C(M,d, p, η)
�

Rd

( ∑

3jI∈G(i,j)

|λI |2
|I| 3−2Mj+2jd/p′χ3jI

)p/2
w dx.

Now, still keeping j fixed, we sum on i from 1 to 3jd. Since p/2 ≤ 1, we get

�

Rd

3jd∑

i=1

∣∣∣
∑

I: 3jI∈G(i,j)

3−Mj3jd/2λI φ̃(I),j

∣∣∣
p

v dx

≤ C(p,M, d, η)
�

Rd
3jd(1−p/2)

(∑

I

|λI |2
|I| 3−2Mj+2jd/p′χ3jI

)p/2
w dx

= C(p,M, d, η)
�

Rd

(∑

I

|λI |2
|I| 3−2Mj+(2/p−1)jd+2jd/p′χ3jI

)p/2
w dx.

We note that, for 1 < p ≤ 2, 2/p − 1 + 2/p′ = 1 = c̃(p) (!). Therefore, we
may rewrite the last quantity as

C(p,M, d, η)
�

Rd

(∑

I

|λI |2
|I| 3−2Mj+c̃(p)jdχ3jI

)p/2
w dx.

The rest of the proof proceeds exactly as in case (a).

Case (c): p > 2. We begin as with case (b):

|f |p ≤ Cε
∞∑

j=0

3jε
∣∣∣

3jd∑

i=1

∑

3jI∈G(i,j)

3−Mj3jd/2λI φ̃(I),j

∣∣∣
p

≤ Cε
∞∑

j=0

3jε3jdp/p
′

3jd∑

i=1

∣∣∣
∑

3jI∈G(i,j)

3−Mj3jd/2λI φ̃(I),j

∣∣∣
p

= Cε

∞∑

j=0

3jε
3jd∑

i=1

∣∣∣
∑

3jI∈G(i,j)

3−Mj+jd/p′3jd/2λI φ̃(I),j

∣∣∣
p

.
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Fixing i and j, and applying Lemma 2.11, we get
�

Rd

∣∣∣
∑

3jI∈G(i,j)

3−Mj+jd/p′3jd/2λI φ̃(I),j

∣∣∣
p

v dx

≤ C(M,d, p, η)
�

Rd

( ∑

3jI∈G(i,j)

|λI |2
|I| 3−2Mj+2jd/p′χ3jI

)p/2
w dx.

We now sum on i from 1 to 3jd. We use the fact that, if r > 1 and ak ≥ 0,
then ∑

ark ≤
(∑

ak

)r
.

For us, r = p/2 > 1. Thus, with j still fixed,

�

Rd

3jd∑

i=1

∣∣∣
∑

I: 3jI∈G(i,j)

3−Mj3jd/2λI φ̃(I),j

∣∣∣
p

v dx

≤ C(p,M, d, η)
�

Rd

(∑

I

|λI |2
|I| 3−2Mj+2jd/p′χ3jI

)p/2
w dx

= C(p,M, d, η)
�

Rd

(∑

I

|λI |2
|I| 3−2Mj+2jd/p′χ3jI

)p/2
w dx

= C(p,M, d, η)
�

Rd

(∑

I

|λI |2
|I| 3−2Mj+c̃(p)jdχ3jI

)p/2
w dx.

The proof now concludes as with the two preceding cases. Theorem 2.10 is
proved.

Remarks. The conclusion of Theorem 2.10 should be distinguished
from the chief result from [W4]. That paper treats linear sums

f =
∑

I

λIφ(I)

in which the functions φ(I), indexed over the familyD, are assumed to satisfy

(2.8a) |φ(I)(x)|+ `(I)|∇φ(I)(x)| ≤ |I|−1/2(1 + |x− xI |/`(I))−M

for some M > d/2 (although, in practice, one usually requires M > d),
along with an a priori almost-orthogonality condition; namely, that for all
finite linear sums

∑
I γIφ(I), one has

(2.8b)
� ∣∣∣
∑

I

γIφ(I)

∣∣∣
2
dx ≤

∑

I

|γI |2.

The result obtained in that paper is:
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Theorem 2.12. Let F̃ = {φ(I)}I be a family of functions satisfying
(2.8a) and (2.8b). Let σ ∈ L1

loc(Rd) belong to the Muckenhoupt A∞ class.
Suppose that 2M − d > ε > 0, and 0 < p < ∞. There is a constant
C = C(σ, ε, p) such that , for all finite sums f =

∑
I λIφ(I),

�

Rd
|f |p σ dx ≤ C

�

Rd
(g∗(x))p σ dx,

where

g∗(x) =
(∑

I

|λI |2
|I| (1 + |x− xI |/`(I))−2M+(d+ε)

)1/2

.

Note that the “decay exponent” in the definition of g∗ is −2M + d+ ε,
valid for all p; whereas the corresponding quantity in Theorem 2.10 is−2M+
c̃(p)d+ε. We observed earlier that c̃(p) ≥ 1 always, with equality only when
1 ≤ p ≤ 2. Theorem 2.12 also requires weaker hypotheses on the family of
φ(I)’s than does Theorem 2.10. Thus, for A∞ weights, Theorem 2.12 gives a
stronger result. The author finds it surprising that Theorem 2.10, in which
the analysis is relatively soft, gives as good an exponent as Theorem 2.12
does even for the range 1 ≤ p ≤ 2.

With the help of Theorem 2.10, we can now prove sufficient conditions
for Bergman-space inequalities in the full range of p’s and q’s treated in
[WW1].

Corollary 2.13. Let M , d and ε be as in Theorem 2.2. Let ψ be a
smooth function satisfying

|ψ(x)| ≤ (1 + |x|)−M , |∇ψ(x)| ≤ (1 + |x|)−M−1,
�

Rd
ψ = 0.

Consider the Bergman-type inequality

(2.9)
( �

Rd+1
+

|y−1ψy ∗ f(x)|q dµ(x, y)
)1/q

≤
( �

Rd
|f |p v dx

)1/p
,

where v ∈ L1
loc(Rd) is non-negative, µ is a Borel measure, and f belongs to

a reasonable test class. Let 2 < p ≤ q < ∞, and set σ = v1−p′ , where p′ is
p’s dual exponent. In order that (2.9) should hold for all f , it is sufficient
that there exist a number τ > p′/2 and a weight w such that

σ(I, τ) ≤
�

I

w

and

µ(T (I))1/q
( �

Rd

w(x)
(1 + |x− xI |/`(I))p′M−(p′/2)(d+ε)

dx

)1/p′

≤ c`(I)d+1

for all cubes I.
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Proof. As with the earlier corollary, our proof reduces to showing
( �

Rd
|Tg|p′ σ dx

)1/p′

≤
( �

Rd+1
+

|g(t, y)|q′ dµ(t, y)
)1/q′

,

for g bounded and with compact support in Rd+1
+ , where

Tg(x) =
�

Rd+1
+

g(t, y) y−1ψy(t− x) dµ(t, y).

Proceeding as we did there, we also write

Tg(x) =
∑

I

�

T (I)

g(t, y)y−1ψy(t− x) dµ(t, y) =
∑

I

λIφ(I)(x),

where each φ(I) is as in (2.1), and the λI ’s satisfy

|λI | ≤ c
( �

T (I)

|g|q′ dµ
)1/q′

µ(T (I))1/q`(I)−(1+d/2).

By virtue of Theorem 2.10 and our hypothesis on σ and w (recall that
1 < p′ < 2),

�

Rd
|Tg|p′ σ dx ≤ C

�

Rd

(∑

I

|λI |2
|I|

∞∑

j=0

3−2Mj+jd+jεχ3jI

)p′/2
w dx.

Since p′/2 ≤ 1, this last quantity is less than or equal to

C
�

Rd

∑

I,j

[ |λI |2
|I|

]p′/2
3(−2Mj+jd+ε)p′/2χ3jI w dx

≤ C
∑

I

[ |λI |2
|I|

]p′/2 �

Rd

∑

j

3(−2Mj+jd+jε)p′/2χ3jI w dx

≤ C
∑

I

[ |λI |2
|I|

]p′/2 �

Rd

w(x)
(1 + |x− xI |/`(I))p′M−(p′/2)(d+ε)

.

The proof now concludes as with the previous corollary.

3. Two parameters. Somewhat surprisingly, the method of Theo-
rem 2.2 carries over directly to handle analogous two-parameter sums, at
least for L2 → L2. This generalization is possible because of a result from
[W2], which gives a good Littlewood–Paley estimate for linear sums of (two-
parameter) adapted functions. These are analogous to the adapted functions
discussed above, but they satisfy some extra smoothness and cancellation
conditions.
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Before stating the result from [W2], and giving the requisite definitions,
we shall first describe in detail the two-parameter problem we want to apply
it to.

We are working on Rd1 × Rd2 , which we think of as consisting of ordered
pairs (x, y), with x ∈ Rd1 and y ∈ Rd2 . We let Di denote the family of
dyadic cubes in Rdi . We shall not be concerned with functions which are,
like the φ(I)’s above, centered around the dyadic cubes in Rd1 × Rd2 , but,
rather, with functions that are, in a certain sense, centered on rectangles
R = I × J , where I ∈ D1 and J ∈ D2. We suppose that, for every such R,
we have a function φ[R](x, y). This function satisfies, for all x and y,

|φ[R](x, y)| ≤ |I|−1/2(1 + |x− xI |/`(I))−M1 |J |−1/2

× (1 + |y − yJ |/`(J))−M2 ,

|∇xφ[R](x, y)| ≤ `(I)−1|I|−1/2(1 + |x− xI |/`(I))−M1−1|J |−1/2

× (1 + |y − yJ |/`(J))−M2 ,

|∇yφ[R](x, y)| ≤ |I|−1/2(1 + |x− xI |/`(I))−M1

× `(J)−1|J |−1/2(1 + |y − yJ |/`(J))−M2−1,

|∇x∇yφ[R](x, y)| ≤ `(I)−1|I|−1/2(1 + |x− xI |/`(I))−M1−1

× `(J)−1|J |−1/2(1 + |y − yJ |/`(J))−M2−1,

for some exponents Mi > di which are fixed . Moreover, each φ[R] satisfies�
Rd1 φ[R](x, y) dx = 0 for all y and

�
Rd2 φ[R](x, y) dy = 0 for all x.

Note that the bounds satisfied by each φ[R](x, y) = φI×J (x, y) are also
satisfied by tensor products of the form φ(I)(x) ·φ(J)(y). However, the func-
tions φ[R](x, y) need not be tensor products; and, in our application to
Bergman spaces below, they will not be.

We consider finite linear sums of the form

(3.1) f(x, y) =
∑

R

λRφ[R](x, y).

In order to state our main result we shall need a slightly modified form
of one of our definitions from Section 2.

Definition 3.1. Let η > 0. If R = I × J ⊂ Rd1 × Rd2 is a rectangle, as
described above, and v ∈ L1

loc(Rd1 × Rd2) is non-negative, we set

ṽ(R, η) =
�

R

v(x, y) logη(e+ v(x, y)/vR) dx dy,

where vR is v’s average over R.

Our main result in this section is the following:
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Theorem 3.2. Let {φ[R]}R be as described above. Let ε > 0 satisfy
2Mi − di > ε > 0 for i = 1, 2. Let η > 2. There is a constant C =
C(M1,M2, ε, η, d1, d2) so that , for every finite sum (3.1),

�

Rd1×Rd2

|f |2 v dx dy

≤ C
∑

R

|λR|2
|R|

∞∑

j1=0

∞∑

j2=0

3−M1j1−M2j2+j1d1+j2d2+(j1+j2)εṽ(3j1I × 3j2J, η).

In particular , if v(x, y) is uniformly A∞ in x and y, then
�

Rd1×Rd2

|f |2 v dx dy

≤ C ′
�

Rd1×Rd2

(∑

I,J

|λR|2
|I| · |J | (1 + |x− xI |/`(I))−2M1+d1+ε

× (1 + |y − yJ |/`(J))−2M2+d2+ε
)
v dx dy,

for a constant C ′ which depends only on M1, M2, d1, d2, ε, and the A∞
parameters of v.

The result we shall use from [W2]—to which we alluded at the beginning
of this section—depends on a two-parameter version of the adapted functions
we used in Section 2.

Definition 3.3. Let R = Q1 ×Q2, where the Qi are cubes in Rdi (not
necessarily dyadic). We say that a[R](x, y) is adapted to R if a[R] is smooth
and satisfies:

(i) supp a[R] ⊂ R;
(ii)

�
a[R](x, y) dx = 0 for all y ∈ Q2;

(iii)
�
a[R](x, y) dy = 0 for all x ∈ Q1;

(iv) ‖∇x∇ya[R]‖∞ ≤ `(Q1)−1`(Q2)−1|R|−1/2.

Here is the result we need from [W2] (Theorem 2.2 in that paper; also
see the remark on page 434, after the end of the proof).

Theorem 3.4. For i = 1, 2, let Gi be a good family of cubes in Rdi .
Set G̃ = {R = Q1 × Q2 : Qi ∈ Gi}. Let η > 2. There is a constant C =
C(d1, d2, η) such that , if

f(x, y) =
∑

R∈G̃

λRa[R](x, y)

is any finite linear sum, where each a[R] is adapted to R, and v is any
non-negative weight defined on Rd1 × Rd2 , then
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�
|f |2 v dx dy ≤ C

∑

R

|λR|2
|R| ṽ(R, η).

The constant C does not depend on the family G̃.

Proof of Theorem 3.2. We note that the “in particular” (see the state-
ment of the theorem) follows immediately from the first conclusion, since if
v is uniformly A∞ in both variables, then ṽ(R, η) ≤ C(v, η)

�
R
v for all rect-

angles R. The result then follows from interchanging the order of summation
and integration, much as in the proof of Theorem 2.2.

We begin by applying Lemma 2.3 to each φ[R](x, y) separately in the x
and y variables. If we keep y fixed, we may write

φ[R](x, y) = C(M1, d1)
∞∑

j1=1

3−M1j1φ[R],j1(x, y),

where each φ[R],j1(x, y) has x-support contained in 3j1I (recall that R =
I × J), has zero integral along each x and y slice, and satisfies:

|φ[R],j1(x, y)| ≤ |I|−1/2|J |−1/2(1 + |y − yJ |/`(J))−M2−1,

|∇xφ[R],j1(x, y)| ≤ (3j1`(I))−1|I|−1/2|J |−1/2(1 + |y − yJ |/`(J))−M2−1,

|∇yφ[R],j1(x, y)| ≤ |I|−1/2`(J)−1|J |−1/2(1 + |y − yJ |/`(J))−M2−1,

|∇x∇yφ[R],j1(x, y)| ≤ (3j1`(I))−1|I|−1/2

× `(J)−1|J |−1/2(1 + |y − yJ |/`(J))−M2−1,

for all x and y. These estimates hold because, as is evident from Uchiyama’s
proof of Lemma 2.3, the functions φ(I),j depend smoothly on the function
φ(I); for the sake of completeness, we have included a justification of this
statement in an appendix. Now we may apply Lemma 2.3 to each φ[R],j1
(in y, keeping x fixed this time), and obtain, after putting everything back
together,

φ[R](x, y) = C(M1, d1,M2, d2)
∞∑

j1=0

∞∑

j2=0

3−M1j13−M2j2φ[R],j1,j2(x, y),

where each φ[R],j1,j2(x, y) has support contained in 3j1I × 3j2J , has integral
zero along its x and y slices, and satisfies:

|φ[R],j1,j2(x, y)| ≤ |R|−1/2,

|∇xφ[R],j1,j2(x, y)| ≤ (3j1`(I))−1|R|−1/2,

|∇yφ[R],j1,j2(x, y)| ≤ (3j2`(J))−1|R|−1/2,

|∇x∇yφ[R],j1,j2(x, y)| ≤ (3j1`(I))−1(3j2`(J))−1|R|−1/2,

for all x and y.
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Thus we may rewrite (3.1):

f(x, y) = C(M1,M2, d1, d2)
∑

j1,j2

3−M1j1−M2j2
∑

R

λRφ[R],j1,j2(x, y).

We now apply Lemma 2.5 in x and y separately. The collection of cubes
of the form 3j1I are divided into 3j1d1 pairwise disjoint, good families G1

k1

(1 ≤ k1 ≤ 3j1d1), and the cubes of the form 3j2J are divided into 3j2d2

pairwise disjoint, good families G2
k2

(1 ≤ k2 ≤ 3j2d2). If R is a rectangle of
the form R = 3j1I × 3j2J , where 3j1I ∈ G1

k1
and 3j2J ∈ G2

k2
, we will assign

R to the family G̃k1,k2 . Note that the families G̃k1,k2 are pairwise disjoint
and there are 3j1d1+j2d2 of them.

We rewrite our sum as

C(M1,M2, d1, d2)

×
∑

j1,j2

∑

k1=1,...,3j1d1

k2=1,...,3j2d2

∑

3j1I×3j2J∈G̃k1,k2

3−M1j1−M2j2λRφ[R],j1,j2(x, y).

Following the notational convention we used in the proof of Theorem 2.2,
we rewrite this last quantity as

C(M1,M2, d1, d2)×∑

j1,j2

∑

k1=1,...,3j1d1

k2=1,...,3j2d2

∑

R=3j1I×3j2J∈G̃k1,k2

3−M1j1−M2j23(j1d1+j2d2)/2λRφ̃[R],j1,j2(x, y),

where now each φ̃[R],j1,j2 is adapted (in the “rectangle” sense) to 3j1I×3j2J .
Now we shall use Theorem 3.4, quoted earlier. Each of the sums

∑

R=3j1I×3j2J∈G̃k1,k2

3−M1j1−M2j23(j1d1+j2d2)/2λRφ̃[R],j1,j2(x, y)

has the form ∑

R∗=I∗×J∗
I∗∈G∗1 , J∗∈G∗2

γR∗ φ̃[R∗](x, y),

where the families G∗1 and G∗2 are good, each φ̃[R∗] is adapted to R∗ =
3j1I×3j2J , and we have set γR∗ = 3−M1j1−M2j23(j1d1+j2d2)/2λR. Therefore,
for every η > 2, there is a constant C = C(η, d1, d2) such that

�

Rd1×Rd2

∣∣∣
∑

R∗=I∗×J∗
I∗∈G∗1 , J∗∈G∗2

γR∗ φ̃[R∗](x, y)
∣∣∣
2
v dx dy

≤ C
∑

R∗=I∗×J∗

|γR∗ |2
|I∗| · |J∗| ṽ(I∗ × J∗, η),
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valid for any non-negative weight v. Applied to our original sum, this yields
�

Rd1×Rd2

∣∣∣
∑

R=I×J
3j1I×3j2J∈G̃k1,k2

3−M1j1−M2j23(j1d1+j2d2)/2λRφ̃[R],j1,j2(x, y)
∣∣∣
2
v dx dy

≤ C(η, d1, d2)
∑

R=I×J
3j1I×3j2J∈G̃k1,k2

3−2M1j1−2M2j2
|λR|2
|I| · |J | ṽ(3j1I × 3j2J, η),

for each ordered pair (j1, j2), and when 1 ≤ k1 ≤ 3j1d1 and 1 ≤ k2 ≤ 3j2d2 .
The rest of the proof now follows from two applications of the Cauchy–
Schwarz inequality, exactly as in the proof of Theorem 2.2.

Theorem 3.2 leads directly to a two-parameter generalization of the corol-
lary from the previous section, at least when 1 < p ≤ 2 ≤ q <∞.

For the rest of the paper, in order to make the statements of our results a
little more compact, and to adhere to the tradition which says that y must
always represent a dilation parameter, we will be changing our notation
somewhat. Henceforth, points in Rd1 × Rd2 will be denoted by (x1, x2), and
y1 and y2 will denote positive numbers. Thus

Rd1+1
+ × Rd2+1

+ = {(x1, y1, x2, y2) : xi ∈ Rdi , yi > 0}.
Corollary 3.5. Let M1, M2, d1, d2, and ε be as in Theorem 3.2. For

i = 1, 2, let φi be smooth functions defined on Rdi and satisfying (for xi
∈ Rdi)
|φi(xi)| ≤ (1 + |xi|)−Mi , |∇φi(xi)| ≤ (1 + |xi|)−Mi−1,

�

Rdi
φi dxi = 0.

For yi > 0, define y = (y1, y2) and set Φy(x1, x2) = (φ1)y1(x1) · (φ2)y2(x2).
Consider the two-parameter Bergman-type inequality

(3.2)
( �

Rd1+1
+ ×Rd2+1

+

|y−1
1 y−1

2 f ∗ Φy(x1, x2)|q dµ(x1, x2, y)
)1/q

≤
( �

Rd1×Rd2

|f |p v dx1 dx2

)1/q
,

where µ is a Borel measure defined on Rd1+1
+ × Rd2+1

+ , f is assumed to
belong to a reasonable test class, and v is a non-negative, locally integrable
function defined on Rd1 × Rd2 . Let 1 < p ≤ 2 ≤ q < ∞ and set σ = v1−p′ .
In order that (3.2) should hold for all f , it is sufficient that there exist a
number τ > p′, an ε > 0, and a weight w such that

σ̃(R, τ) ≤
�

R

w
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and

µ(T (I)× T (J))1/q
( �

Rd1×Rd2

w(x1, x2)
[s(x1, x2)]p′/2

dx1 dx2

)1/p′

≤ c`(I)d1+1`(J)d2+1

for all rectangles R = I × J , where

s(x1, x2)

= (1 + |x1 − (x1)I |/`(I))2M1−(d1+ε)(1 + |x2 − (x2)J |/`(J))2M2−(d2+ε).

Proof. We consider the dual form of (3.2):
( �

Rd1×Rd2

|T̃ g|p′ σ dx1 dx2

)1/p′

≤
( �

Rd1+1
+ ×Rd2+1

+

|g(t1, t2, y)|q′ dµ(t1, t2, y)
)1/q′

,

where g is bounded and has compact support in Rd1+1
+ × Rd2+1

+ , and

T̃ g(x1, x2) =
�

Rd1+1
+ ×Rd2+1

+

g(t1, t2, y) y−1
1 y−1

2 Φy(t1 − x1, t2 − x2) dµ(t1, t2, y).

Set x = (x1, x2), t = (t1, t2), and write

(3.3) T̃ g(x)

=
∑

R

�

T (I)×T (J)

g(t, y) y−1
1 y−1

2 Φy(t− x) dµ(t, y) =
∑

R

λRφ[R](x, y),

where T (I) and T (J)’s are the usual top halves of Carleson boxes, each φ[R]

satisfies the hypotheses of Theorem 3.2, and the λR’s satisfy

|λR| ≤ c
( �

T (I)×T (J)

|g|q′ dµ
)1/q′

µ(T (I)×T (J))1/q`(I)−(1+d1/2)`(J)−(1+d2/2).

Note that, because of g’s compact support, the sum (3.3) is finite.
Let % be the dual exponent to p′/2, and let h be non-negative and satisfy�
|h|% σ = 1. We need to show that

�
|T̃ g|2 hσ dx1 dx2 ≤

( �

Rd1+1
+ ×Rd2+1

+

|g(t1, t2, y)|q′ dµ(t1, t2, y)
)2/q′

,

independent of the particular choice of h. We now apply Main Theorem 3,
setting v = hσ. We get
�
|T̃ g|2 hσ dx1 dx2

≤ C
∑

R

|λR|2
|R|

∞∑

j1=0

∞∑

j2=0

3−2M1j1−2M2j2+j1d1+j2d2+(j1+j2)ε(̃hσ)(3j1I×3j2J, η),
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where we have chosen η = 2τ/p′ > 2 (i.e., τ = ηp′/2). The argument from
[W3] shows that, for any rectangle R,

(̃hσ)(R) ≤ C(d1, d2, p)σ̃(R, ηp′/2)2/p′ .

But this last quantity is less than or equal to Cw(R)2/p′ . Thus, we may
dominate our sum by

C
∑

R=I×J

|λR|2
|R|

∞∑

j1=0

∞∑

j2=0

3−2M1j1−2M2j2+j1d1+j2d2+(j1+j2)εw(3j1I × 3j2J)2/p′ .

At the cost of slightly increasing ε, we may dominate
∞∑

j1=0

∞∑

j2=0

3−2M1j1−2M2j2+j1d1+j2d2+(j1+j2)εw(3j1I × 3j2J)2/p′

by

Cε

( �

Rd1×Rd2

w(x1, x2)
[s(x1, x2)]p′/2

dx1 dx2

)2/p′

,

where s(x1, x2) is as in the statement of the corollary. (Note: here we are fol-
lowing, almost verbatim, the procedure of Corollary 2.8; see above.) There-
fore,

�
|T̃ g|2 hσ dx1 dx2 ≤ C

∑

R=I×J

|λR|2
|R|

( �

Rd1×Rd2

w(x)
[s(x1, x2)]p′/2

dx1 dx2

)2/p′

,

where the λR’s have the bounds given above. The rest of the proof is now ex-
actly like that from Corollary 2.8, and we leave it to the interested reader.

Final Remarks. In [WW1], Richard Wheeden and the author proved
sufficient conditions, on weights v and measures µ, for the Bergman-type
inequality

( �

Rd+1
+

|y−1ψy ∗ f(x)|q dµ(x, y)
)1/q

≤
( �

Rd
|f |p v dx

)1/p

to hold for all f in a reasonable test class, and for certain smooth convolution
kernels ψ that satisfied

�
ψ = 0. It may be instructive to compare the results

obtained in [WW1] to those proved here. In most respects, but not all, those
from the present paper are stronger.

1) The general result obtained in [WW1] required that the smooth kernel
ψ satisfy:

|ψ(x)| ≤ (1 + |x|)−M , `(I)|∇ψ(x)| ≤ (1 + |x|)−M−1,
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for all x ∈ Rd, for some M ≥ d+ 2. The methods of this paper only require
that M > d. So, in this respect, the results from the present paper are
stronger.

On the other hand:
2) In both [WW1] and the present paper, the sufficient condition ob-

tained was (essentially) of the form

µ(T (I))1/q
( �

Rd

w(x)
(1 + |x− xI |/`(I))%

)1/p′

≤ C`(I)ν ,

for all cubes I ⊂ Rd, for certain exponents % and ν, depending (possibly) on
p, q, and d; we say “essentially” because the result from [WW1] also included
a power of a logarithm in the numerator of the integrand. The exponent to
watch here is %: the bigger % is (i.e., the more decay in the w-integral), the
better the theorem. In [WW1], % = p′/q′; here, % = p′M − (p′/2)(d + ε).
Thus, the result from the present paper is better when M > qd/2, but
[WW1]’s is better when M < qd/2 (unless d < M < d + 2, where [WW1]
gave no general result). The author does not know yet what to make of this
puzzling phenomenon.

Remark. Just as this paper was being accepted for publication, the
author learned of an argument which improves the value of c̃(p) (see Def-
inition 2.9) in Theorem 2.10, for p outside the range of 1 ≤ p ≤ 2. Unfor-
tunately, this argument offers no improvement for 1 < p ≤ 2, which is the
range needed for our main application (Bergman space inequalities), nor is
it clear at this time that it can be extended to the two-parameter setting.

Appendix: Justification of continuity. We refer the reader to the
proof of Lemma 3.5 in [U].

By dilation and translation, we may assume that we have a smooth
function φ(x, y), defined on Rd1 × Rd2 , satisfying:

|φ(x, y)| ≤ (1 + |x|)−M1(1 + |y|)−M2 ,

|∇xφ(x, y)| ≤ (1 + |x|)−M1−1(1 + |y|)−M2 ,

|∇yφ(x, y)| ≤ (1 + |x|)−M1(1 + |y|)−M2−1,

|∇x∇yφ(x, y)| ≤ (1 + |x|)−M1−1(1 + |y|)−M2−1,

for some Mi > di. We furthermore assume that φ has integral zero along
each of its x and y slices.

Let h ∈ C∞(R) be a non-negative function with support contained in
(.1, .9), and which satisfies

∞∑

j=1

h(3−jt) ≡ 1 for t > 1.
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Set

h0(t) = 1−
∞∑

j=1

h(3−jt).

Then, for any y ∈ Rd2 ,

φ(x, y)

= h0(|x|)φ(x, y) +
∞∑

j=1

h(3−j|x|)φ(x, y)

=
[
h0(|x|)φ(x, y) + h(|x|)

�
Rd1

∑∞
k=1 h(3−k|t|)φ(t, y) dt�
Rd1 h(|t|) dt

]

+
∞∑

j=1

[
h(3−j|x|)φ(x, y)− h(3−j+1|x|)

�
Rd1

∑∞
k=j h(3−k|t|)φ(t, y) dt

�
Rd1 h(3−j+1|t|) dt

+ h(3−j|x|)
�
Rd1

∑∞
k=j+1 h(3−k|t|)φ(t, y) dt

�
Rd1 h(3−j |t|) dt

]

= β̃0(x, y) +
∞∑

j=1

β̃j(x, y).

The β̃j ’s smoothness in x and cancellation (in x), as well as the support
properties, follow as they do in Uchiyama’s proof. Cancellation in y is trivial.
What is not so trivial, but also not hard, is the smoothness in y of the β̃j ’s.
However, it is easy to see (by, say, the Dominated Convergence Theorem)
that

|∇yβ̃j(x, y)| ≤ C(M1, d1)3−jd1
�

|t|>c3j
|∇yφ(t, y)| dt

≤ C3−jd1(1 + |y|)−M2−13jd1−jM1 = C3−M1d1(1 + |y|)−M2−1,

with a corresponding estimate for ∇x∇yβ̃j . This justifies our statement
about “continuity in φ.”
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