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Carleson’s theorem with quadratic phase functions

by

Michael T. Lacey (Atlanta, GA)

Abstract. It is shown that the operator below maps Lp into itself for 1 < p <∞.

Cf(x) := sup
a,b

∣∣∣p.v.
�
f(x− y)ei(ay

2+by) dy

y

∣∣∣.

The supremum over b alone gives the famous theorem of L. Carleson [2] on the pointwise
convergence of Fourier series. The supremum over a alone is an observation of E. M.
Stein [12]. The method of proof builds upon Stein’s observation and an approach to
Carleson’s theorem jointly developed by the author and C. M. Thiele [7].

1. The main result. Consider the maximal operator

Cdf(x) = sup
deg(p)=d

∣∣∣∣p.v.
�
f(x− y)e(p(y))

dy

y

∣∣∣∣

in which d is an integer, p is a polynomial of degree d, e(u) := eπiu, f is a
Schwartz function and the integral is understood in the principal value sense.
This definition is motivated principally by the case d = 1. C1f controls the
maximal partial Fourier integrals of f and it extends to a bounded map from
Lp into itself for 1 < p <∞. The critical contribution here is L. Carleson’s
proof [2] of the boundedness of C1 from L2 into weak L2. The Lp version
was established by R. Hunt [4]. Also see [3, 7].

It is natural to ask if the same results hold for larger values of d—this is
a conjecture due to E. M. Stein. The point of this paper is to demonstrate
that this is the case for d = 2.

1.1. Theorem. C2 extends to a bounded map from Lp into itself for all
1 < p <∞.

To prove the theorem, it suffices to show that C2 maps L2 into weak L2

as our proof can be modified to treat all 1 < p < ∞. We briefly indicate
how to do this in the next section.
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Our theorem has these further antecedents. A prevalent research theme
associated to E. M. Stein, F. Ricci and S. Wainger is the study of a wide class
of oscillatory singular integrals. It is of interest to know that many bounds
for oscillatory operators with polynomial phase can be taken to depend only
on the degree of a phase function and not otherwise on the coefficients in the
phase function. Among several articles we could cite, see Stein and Wainger
[13, 14] and Ricci and Stein [11].

Of particular relevance to this paper is an observation of E. M. Stein
[12] concerning the distribution e(y2)/y. Its Fourier transform has an easily
calculable form, one that permits analysis of the maximal operator formed
from dilations of this distribution. We rely very much on this observation
and briefly recall it in the next section.

As well, we now have a much richer understanding of Carleson’s theorem
as presented in papers of Fefferman, Lacey and Thiele, and Thiele [3, 7, 15],
and of some related issues [8, 9, 6]. We invoke some of these elements to
provide a proof of our main theorem. Stein’s argument and the overview of
our proof are laid out in the next section. The main inequality described in
that section requires a careful analysis in time and frequency variables, that
being carried out in the remaining sections of the paper.

After this note was prepared and submitted, Stein and Wainger informed
me of their paper [14], which addressed the maximal operator Cd above,
with however the important restriction that the polynomials p over which
the supremum is formed have zero coefficient for the linear term. In this
instance, they supply an elegant extension of the Kolmogorov–Silvestrov
method to show that this maximal operator is bounded on L2. Their paper
also addresses natural higher dimensional analogues of Cd.

It may be the case that elements of the argument of this paper can be
combined with the arguments of [14] to provide a complete proof of the
conjecture that Cd is bounded on L2. We hope to return to this in a future
paper.

The elegant results of K. Oskolkov [10] are of the same genre as ours.

T. Tao and J. Wright informed me of this problem. G. Mockenhoupt
brought Stein’s article [12] to my attention. Part of this work was com-
pleted at the Centre for Mathematics and its Applications at the Australian
National University. I am indebted to all.

Notations. The Fourier transform is taken to be

f̂(ξ) :=
�
f(x)e(−2xξ) dx.

The norm of an operator T from Lp into Lp is written as ‖T‖p→p with a
corresponding notation for the weak type norm. By A . B we mean that
there is an absolute constant K so that A ≤ KB; by A ' B we mean
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A . B and B . A; c(J) is the center of the interval J ; and χJ(x) =
(1 + dist(x, J)|J |−1)−1.

2. The overview of the proof. The supremum we wish to bound
admits a description as a supremum over dilations, for which there are a
wealth of techniques to use, and a supremum over modulations in frequency,
which is the domain of Carleson’s theorem. It is useful to formalize these
aspects with a couple of definitions.

A distribution K(y) determines two maximal functions of interest to us.
They are

D[K]f(x) := sup
a>0

∣∣∣
�
f(x− y)a−1K(a−1y) dy

∣∣∣,

C[K]f(x) := sup
b∈R
|D[K](e(b ·)f)(x)|

= sup
b∈R

sup
a>0

∣∣∣
�
f(x− y)e(by)a−1K(a−1y) dy

∣∣∣.

Thus if K(y) = y−11{0<|y|≤1}, the D[K] is the maximal truncation of the
Hilbert transform and C[K] is Carleson’s maximal operator.

For the remainder of this section we set K(y) := e(y2/4)/y. To prove
our theorem we show that C[K] maps L2 into L2,∞.

We recall Stein’s argument [12] that D[K] maps L2 into L2. The Fourier
transform of K is a smooth odd function satisfying

K̂(ξ) = c0 + e(ξ2){c1/ξ + c2/ξ
2 + . . .} as ξ →∞(2.1)

for some choice of constants cj , j ≥ 1. We should emphasize that the con-
stants cj are of the order j!. As is usual in these considerations, rigorous
results are obtainable from a finite expansion, with an asymptotically small
error term.

Indeed ∂K̂(ξ) = � e(x2/4− xξ) dx = ce(ξ2). Moreover K̂ is odd as K is
odd, hence

c−1K̂(ξ) =
ξ�
0

e(y2) dy =
∞�
0

e(y2) dy −
∞�
ξ

e(y2) dy,

and the assertion follows since
∞�
ξ

e(y2) dy = e(ξ2){c′1/ξ + c′2/ξ + . . .} as ξ →∞.

With (2.1) established we can write K̂ = Ĥ +
∑∞

j=1 2−jm̂j where Ĥ is
smooth odd and equals c0sign(ξ) for |ξ| > 2. The multipliers m̂j are of the
form

m̂j(ξ) = ψj(2−jξ)e(ξ2)(2.2)
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where ψj are C∞ functions with support in 1/2 ≤ |ξ| ≤ 2, and with uni-
formly bounded first and second derivatives. (The ψj will in fact converge to
a fixed function in any Cs space.) These multipliers are our main concern.

Now, the term arising from H is governed by the Hilbert transform. In
particular D[H] is bounded from L2 into L2 as this is the maximal trun-
cation of the Hilbert transform. In a like manner we have the estimate
‖C[H]‖2→2,∞ . 1 by Carleson’s theorem [2].

Stein has shown that ‖D[mj ]‖2→2 . 2j/2, which then completes the proof
of the bound on D[K]. To prove our main theorem, we demonstrate that

‖C[mj]‖2→2,∞ . 2γj for some 0 < γ < 1.(2.3)

In fact γ = 8/9 will work. [By optimizing our argument we could establish
this estimate for any γ > 1/2.]

Stein’s argument is crucial to our own and so we recall it here. To bound
‖D[mj]‖2→2 it suffices to prove that

∥∥∥ sup
1≤a≤2

∣∣∣
�
mj,a(y)f(x− y) dy

∣∣∣
∥∥∥

2
. 2j/2‖f‖2(2.4)

where mj,a(y) := a−1mj(a−1y). And to this end the method of TT ∗ is
invoked. Observe that

sup
1≤a,b≤2

|mj,a ∗mj,b(y)| . Φj(y), y ∈ R,(2.5)

where

Φj(y) =
{

2j/2|y|−1/2, |y| ≤ c2j ,
2j(1 + 2j |y|)−2, |y| ≥ c2j .(2.6)

We can take c = 16. Note that Φj is non-decreasing and � Φj dy . 2j , which
proves (2.4).

After taking dilation into account, (2.5) amounts to the estimate

sup
0≤b≤4

∣∣∣
�
ψ̃(2−jξ)e(bξ2 + 2ξy) dξ

∣∣∣ . Φj(y).(2.7)

Here ψ̃ is another Schwartz function with support in 1/2 ≤ |ξ| ≤ 2. Set
p(ξ) = bξ2 + 2ξy. If |y| ≥ cb2j observe that the derivative of p with respect
to ξ exceeds c|y| on the support of ψ̃(2−jξ). Thus repeated integration by
parts will prove the estimate. If |y| ≤ cb2j we can use the van der Corput
second derivative test. It provides the estimate of the integral as . b−1/2 .
2j/2|y|−1/2. Thus the inequality holds.

The remainder of the paper is devoted to a proof of (2.3).
To do so we use the time frequency analysis of Lacey–Thiele [7] with some

further ideas drawn from Fefferman [3] and Thiele [15]. A central conceptual
problem arises from the fact that m̂j is supported in an interval of length 2j

but mj has (approximate) spatial support in an interval of the same length.
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That is, classical Fourier uncertainty is not observed. Treating this issue is
probably the main novelty of this paper.

For our subsequent use observe these points. First, in the definition of
(2.2) we can assume that ψ is supported in 1 − 1/40 ≤ ξ ≤ 1 + 1/40 (as
opposed to 1/2 ≤ |ξ| ≤ 2). As a matter of notational convenience, we shall
assume that ψ is independent of j.

Second, (2.7) implies that � |mj| dy . 2j , hence ‖D[mj]‖∞→∞ . 2j , so
that by interpolation

‖D[mj]‖p→p . 2j(1−1/p), 2 < p <∞.(2.8)

Thus D[K] maps Lp into itself for 2 < p <∞.
Indeed, this estimate holds for 1 < p <∞. In fact, we have the compan-

ion estimate to the L∞ estimate above, ‖D[mj ]‖1→1 . 2j . These estimates
require no cancellation, and so hold for C[mj] as well. Thus to prove our
main theorem and in light of the extension of Hunt of Carleson’s theorem,
it suffices to provide the bound we have claimed for C[mj] on L2.

Third, there is a sharper form of Stein’s observation. Namely the operator

Djf(x) := sup
1≤a≤2

sup
|N |≤2j

∣∣∣
�
a−1mj(a−1(x− y))e(Ny)f(y) dy

∣∣∣(2.9)

maps L2 into L2 with norm bounded by . 2j/2. Employing the same
arguments as above, this amounts to the estimate

sup
0≤b≤4

sup
|N |≤2j+2

∣∣∣
�
ψ̃(2−jξ)e(bξ2 + (N + y)ξ) dy

∣∣∣ . Γj(y)

where

Γj(y) =
{

2j/2|y|−1/2, |y| ≤ c2j ,
2j(1 + 2j|y|)−n, |y| ≥ c2j .

In this definition, n is an arbitrary positive integer and c = 32. Details are a
modification of the earlier argument. In fact we have ‖Dj‖p . 2j(1−1/p) for
2 ≤ p <∞. We shall have recourse to this below.

Fourth, in proving the estimate (2.4) we follow the approach of Kol-
mogorov and Silvestrov, as Fefferman [3] has demonstrated that this is a
powerful technique in issues related to Carleson’s theorem. We show that
there is a 0 < γ < 1 so that for all j, measurable functions N : R → R,
` : R→ Z and a : R→ [1, 1 + 1/40],∥∥∥

�
mj,a(x)2`(x)(x− y)f(y)e(N(x)y) dy

∥∥∥
2,∞
. 2γj‖f‖2.(2.10)

We will do this with γ = 8/9. This inequality is sufficient for our purposes.

3. The discrete operator. Let D be a collection of dyadic intervals
in the real line. Let Pfat be the set of rectangles s = Is × ωs ∈ D × D
which have area |Is| |ωs| = 22j . We call these fat tiles and we generically
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write s, s′, s′′ for fat tiles. Let ωs1 (resp. ωs2) be the left (resp. right) half
of ωs. This definition is chosen in accordance with the frequency and spatial
localizations of the kernel mj , its dilates and modulations.

Let Pthin be the set of rectangles σ ∈ D × D of area 1. We call these
thin tiles and we generically write σ, σ′, σ′′ for thin tiles. Set thin(s) :=

{
σ ∈

Pthin : Iσ = Is, ωσ ⊂ 3
4ωs2

}
. For σ ∈ thin(s), set ωσj := ωsj for j = 1, 2.

See Figure 1. [Actually, “thin tiles” obey classical Fourier uncertainty and
so are thin only in contrast to fat tiles.]

ωs1

ωs2

Is

Fig. 1. A fat tile s and thin tiles σ ∈ thin(s)

Fix a Schwartz function ϕ with 1[−1/80,1/80] ≤ ϕ̂ ≤ 1[−1/40,1/40]. For a
rectangle σ = Iσ × ωσ of area 1 (not necessarily a thin tile) define

ϕσ(x) =
e(2c(ωσ)x)√

|Iσ|
ϕ

(
x− c(Iσ)
|Iσ|

)
.

In this display and throughout, c(J) is the center of the interval J .
Fix the data j ≥ 1, f ∈ L2 of norm one, functions N , ` and a as in

(2.10). For s ∈ Pfat, σ ∈ thin(s) and integer l with 2−l = |ωs2|, define

E(s) = E(σ) := {x ∈ R : N(x) ∈ ωs1, `(x) = l},
φσ(x) = 1E(σ)(x)

�
ϕσ(y)e(−2N(x)y)a(x)−12−l−jmj(a(x)−12−l−j(x−y)) dy,

Mjf(x) =
∑

s∈Pfat

∑

σ∈thin(s)

〈f, ϕσ〉φσ(x).

A principal motivation for these definitions is the proof of Lemma 4.3
below. At this point we simply observe that the support of the integral in
the definition of φσ is in E(σ). m̂j is supported in a small neighborhood of
2j so that the second function in the last integral has frequency support in
a small interval around 2−l. Moreover, ϕ̂σ is supported in a small interval
around c(ωσ) with ωσ ⊂ 3

4ωs2. So N(x) must be in ωs1 in order for the
integral to be non-zero.
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We claim that the following inequality is sufficient for (2.10):

‖Mjf‖2,∞ . 2γj , γ = 8/9.(3.1)

In the proof of this inequality, we only consider sums over finite subsets
Sfat ⊂ Pfat. We fix data f ∈ L2 of norm one and the functions N , ` and
a. Let Mj be the sum restricted to this new smaller class of tiles. Then, by
dilation invariance, (3.1) is implied by this inequality:

|{Mjf > 1}| . 22γj, γ = 8/9,(3.2)

the inequality holding for all functions f of L2 norm one.

Proof of sufficiency of (3.1). A convexity argument can be used to show
that (3.1) implies the inequality (2.3). Indeed arguments like this are a
standard part of the theory related to Carleson’s theorem and multiliner
operators, having been used many times in related papers, for instance [3,
7, 8]. Accordingly, we will be somewhat brief.

Let us give the convexity argument in an elemental form. For our sub-
sequent use, let us define translation and modulation operators by

Trt f = f(x− t) and Modt f(x) = e−ixtf(x) for t ∈ R.
Observe that the sum ∑

n∈Z
〈f,Trn ϕ〉Trn ϕ

could be written as a sum over tiles. More importantly,
1�
0

∑

n∈Z
〈f,Trn+t ϕ〉Trn+t ϕdt =

∞�
−∞
〈f,Trt ϕ〉Trt ϕdt = ψ ∗ f

where ψ(x) = � ϕ(−y)ϕ(x−y) dy. Recall that we specified ϕ to be a Schwartz
function with 1[−1/80,1/80] ≤ ϕ̂ ≤ 1[−1/40,1/40], so that ψ satisfies a similar
set of inequalities.

Elaborating on this theme, observe that the sum∑

m,n∈Z
〈f,Modm Trn ϕ〉Modm Trn ϕ(3.3)

could be written as a sum over tiles. Define

Af =
1�
0

1�
0

∑

m,n∈Z
〈f,Modm+τ Trn+t ϕ〉Modm+τ Trn+t ϕdτ dt

=
∞�
−∞

∞�
−∞
〈f,Modτ Trt ϕ〉Modτ Trt ϕdτ dt.

This is a multiple of the identity, as is easy to see. Af is a bounded lin-
ear operator on L2 that commutes with translations and modulations. It is
furthermore positive definite, whence a multiple of the identity.
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By periodicity, Af is also equal to

(3.4) Af

= lim
τ→∞

lim
t→∞

(τt)−1
t�
0

τ�
0

∑

m,n∈Z
〈f,Modm+τ ′ Trn+t′ ϕ〉Modm+τ ′ Trn+t′ ϕdτ

′ dt′.

This concludes our general remarks on resolutions of the identity and the
use of convexity.

Let us turn to the operator Mj . Define, for an integer l,

Pj,lf =
∑

s∈Pfat
|ωs2|=2−l

∑

σ∈thin(s)

〈f, ϕσ〉ϕσ,

and observe that this sum is similar to (3.3). We may average these operators
over modulations and translations to obtain a multiple of the identity. This
can be done in a way that is independent of l ∈ Z and of j ≥ 1. We shall
return to this point momentarily.

To make the connection with our operator Mj more directly, observe
that with the notation used in the definition of Mj ,

Mjf(x) = (Mod2N(x) Dil2`(x)−ja(x)mj) ∗ Pj,`(x)f(x)

where Dilδ g(x) = δ−1g(xδ−1).
Thus the main point is that we can recover the identity operator from

Pj,l in a way that is independent of l and j and does not affect the assumed
inequality (3.1).

But certainly translation and modulation do not affect the distributional
inequality. Moreover, we can obtain the identity operator from the Pj,l in this
way. Recall that the tiles depend upon choices of dyadic grids D and D′.
A translation of D (resp. D′) corresponds to an application of Trt (resp.
Modτ ) to the functions ϕσ. Thus the assumed inequality applies to any Mj

obtained from translations of either grid. Finally, the periodicity property
(3.4) shows that the identity operator can be obtained in a way that is
independent of l. This completes the proof.

4. Trees and size. The principal definitions and lemmas are stated in
this section. We show how they prove (3.2), and prove the lemmas in the
following section. We begin with requisite definitions.

A subset Sfat ⊂ Pfat has scales separated by factor J if for all s, s′ ∈ Sfat,
the inequality |Is| < |Is′ | implies that 2J |Is| < |Is′ |. We will apply the same
terminology to collections of thin tiles.

For s, s′ ∈ Pfat say that s < s′ iff Is ⊂ Is′ and ωs ⊃ ωs′ . Say that
Tfat ⊂ Pfat is a tree if there is an ITfat × ωTfat ∈ Pfat with s < ITfat × ωTfat

for all s ∈ Tfat. The top of a tree need not be unique.
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A subset Tthin ⊂ Pthin is a tree if it is a subset of thin(Tfat) for some tree
Tfat ⊂ Pfat. We denote the top of the tree by ITthin × ωTthin := ITfat × ωTfat .
A tree Tthin is a 1-tree (resp. 2-tree) if for all σ 6= σ′ ∈ Tthin either ωσ = ωσ′
or ωσ ∩ ωσ′ = ∅ (resp. ωσ ∩ ωσ′ 6= ∅).

Note that if Tthin has scales separated by factor 2j, then Tthin can be
uniquely decomposed as a union of a 1-tree and a 2-tree. Also note that the
definition of 1-trees and 2-trees is formulated in terms of ωσ and not ωσ2.

For Sfat ⊂ Pfat, define the size of Sfat to be

size(Sfat) := sup
Tthin⊂thin(Sfat)

[
|ITthin |−1

∑

σ∈Tthin

|〈f, ϕσ〉|2
]1/2

where the supremum is taken over all 1-trees

Tthin ⊂ thin(Sfat) :=
⋃

s∈Sfat

thin(s).

The central lemma concerning size is

4.1. Lemma. A finite collection Sfat ⊂ Pfat is a union of collections
Sfat(n), n ∈ Z, for which size(Sfat(n)) ≤ j2n and

∑

s∈Sfat(n)∗
|Is| . 2−2n,(4.2)

where Sfat(n)∗ consists of the maximal s ∈ Sfat(n).

Observe that j (that is a measure of how fat the tiles are) enters into
this lemma, albeit in a weak fashion.

For Sthin ⊂ Pthin set

MSthin
j =

∑

σ∈Sthin

〈f, ϕσ〉φσ.

If Sfat ⊂ Pfat, define MSfat
j to be M thin(Sfat)

j . Concerning trees, our central
lemma is

4.3. Lemma. For all trees Tfat,

‖MTfat
j ‖p . size(Tfat)j2j(3−5/p)|ITfat |1/p, 2 < p <∞.(4.4)

|MTfat
j (x)| . 22jsize(Tfat)χITfat

(x)m, x 6∈ 2ITfat , m ≥ 1,(4.5)

where χJ(x) = (1 + dist(x, J)|J |−1)−1.

Notice that the first estimate should be compared to Stein’s estimate
for D[Mj ], and is only slightly worse than that estimate if p = 2. That the
(large) factor of 22j enters into the second estimate is completely harmless.

Set ε = (200)−1, p = 9/4, µ = 7/9 and γ = 8/9. We are to prove the
distributional estimate (3.2).
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For n > −γj, we in essence rely upon the fact that MSfat(n)
j is supported

on a set of small measure. To make this precise, let En =
⋃
s∈Sfat(n)∗ 2εjIs

and F0 =
⋃
n>−γj En. The latter set has measure

|F0| ≤
∑

n>−µj
|En| .

∑

n>−µj
2εj−2n . 22γj.

We do not need to estimate Mj on this set.
Using (4.5), with m in that inequality being m = 400, we see that

‖MSfat(n)
j ‖L1(F c

0 ) . 2−100j
∑

s∈Sfat(n)∗
|Is| . 2−100j−2n.

Bringing these estimates together, we see that for the collection S̃fat =⋃
n>−µj Sfat(n), we have |{M S̃fat

j > 1}| . 22γj, as is required in (3.2).
For n ≤ −γj, we need a more involved argument. We encode some of

the necessary combinatorics into this lemma:

4.6. Lemma. For n ≤ −γj there is a set En ⊂ R with |En| . 2n so that
the collection S̃fat(n) = {s ∈ Sfat(n) : Is 6⊂ En} is a union of collections
Ufat(n, k), 1 ≤ k ≤ −500n, which satisfies these properties. For each 1 ≤
k ≤ −500n,

(i) Ufat(n, k) is uniquely decomposable into maximal disjoint trees Tfat ∈
Tfat(n, k).

(ii) ‖∑Tfat∈Tfat(n,k) 1ITfat
‖∞ . 2−10n.

(iii) {2−εnITfat×ωTfat : Tfat ∈ Tfat(n, k)} are pairwise disjoint rectangles.
(iv) For all s ∈ Ufat(n, k),

Is 6⊂
⋃

Tfat∈Tfat(n,k)

{x : dist(x, ∂ITfat) < 210n|ITfat |}.

(v) Either Tfat = {ITfat ×ωTfat} for all Tfat ∈ Tfat(n, k) or ITfat ×ωTfat 6∈
Tfat for all Tfat ∈ Tfat(n, k).

(vi) The collection of tiles Ufat(n, k)∪⋃{ITfat × ωTfat : Tfat ∈ Tfat(n, k)}
has scales separated by a factor of 200n.

We do not estimate our operator Mj on the set F1 =
⋃
n≤−µj En. As this

set has measure |F1| . 2−µj . 2−2γj, there is no harm in doing this.
Off this set, our lemma permits the following construction. For all n ≤

−µj, 0 ≤ k ≤ −10,000n and Tfat ∈ Tfat(n, k) there are functions NTfat for
which

(4.7) |NTfat(x)−MTfat
j (x)| . 210nχITfat

(x)100, x ∈ R,
(4.8) the functions NTfat are disjointly supported in Tfat ∈ Tfat(n, k).
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But then we can estimate, by (4.4),
∥∥∥

∑

Tfat∈Tfat(n,k)

NTfat

∥∥∥
p

p
=

∑

Tfat∈Tfat(n,k)

‖NTfat‖pp

. jp2np+(3−5/p)pj
∑

Tfat∈Tfat(n,k)

|ITfat |

. j527j/4+n/4.

Thus certainly

|{MUfat(n,k)
j ≥ 2n/18}| . 27j/4+n/8.

This is summable over n ≤ −µj and 0 ≤ k ≤ −500n and so completes our
proof of (3.2).

[This interplay between L2 and Lp estimates is due to C. Thiele [15]
and contrasts with the argument of Lacey and Thiele [7]. The latter paper
uses two notions of “energy” (the current “size”) and “mass”, which are
in some sense dual to each other. The notion of “mass” cannot play the
same role in our paper: “Mass” can be exploited through devices linked
to the Hardy–Littlewood maximal function, but our kernels bear no close
connection to that maximal function.]

The construction relies on an argument from [6]. Fix n, k, set Ufat :=
Ufat(n, k) and Tfat := Tfat(n, k). For each s ∈ Ufat we construct a set Gs
as follows. Recall (v) from Lemma 4.6. If each Tfat ∈ Tfat consists only
of a top we set Gs = 2−εnIs where s is the top of the tree and NTfat =
1Gs

∑
σ∈thin(s)〈f, ϕσ〉φσ. Then (4.8) follows from (iii) and (4.7) follows from

(4.5).
We thus assume that no tree Tfat ∈ Tfat contains its top. We then make

the following definitions for s ∈ Tfat:

Gs := ITfat −
⋃

T ′fat∈Tfat(s)

IT ′fat
,

Tfat(s) := {T ′fat ∈ Tfat − {Tfat} : ωs1 ⊃ ωT ′fat
, IT ′fat

⊂ ITfat},
NTfat :=

∑

s∈Tfat

1Gs
∑

σ∈thin(s)

〈f, ϕσ〉φσ.

We verify (4.8). Since the support of φσ is in {x : N(x) ∈ ωs1}, where
σ ∈ thin(s), (4.8) is a consequence of the observation that if Gs × ωs1 ∩
Gs′ × ωs′1 6= ∅ then s and s′ are in the same tree. Indeed, write s ∈ Tfat
and s′ ∈ T ′fat and assume say ωs′1 ⊂ ωs1. If ωs′1 = ωs1 and the two trees
are distinct then ITfat and IT ′fat

are disjoint by (i). Assume ωs′1  ωs1 and
Gs ∩Gs′ 6= ∅. Then ωTfat , ωT ′fat

⊂ ωs1. See Figure 2. The tops ITfat and IT ′fat
must intersect. Assuming ITfat ⊂ IT ′fat

implies s < IT ′fat
× ωT ′fat

. But then
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condition (i) forces Tfat = T ′fat. Thus we must have IT ′fat
⊂ ITfat , which by

definition means that IT ′fat
∩ Gs = ∅, so by definition Gs ∩ Gs′ = ∅. This is

a contradiction and so proves (4.8).

s

ITfat
× ωTfat

IT ′fat
× ωT ′fat

Fig. 2. The top of the tree T ′fat does not intersect the set Gs since the intervals ITfat and
IT ′fat

intersect.

We verify (4.7). In the case of x 6∈ ITfat this follows from the fact that
the top is not in the tree, (4.5) and conditions (iv) and (vi) of Lemma 4.6.
We do not comment further.

For x ∈ ITfat we in fact have NTfat(x) = MTfat
j (x) unless x ∈ IT ′fat

and
T ′fat ∈ Tthin(s) for some s ∈ Tfat. Indeed, with Tfat fixed we can assume
that IT ′fat

⊂ ITfat for all T ′fat ∈ Tfat. Then we shall just reverse the order of
summation below.

|NTfat(x)−MTfat
j (x)| ≤

∑

T ′fat∈Tfat−{Tfat}

∑

σ∈thin(Tfat(T ′fat))

|〈f, ϕσ〉φσ(x)|,

where Tfat(T ′fat) := {s ∈ Tfat : T ′fat ∈ Tfat(s)} and Tfat(s) was used to define
Gs. But again conditions (iv) and (vi) imply that

∑

σ∈thin(Tfat(T ′fat))

|〈f, ϕσ〉φσ(x)| . 2200n1T ′fat
(x)

and (4.7) follows from condition (ii).
Our proof of (3.2) is complete modulo the proofs of the lemmas, which

are taken up in the next section.

5. Proofs of the lemmas

Proof of Lemma 4.1. The argument is a variant of one in [5, 1] and
has been used several times since. We give the details, although only small
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changes are needed to account for the disparity between fat and thin tiles.
The most expedient treatment requires a new definition of a tree.

Fix a choice of integer 0 ≤ k < 200j. For a 1-tree Tthin call a subset
T `thin ⊂ Tthin a left-tree (resp. right-tree) if there is a ξTthin ∈ ωTthin with
ξTthin to the left (resp. right) of every ωs, s ∈ T `thin. In addition require that
for all s ∈ T `thin ∪ {IT `thin

× ωT `thin
}, log2 |Is| ∈ k + 200jZ. Define the left size

of Sfat, or `-size(Sfat), as

`-size(Sfat) = sup
{[
|ITfat |−1

∑

s∈T `fat

|〈f, ϕσ〉|2
]1/2}

where the supremum is over all left-trees T `fat with Tfat ⊂ Sfat.
We prove this statement. For any finite Sfat ⊂ Pfat set ε = `-size(Sfat).

Then Sfat = Slo ∪ Shi with `-size(Slo) ≤ ε/4 and Shi is a union of trees
Tfat ⊂ Tfat with

∑

Tfat∈Tfat

|ITfat | . ε−2.(5.1)

An inductive application of this statement proves Lemma 4.1 with size(Sfat)
replaced by `-size(Sfat), with however a small improvement: The factor j
does not enter into this statement of the lemma in terms of `-size. The same
statement is true for right size. Letting k vary from 0 to 200j proves the
lemma as stated.

The construction of Shi and Tfat is inductive. The construction also
associates to each Tfat ∈ Tfat a particular left-tree T `thin which is used to
prove (5.1). Initially set Sstock

fat := Sfat. Select a tree Tfat ⊂ Sstock
fat so that

(a) Tfat contains a left-tree T `thin with
∑

σ∈T `thin

|〈f, ϕσ〉|2 ≥ (4ε)−2|ITfat |.

(b) ITfat is maximal among trees satisfying condition (a) and Tfat is the
maximal tree in Sstock

fat with that top.
(c) ξT `thin

is rightmost among trees satisfying (a) and (b).

Then add Tfat to Tfat, set Sstock
fat := Sstock

fat − Tfat. Repeat this procedure
until there is no tree satisfying (a). Then set Slo := Sstock

fat . By definition,
`-size(Slo) ≤ ε/4.

The left-trees we have constructed satisfy this disjointness property: For
Tfat 6= T ′fat ∈ Tfat and σ ∈ T `thin and σ′ ∈ T `′thin,

if ωσ  ωσ′ then ITfat ∩ Iσ′ = ∅.(5.2)

Indeed, ωTfat ⊂ ωσ′ so that ξT ′fat
< ξTfat . Thus the tree Tfat was constructed

before T ′fat. But if ITfat ∩ Is′ 6= ∅ we see that s′ < ITfat × ωTfat where σ ∈
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thin(s′). Hence s′ ∈ Tfat, which is a contradiction. See Figure 3.

ITfat
× ωTfat

IT ′fat
× ωT ′fat

s s′ s′′

Fig. 3. By the manner in which the trees are constructed, the tree Tfat was constructed
before T ′fat. Hence the tile s′ must be in Tfat. But the tile s′′ is a member T ′fat.

Let T red be those σ ∈ T `thin for which if |Iσ| < |IT red | then dist(Iσ, ∂IT red)
≥ 1

32 |IT red |. [“red” is for “reduced.” Note that the top is permitted to be in
T red, and if |Iσ| < |IT red | then |Iσ| is in fact much smaller than |IT red |.] As
`-size(Sfat) ≤ ε, it follows that

∑

σ∈T red

|〈f, ϕσ〉|2 ≥
ε2

32
|Ired
T |.

Set Sthin =
⋃
Tfat∈Tfat

T red and

B :=
∥∥∥
∑

σ∈Sthin

〈f, ϕσ〉ϕσ
∥∥∥

2
.

Observe that by Cauchy–Schwarz and ‖f‖2 = 1,

ε2

32

∑

Tfat∈Tfat

|ITfat | ≤
∑

σ∈Sthin

|〈f, ϕσ〉|2 =
〈
f,

∑

σ∈Sthin

〈f, ϕσ〉ϕσ
〉
≤ B.(5.3)

To conclude (5.1) we show that

B2 . ε2
∑

Tfat∈Tfat

|ITfat |.(5.4)

By expanding the L2 norm, B2 ≤ 2(B2
1 +B2

2) where we define

B2
j :=

∑

σ∈Sthin

〈f, ϕσ〉
∑

σ′∈Sjthin(σ)

〈ϕσ, ϕσ′〉〈ϕσ′ , f〉
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S1
thin(σ) := {σ′ ∈ Sthin : ωσ = ωσ′}, S2

thin(σ) := {σ′ ∈ Sthin : ωσ  ωσ′}.
Note that if ωσ ⊂ ωσ′ we have

|〈ϕσ, ϕσ′〉| .
√
|Iσ′ |
|Iσ|

χIσ(c(Iσ′))100.(5.5)

To bound B1 fix a dyadic interval ω. This last estimate and Cauchy–
Schwarz show that∣∣∣

∑

σ∈Sthin
ωσ=ω

〈f, ϕσ〉
∑

σ′∈S1
thin(s)

〈ϕσ, ϕσ′〉〈ϕσ′ , f〉
∣∣∣ .

∑

σ∈Sthin
ωσ=ω

|〈f, ϕσ〉|2.

Hence by (5.3) and summing over ω,

B2
1 .

∑

σ∈Sthin

|〈f, ϕσ〉|2 . ε2
∑

Tfat∈Tfat

|ITfat |

as `-size(Sthin) = ε. This is the first step in establishing (5.4).
To control B2

2 we must use the disjointness property (5.2). Fix a tree T red

and consider σ ∈ T red. Then the intervals {Iσ′ : σ′ ∈ Sthin(s)} are pairwise
disjoint and contained in (ITfat)

c. To see this note that for all σ′, σ′′ ∈ Sthin(s)
we have ωσ ⊂ ωσ′∩ωσ′′ . So (5.2) implies Iσ′ ∩Iσ′′ = ∅. Then we can estimate

∑

σ′∈Sthin(σ)

|〈f, ϕσ〉〈ϕσ, ϕσ′〉〈ϕσ′, f〉| . ε2
∑

σ′∈Sthin(s)

χIσ(c(Iσ′))
100|Iσ′ |

. ε2
�

(ITfat )c

χIσ(x)90 dx

. ε2
( |Iσ|
|IT red |

)10

|Iσ|.

Here, we have in addition relied upon the estimate

|〈f, ϕσ〉| ≤ ε
√
|Iσ|.

Finally, we have the estimate
∑

σ∈T `thin

�
(ITfat)c

χIσ(x)90 dx . |ITfat |

as Iσ is both much smaller than IT red and not close to the boundary of IT red .
This completes the proof of (5.4).

Proof of Lemma 4.3. We begin by verifying (4.5). For any σ ∈ Pthin and
m ≥ 0 observe that

|φσ(x)| . |Iσ|−1/2χIσ(x)m, x ∈ R.(5.6)
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Indeed, after taking dilation and translation into account this estimate re-
duces to∣∣∣2j/2

�
ψ̃(2jξ + ξ0)e(ξ2 + ξy) dξ

∣∣∣ . 2−j/2(1 + 2j|y|)−m, y ∈ R.

Here, ψ̃ is a Schwartz function supported in 1/2 ≤ |ξ| ≤ 2 and 2j−1 ≤ ξ0
≤ 2j+1. But then at most . 1 oscillations of e(ξ2) are relevant to the
integral, so the estimate follows by a repeated integration by parts. Then
(5.6) plus a routine argument proves (4.5).

Turning to the estimate (4.4), we can assume that the tree has scales
separated by a factor 4j. Then the tree is a union of a 1-tree and a 2-tree. It
suffices to prove (4.4) without the leading factor of j on the right for 1-trees
and 2-trees.

We consider first the case of a 2-tree Tthin. In this case, because of the
separation of scales, the sets ωσ1 for σ ∈ Tthin are disjoint and for σ 6=
σ′ ∈ Tthin, we can have |Iσ| 6= |Iσ′ |, in which case φσ and φσ′ are disjointly
supported. Thus it suffices to consider the case of |Iσ| = |Iσ′ |. Then Iσ ∩ Iσ′
= ∅, and the decay specified in (5.6) shows that

|MTthin
j (x)| . size(Tthin)χITthin

(x)8.

In either case, we have

|MTthin
j (x)| . size(Tthin)χITthin

(x)8.

That is, (4.4) is trivially satisfied in this case. [This argument is the key
motivation for the definitions of Pfat and Pthin as well as those of 1-trees
and 2-trees.]

We now turn to the case of a 1-tree Tthin. A specific case unlocks the
general case. Suppose that Tthin is a tree with |Iσ| = |Iσ′ | for all σ, σ′ ∈ Tthin
and 0 = c(ωσ,1). Then from (2.9) we have, for all 2 < p <∞,

‖MTthin‖p ≤
∥∥∥Dj

( ∑

σ∈Tthin

〈f, ϕσ〉ϕσ
)∥∥∥

p
(5.7)

. 2j(1−1/p)
∥∥∥
∑

σ∈Tthin

〈f, ϕσ〉ϕσ
∥∥∥
p

. 2j(1−1/p)+2j(1−2/p)size(Tthin)|ITthin |1/p.
The last line follows as there are 22j tiles σ in any thin(s) for s ∈ Pfat.

More generally, for any 1-tree Tthin, observe that there is a connection to
the space of functions of bounded mean oscillation. The distinction between
fat and thin tiles must enter into this relationship however. In particular,

∥∥∥
∑

σ∈Tthin

〈f, ϕσ〉ϕσ
∥∥∥

BMO
. 22jsize(Tthin).(5.8)
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To verify this estimate, we need only consider the estimate for a 1-tree Tthin
with 0 ∈ ωTthin , and then, only consider the mean oscillation over an interval
of length ' 1. We may then restrict ourselves to the case in which |Iσ| ≥ 1
for all σ ∈ Tthin. The point is then that∣∣∣∣

d

dx

∑

σ∈Tthin

〈f, ϕσ〉ϕσ(x)

∣∣∣∣ . 22jsize(Tthin), x ∈ R.

Let ωTthin = ω1  ω2  . . . be the maximal sequence of dyadic intervals
containing ωTthin . Let T lthin = {s ∈ Tthin : ωs = ωl}. Then the functions
MT lthin are disjointly supported in l. Hence,

‖MTthin‖pp ≤
∑

l

‖MT lthin‖pp . 2jp(1−1/p)
∑

l

∥∥∥
∑

σ∈T lthin

〈f, ϕσ〉ϕσ
∥∥∥
p

p

. 2jp(1−1/p)
∥∥∥
[∑

l

∣∣∣
∑

σ∈T lthin

〈f, ϕσ〉ϕσ
∣∣∣
2]1/2∥∥∥

p

p

. 2jp(3−5/p)size(Tthin)|ITthin |1/p.
Here we rely on p > 2, (5.8) and (5.7).

Proof of Lemma 4.6. We shall show that there is a set En ⊂ R so that
|En| . 2n and the collection S̃fat(n) := {s ∈ Sfat(n) : Is 6⊂ En} is a union of
collections Ũfat(n, k), 0 ≤ k ≤ −50n satisfying (i)–(iii).

The last three conditions of the lemma are trivially satisfied by making
further subdivisions of the subcollections Ufat(n, k), and making a small
further contribution to the exceptional set En. Thus, the lemma will follow
in complete generality.

Fix n and set Sfat = Sfat(n). Condition (ii) is also easy to satisfy. For
the first contribution to our exceptional set, define

E1 :=
{
x :

∑

x∈S∗fat

1Is(x) > 2−10n
}

where S∗fat consists of the maximal elements of Sfat. By (4.2), |E1| . 2n. We
can assume that for all s ∈ Sfat, Is 6⊂ E1. Then certainly (ii) is true.

We now show that Sfat is decomposable into subcollections Ufat(k), 1 ≤
k ≤ −10n, which are uniquely decomposable into maximal trees. This last
condition is true iff for each s ∈ Ufat(k) there is a unique maximal s∗ ∈ Ukfat
with s < s∗. And this is so iff the collection Ufat(k) does not admit a vee in
the partial order on tiles. A vee is three tiles s, s′, s′′ with s < s′, s′′ but s′

and s′′ not comparable with respect to the partial order on tiles.
To achieve this, we employ a method of Fefferman [3]. Define a counting

function
C(s) := ]{s∗ ∈ S∗fat : s < s∗}.
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Then C(s) ≤ 2−10n for all s ∈ Sfat as (ii) is true. Take the set Ufat(k) to be
{s : 2k−1 ≤ C(s) < 2k}.

That these sets do not contain vees follows immediately from the ob-
servation that C(s) is superadditive in this sense: If s, s′, s′′ ∈ Sfat is a
vee, then C(s) ≥ C(s′) + C(s′′). [Then if s′, s′′ ∈ Ufat(k) we see that
C(s) ≥ 2k−1 + 2k−1 = 2k, so it cannot be in Ufat(k).] Indeed, there can
be no maximal tile s′′′ larger than both s′ and s′′, for this would force s′ and
s′′ to be comparable in the partial order, as one checks immediately. Hence
the maximal tiles greater than s′ are disjoint from those greater than s′′,
which proves the superadditivity property.

The last condition to verify is (iii), which requires another class of con-
tributions to the exceptional set. Fix a choice of 1 ≤ k ≤ −10n. Consider
the maximal tiles U∗fat(k). We want to separate these tiles after expanding
the coordinates Is by a factor of 2−εn. This can be done, up to an excep-
tional set and a further division of U ∗fat(k), by applying Lemma 4.4 of [9] to
S = U∗fat, with A = 2εn. The details are omitted.
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