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On the directional entropy of Z2-actions
generated by cellular automata

by

M. Courbage (Paris) and B. Kamiński (Toruń)

Abstract. We show that for any cellular automaton (CA) Z2-action Φ on the space of
all doubly infinite sequences with values in a finite set A, determined by an automaton rule
F = F[l,r], l, r ∈ Z, l ≤ r, and any Φ-invariant Borel probability measure, the directional

entropy h~v(Φ),~v = (x, y) ∈ R2, is bounded above by max(|zl|, |zr |) log #A if zlzr ≥ 0 and
by |zr − zl| in the opposite case, where zl = x+ ly, zr = x+ ry.

We also show that in the class of permutative CA-actions the bounds are attained if
the measure considered is uniform Bernoulli.

Introduction. The concept of the directional entropy of a Z2-action
has been introduced by Milnor [5]. For basic definitions and properties of
the topological and metric directional entropy we refer the reader also to
the paper [2] of Boyle and Lind.

In this paper we consider the metric directional entropy of CA-actions
of Z2, i.e. Z2-actions generated by the natural extension of an automaton
map (determined by an automaton rule) and the shift acting on the space
of all doubly infinite sequences taking values in a finite state space.

It has been shown by Park [7] that for any CA-action the directional en-
tropy with respect to any invariant Borel probability measure is continuous
as a function of the direction vector.

Shereshevsky has shown in [9] that if the automaton map is bipermu-
tative then the associated CA-action is strongly mixing and it determines
in every direction a Bernoulli transformation with respect to the uniform
Bernoulli measure.

In general the calculation of the directional entropy is not easy.
In this paper we first estimate from above the directional entropy of any

CA-action with respect to an invariant Borel probability measure.
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Next we consider permutative CA-actions, i.e. actions determined by left
or right permutative or bipermutative automaton rules. It is well known that
for these actions the uniform Bernoulli measure is invariant.

We prove that if the automaton rule F[l,r] is right permutative then
h~v(Φ) = |zr| log #A for every ~v = (x, y) with 0≤zl≤zr or zr≤zl≤0, where
zr = x + ry and zl = x + ly. A similar result is valid for left permutative
automaton rules. If F[l,r] is bipermutative with zl · zr ≤ 0 then h~v(Φ) =
|zr − zl| log #A.

In [6] Milnor gave a formula for the directional entropy in the case of
bipermutative automaton rules by applying geometrical ideas. In our con-
siderations we use elementary properties of entropy.

Result. Let (X,B, µ) be a Lebesgue probability space and let Z be the
set of all countable measurable partitions of X with finite entropy equipped
with the Rokhlin metric

%(P,Q) = H(P |Q) +H(Q |P )

where H(P |Q) stands for the conditional entropy of P with respect to Q
for P,Q ∈ Z.

Let ξ, η ∈ Z. We write ξ 4 η if any atom of η is contained in some atom
of ξ. Let Φ be a Z2-action on (X,B, µ). For a set A ⊂ R2 and P ∈ Z we put

P (A) =
∨

g∈A∩Z2

ΦgP.

Let ~v = (x, y) be a fixed vector of R2 and let Γ denote the family of
all bounded subsets of R2. Let (T, S) be an ordered pair of commuting
automorphisms of X which generate Φ, i.e.

Φg = TmSn, g = (m,n) ∈ Z2.

For a partition P ∈ Z we put

h~v((T, S), P ) = sup
B∈Γ

lim sup
t→∞

1
t
H(P (B + [0, t)~v)).

It is known (cf. [7]) that in fact

h~v((T, S), P ) = sup
B∈Γ

lim
t→∞

1
t
H(P (B + [0, t)~v)).

If we take another pair (T1, S1) of commuting generators of Φ such that

T = T a1 S
b
1, S = T c1S

d
1

then it is easy to see that

h~v((T, S), P ) = hA(~v)((T1, S1), P )

where P ∈ Z and A =
(
a c
b d

)
.
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We shall use the notation

h~v(Φ,P ) = h~v((T0, S0), P )

where T0 = Φ(1,0) and S0 = Φ(0,1). The quantity h~v(Φ,P ) is called the
directional mean entropy of Φ with respect to P in direction ~v.

It is not hard to show that

h~v(Φ,P ) = lim
m→∞

lim
t→∞

1
t
H(P (R(~v,m, t)))

where

R(~v,m, t)

=
{

(i, j) ∈ Z2; 0 ≤ j ≤ [ty], −m+ jx/y < i ≤ m+ jx/y} if y 6= 0,
{(i, j) ∈ Z2; −m < j ≤ m, 0 ≤ i ≤ [tx] if y = 0.

The quantity
h~v(Φ) = sup

P∈Z
h~v(Φ,P )

is called the directional entropy of Φ in direction ~v.
It easily follows from the definition that

(1) For every α ∈ R,
hα~v(Φ) = |α|h~v(Φ).

(2) If ~v = (p, q) ∈ Z2 then

h~v(Φ) = h(Φ(p,q)).

Let X be the space of all two-sided sequences indexed by Z with values
in a finite set A = {0, 1, . . . , a− 1} and let B denote the product σ-algebra
of X. We denote by τ the shift transformation on X, i.e.

(τx)i = xi+1, i ∈ Z.
Let m be a fixed positive integer. We denote by Am the m-fold cartesian

product A× . . .×A. Any mapping F : Am → A is said to be an automaton
rule. An automaton rule F is said to be right permutative (cf. [9]) if for
any (x1, . . . , xm−1) ∈ Am−1 the mapping xm 7→ F (x1, . . . , xm−1, xm) is a
permutation of A.

A left permutative mapping is defined similarly. We say that F is biper-
mutative if it is right and left permutative.

Let now l, r ∈ Z, l ≤ r, be given and let F : Ar−l+1 → A be a fixed
automaton rule. The transformation T : X → X defined by

(Tx)i = F (xi+l, . . . , xi+r)

is said to be the automaton map defined by F .
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Let µ be a probability measure on B invariant with respect to τ and T .
If F is left or right permutative then by Theorem 6.6 of [4] and Theo-
rem 2.1 of [3] the uniform Bernoulli measure has the above invariance prop-
erty. Let (X̂, B̂, µ̂, T̂ ) denote the natural extension of the dynamical system
(X,B, µ, T ) (cf. [8]).

Recall that T̂ is defined as follows:

T̂ x̂ = (Tx(0), x(0), . . .), x̂ = (x(0), x(1), . . .),

where Tx(i) = x(i−1), i ≥ 1. We put

τ̂ x̂ = (τx(0), τx(1), . . .).

Obviously τ̂ T̂ = T̂ τ̂ . The Z2-action Φ generated by τ̂ and T̂ ,

Φ(p,q) = τ̂pT̂ q,

is said to be a CA-action. For these actions Park has shown in [7] that the
mapping ~v 7→ h~v(Φ) is continuous. For a positive integer m and E ∈ B
we put

E(m) = {x̂ ∈ X̂; x(m) ∈ E}.
It is clear that

T̂−1E(m) = E(m−1), m ≥ 1.

If η = {E1, . . . , Et} is a measurable partition of X then we denote by
η(m) the measurable partition of X̂ defined by

η(m) = {E(m)
1 , . . . , E

(m)
t }.

Let ξ be the zero-time partition of X:

ξ = {C0(0), . . . , C0(a− 1)} where C0(i) = {x ∈ X; x0 = i}, i ∈ A.
For i, j ∈ Z, i ≤ j, we put

ξ(i, j) =
j∨

u=i

τ−uξ

and
ξm(−m,m) = ξ(−m,m)(0) ∨ . . . ∨ ξ(−m,m)(m), m ≥ 0.

It is clear that

ξm(−m,m) =
m∨

s=0

T̂−sξ(−m,m)(m), m ≥ 0,

and (ξm(−m,m)) is a refining sequence of partitions tending to the partition
of X̂ into points.

We need the following two lemmas proved in [9]. Let T : X → X be the
automaton map defined by an automaton rule F[l,r].
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Lemma 1. For any i, j ∈ Z, i ≤ j, we have

T−1ξ(i, j) 4 ξ(i+ l, j + r).

Lemma 2. If F is right (resp. left) permutative, µ is the uniform Ber-
noulli measure and

(m−m′)r > j1 − i2 (resp. (m−m′)l < i1 − j2)),

then the partitions ξ(i1, j1)(m) and ξ(i2, j2)(m′) are independent.

Let ~v = (x, y) ∈ R2, zl = x+ ly, zr = x+ ry.

Proposition. For any CA-action Φ and any Φ-invariant Borel proba-
bility measure we have

h~v(Φ) ≤
{

max(|zl|, |zr|) log a if zl · zr ≥ 0,
|zr − zl| log a if zl · zr ≤ 0.

Proof. First we show the desired estimates for ~v ∈ Z2. Let ~v = (p, q).
We consider the following cases:

A : 0 ≤ zl ≤ zr, B : zl ≤ zr ≤ 0, C : zl ≤ 0 ≤ zr.
If we obtain the estimates in cases A and B, then by (1) we obtain them
also in the cases zr ≤ zl ≤ 0 and 0 ≤ zr ≤ zl, respectively, and hence in the
case zl · zr ≥ 0. Using the same argument we see that in case C it is enough
to obtain the desired inequality for zl · zr ≤ 0. Let i, n be arbitrary positive
integers. We have

n∨

k=0

τ̂−pkT̂−qkξi(−i, i) =
n∨

k=0

i∨

s=0

τ̂−pkT̂−(s+qk)ξ(−i, i)(i)

=
n∨

k=0

i∨

s=0

T̂−(s+qk)ξ(−i+ pk, i+ pk)(i).

Case A. The inequality zl ≤ zr is of course equivalent to q ≥ 0. By
Lemma 1 we have
n∨

k=0

τ̂−pkT̂−qkξi(−i, i) 4
n∨

k=0

i∨

s=0

ξ(−i+ pk + l(s+ qk), i+ pk + r(s+ qk))(i)

=
n∨

k=0

i∨

s=0

ξ(−i+ ls+ zlk, i+ rs+ zrk)(i)

4
n∨

k=0

ξ(−i(|l|+ 1) + zlk, i(|r|+ 1) + zrk)(i).
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Since zl ≥ 0, zr ≥ 0 we have
n∨

k=0

τ̂−pkT̂−qkξi(−i, i) 4 ξ(−i(|l|+ 1), i(|r|+ 1) + zrn)(i).

Therefore we get the following estimate for the entropy:

Hµ̂

( n∨

k=0

τ̂−pkT̂−qkξi(−i, i)
)
≤ Hµ̂(ξ(−i(|l|+ 1), i(|r|+ 1) + zrn)(i))

= Hµ(ξ(−i(|l|+ 1), i(|r|+ 1) + zrn))

≤ (i(|r|+ |l|+ 2) + zrn+ 1) log a.

Hence the mean entropy satisfies the inequality

hµ̂(ξi(−i, i), τ̂pT̂ q) ≤ zr log a

for any i ≥ 0. Since the sequence (ξi(−i, i)) is refining and tends to the
partition into points as i→∞ the well known property of the entropy gives

h~v(Φ) = h(τ̂pT̂ q) ≤ zr log a.

Case B. Since in this case we also have q ≥ 0 we may apply the in-
equality obtained in case A:

n∨

k=0

τ̂−pkT̂−qkξi(−i, i) 4
n∨

k=0

ξ(−i(|l|+ 1) + zlk, i(|r|+ 1) + zrk)(i).

But now zl ≤ 0, zr ≤ 0 and so we get
n∨

k=0

τ̂−pkT̂−qkξi(−i, i) 4 ξ(−i(|l|+ 1) + zln, i(|r|+ 1))(i), i, n ≥ 0.

Hence, by the same reasoning as in the previous case we get

h~v(Φ) ≤ −zl log a = |zl| log a.

Case C. Also in this case q ≥ 0 and we rewrite the inequality from
case B:

n∨

k=0

τ̂−pkT̂−qkξi(−i, i) 4
n∨

k=0

ξ(−i(|l|+ 1) + zlk, i(|r|+ 1) + zrk)(i).

Since now zl ≤ 0, zr ≥ 0 we obtain
n∨

k=0

τ̂−pkT̂−qkξi(−i, i) 4 ξ(−i(|l|+ 1) + zln, i(|r|+ 1) + zrn)(i), n, i ≥ 0,
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and so proceeding as in the previous cases we get

h~v(Φ) ≤ (zr − zl) log a.

In order to prove the desired estimates in the general case we first extend
them from the case ~v ∈ Z2 to ~v ∈ Q2 by applying (1) and then to the general
case ~v ∈ R2 by the continuity of the directional entropy.

In the proof of Theorem 1 we shall use the following

Remark 1. If T is an automorphism of a Lebesgue probability space
(X,B, µ) and α is a finite measurable partition of X such that for some
N ∈ N the partitions

∨0
k=−n T

kα and
∨N+n
k=N T kα are independent for any

n ∈ N then the partitions (T tNα, t ∈ Z) are independent.

We shall assume in what follows that the Borel measure considered,
denoted by µ, is uniform Bernoulli.

Theorem 1. If the automaton rule F[l,r] is right permutative then

h~v(Φ) = |zr| log a

for all ~v = (x, y) with 0 ≤ zl ≤ zr or zr ≤ zl ≤ 0.

Proof. It suffices to show, using the Proposition, the inequality

h~v(Φ) ≥ |zr| log a.

It is enough to consider the case ~v ∈ Z2 and 0 ≤ zl ≤ zr. One extends the
above estimate to the general case as in the proof of the Proposition.

Let ~v = (p, q) ∈ Z2, 0 ≤ zl = p+ ql ≤ zr = p+ qr and let i ∈ N. First we
show that for N = [2i/zr] + 1 the partitions

0∨

k=−n
τ̂pkT̂ qkξ(−i, i)(0) and

N+n∨

k=N

τ̂pkT̂ qkξ(−i, i)(0)

are independent for any n ∈ N. Since 0 ≤ zl ≤ zr we may proceed in the
same way as in case A of the proof of the Proposition. We have

0∨

k=−n
τ̂pkT̂ qkξ(−i, i)(0) 4

n∨

k=0

ξ(−i+ zlk, i+ zrk)(0) 4 ξ(−i, i+ zrn)(0).

On the other hand,
N+n∨

k=N

τ̂pkT̂ qkξ(−i, i)(0) =
N+n∨

k=N

T̂ qkξ(−i− pk, i− pk)(0)

=
N+n∨

k=N

T̂−q(N+n−k)ξ(−i− pk, i− pk)(qN+qn)
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4
N+n∨

k=N

ξ(−i− pk + lq(N + n− k), i− pk + rq(N + n− k))(qN+qn)

=
N+n∨

k=N

ξ(−i+ lq(N + n)− zlk, i+ rq(N + n)− zrk)(qN+qn)

4 ξ(−i+ lq(N + n)− zl(N + n), i+ rq(N + n)− zrN)(qN+qn)

= ξ(−i− p(N + n), i+ rqn− pN)(qN+qn).

Putting

i1 = − i− p(N + n), j1 = i+ rqn− pN, m = qN + qn,

i2 = − i, j2 = i+ zrn, m′ = 0,

we get
(m−m′)r = (qN + qn)r = zrN − pN + qnr

= zr([2i/zr] + 1)− pN + qnr

> 2i− pN + qnr = j1 − i2.
Therefore, by Lemma 2 the partitions

ξ(−i, i+ zrn)(0) and ξ(−i− p(N + n), i+ rqn− pN)(qN+qn)

and hence the partitions
0∨

k=−n
τ̂pkT̂ qkξ(−i, i)(0) and

N+n∨

k=N

τ̂pkT̂ qkξ(−i, i))(0)

are independent for any n ∈ N. Applying Remark 1 we see that

(τ̂pN T̂ qN )tξ(−i, i)(0), t ∈ Z,
are independent. Hence we get

h~v(Φ) = h(τ̂pT̂ q) =
1
N
h(τ̂pN T̂ qN )

≥ 1
N
hµ̂(ξ(−i, i)(0), τ̂pN T̂ qN ) =

1
N
Hµ̂(ξ(−i, i)(0))

=
1
N
Hµ(ξ(−i, i)) =

1
N

log a2i+1 = (2i+ 1)([2i/zr] + 1)−1 log a

for any i ≥ 0. Taking the limit as i→∞ we obtain h~v(Φ) ≥ zr log a.

Remark 2. Using similar arguments one can show that if the automaton
rule F[l,r] is left permutative then h~v(Φ) = |zl| log a for all ~v = (x, y) with
zl ≤ zr ≤ 0 or 0 ≤ zr ≤ zl.

Now we shall prove the following
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Theorem 2. If the automaton rule F[l,r] is bipermutative and zl ·zr ≤ 0,
then

h~v(Φ) = |zr − zl| log a.

In order to show this equality we give two lemmas which are generaliza-
tions of results from [1]. Their proofs are slight modifications of the proofs
of Lemmas 1 and 3 of [1].

Let α ∈ (0, 1) be fixed and let dα be the distance in X defined by

dα(x, y) =
{
αL(x,y), x 6= y,
0, x = y,

where
L(x, y) = min{|i|; xi 6= yi}, x, y ∈ X.

In the following, we use the notation TF instead of T .

Lemma 3. If l < 0 < r, F = F[l,r] is bipermutative and ξ is the zero-time
partition of X then for every cylindric set C ∈ ξ(l, r − 1) we have

(i) TFC = X,
(ii) dα(TFx, TF y) ≥ α−min(−l,r)dα(x, y), x, y ∈ C.
Proof. Let u ∈ X. We show that there exists a unique x ∈ C with

TFx = u. Let

C = Cxl,...,xr−1 = {x ∈ X; xl = xl, . . . , xr−1 = xr−1}.
The sequence x is defined as follows. Let

xl = xl, . . . , xr−1 = xr−1.

Applying the right (left) permutativity of F the reader can easily find by
induction the coordinates xk, k ≥ r (k ≤ l − 1), of x in such a way that
TFx = u, x ∈ C, i.e. (i) is satisfied.

In order to show (ii) we take x, y ∈ C with x 6= y. If L(x, y) = L we have
d(x, y) = αL and either xL 6= yL or x−L 6= y−L.

Let xL 6= yL. Since x, y ∈ C we have L ≥ r and so by the definition of L,

yL−r+l = xL−r+l, . . . , yL−1 = xL−1.

Thus the right permutativity of F implies

(TFx)L−r = F (xL−r+l, . . . , xL) 6= F (yL−r+l, . . . , yL) = (TF y)L−r.

Therefore
dα(TFx, TF y) ≥ αL−r = α−rd(x, y)

and so the desired inequality is satisfied.
If x−L 6= y−L then similarly we have −L < l, and

x−L+1 = y−L+1, . . . , x−l−L+r = y−l−L+r.
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The left permutativity of F gives

(TFx)−l−L 6= (TF y)−l−L.

Hence
dα(TFx, TF y) ≥ αL−|l| = α−|l|dα(x, y)

and thus we obtain the needed inequality again.

Let α be a finite measurable partition of X. Points x, y ∈ X are said to
be α-separated if they belong to different atoms of α.

It is easy to see that for partitions α, β ∈ X we have α 4 β iff any
α-separated points x, y ∈ X are also β-separated.

Lemma 4. If l < 0 < r and F = F[l,r] is bipermutative, then

h(TF ) ≥ (r − l) log a.

Proof. First we show that

(3)
n−1∨

k=0

T−kF ξ(l, r) < ξ(nl, nr)

for every n ≥ 1 where ξ is the zero-time partition of X.
The above property is trivially satisfied for n = 1. Suppose it is true for

some n ≥ 1 and let x, y ∈ X be ξ((n+ 1)l, (n+ 1)r)-separated.
If x, y are ξ(nl, nr)-separated then they are also

∨n
k=0 T

−k
F ξ(l, r)-sep-

arated by the induction assumption. So suppose x, y are not ξ(nl, nr)-
separated. It follows from Lemma 3 that

d(TFx, TF y) ≥ α−min(−l,r)d(x, y) ≥ α−min(−l,r) · α(n+1) min(−l,r)

= αnmin(−l,r),

i.e. TFx, TF y are ξ(nl, nr)-separated. Therefore x, y are
∨n
k=0 T

−k
F ξ(l, r)-

separated, i.e. (3) is valid for all n.
Applying (3) we have

h(TF ) ≥ lim
n→∞

1
n
Hµ

( n−1∨

k=0

T−kF ξ(l, r)
)
≥ lim
n→∞

1
n
Hµ(ξ(nl, nr))

= (r − l) log a.

Corollary. If −r < k < −l then

h(τkTF ) ≥ (r − l) log a.

Proof. It follows from the inequalities l+k < 0 < r+k and the equality

τkTF [l,r] = TF [l+k,r+k]

that τkTF [l,r] is a bipermutative automaton map which satisfies the assump-
tion of Lemma 4. Hence we obtain at once the desired inequality.
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Proof of Theorem 2. It is enough to consider the case ~v = (p, q) ∈ Z2

where p + lq < 0 < p + rq. It follows from the Corollary to Lemma 4 and
the fact that τ is an automorphism commuting with TF that

h~v(Φ) = hµ̂(τ̂pT̂ qF [l,r]) = hµ(τpT qF [l,r]) = hµ(τpTF [ql,qr])

≥ q(r − l) log a = (zr − zl) log a.
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