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Distributionally regulated funtionsbyJasson Vindas and Riardo Estrada (Baton Rouge, LA)
Abstrat. We study the lass of distributions in one variable that have distributionallateral limits at every point, but whih have no Dira delta funtions or derivatives at anypoint, the �distributionally regulated funtions.� We also onsider the related lass whereDira delta funtions are allowed. We prove several results on the boundary behavior offuntions of two variables F (x, y), x ∈ R, y > 0, with F (x, 0+) = f(x) distributionally,both near points where the distributional point value exists and points where the lateraldistributional limits exist. We give very general formulas for the jumps, in terms of F andrelated funtions. We prove that the set of singular points of a distributionally regulatedfuntion is always ountable at the most. We also haraterize the Fourier transforms oftempered distributionally regulated funtions in two ways.1. Introdution. The theory of distributions is one of the most pow-erful tools available in applied mathematis. Ever sine their introdution,distributions have shown their usefulness; atually, this was true even be-fore their formal introdution [23℄. Many textbooks over the theory andappliations of distributions [5, 14, 19, 20, 30, 38℄.There are several approahes to the theory of distributions, but in allof them one quikly learns that distributions do not have point values, asfuntions do, despite the fat that they are sometimes alled generalized�funtions.� Interestingly, many ommon objets in analysis do not havepoint values, even though they are referred as �funtions�: If f ∈ L1(R),what is f(0)? Reall that the elements of L1(R) are equivalene lasses offuntions equal almost everywhere, and thus one may hange the values onany set of measure zero, like {0} for instane, without hanging the elementof L1(R).In a seminal work, �ojasiewiz [21℄ was the �rst to give a satisfatoryde�nition of the value of a distribution at a point, whih when applied atpoints where the distribution is loally equal to a ontinuous funtion givesthe usual value, but an also be applied in more ompliated situations.2000 Mathematis Subjet Classi�ation: Primary 46F10.Key words and phrases: distributions, point values, regulated funtions.[211℄ © Instytut Matematyzny PAN, 2007



212 J. Vindas and R. EstradaThe notion of point value in the sense of �ojasiewiz has been shown to bevery useful in several areas, suh as abelian and tauberian results for integraltransforms [24, 27, 31, 36℄, spetral expansions [14, 32℄, the boundary behav-ior of solutions of partial di�erential equations [11, 33℄, or the summabilityof ardinal series [34, 35℄. It is remarkable that there is a haraterizationof the Fourier series of distributions having a value at a point [8℄, whileno orresponding results are known for other notions of value. The notionof distributional point value of �ojasiewiz has been generalized in severaldiretions, like the idea of distributionally bounded distributions [5℄, andespeially the theory of distributional asymptoti expansions developed byseveral authors [14, 28, 31℄.In [21℄, �ojasiewiz also introdued and studied the lass of distributionsthat have a value at every point. As he showed, these distributions deserveto be alled �funtions� sine the funtion given by its values is a well-de�nedmeasurable funtion, and the orrespondene between the distributions withvalues at every point and the funtion of its values is a bijetion. Althoughthere is a notion, that of regular distribution, that appears to apply exatlyto those distributions that orrespond to funtions, it is fair to say that thedistributions introdued by �ojasiewiz, even if not �regular,� are objetsthat one would all �funtions.�The aim of this artile is to introdue and study a generalization of the�ojasiewiz funtions, namely the distributionally regulated funtions, whihare those distributions that have a distributional lateral limit at every pointwithout having Dira delta funtions or derivatives at any point. We alsoonsider the related lass of distributionally regulated funtions with deltafuntions, whih are those distributions that have a distributional laterallimit at every point; we show that in this ase the set of points where there aredelta funtions is ountable at the most. If f is a distributionally regulatedfuntion (without delta funtions), with lateral limits f(x+) and f(x−) ateah x ∈ R, then we introdue the funtion(1.1) f̃(x) =
f(x+) + f(x−)

2
.The funtion f̃ is a well-de�ned measurable funtion, and the orrespon-dene f ↔ f̃ is one-to-one and onto. Therefore, it is justi�ed to identifythe distribution f and the funtion f̃ , and all f a �funtion.� When f is adistributionally regulated funtion with delta funtions, then f̃ aptures theordinary funtion part of f, and f − f̃ is a singular distribution that onsistsof sums of Dira delta funtions and derivatives on some at most ountableset. The distributionally regulated funtions also generalize the lassial reg-ulated funtions, whih are those funtions that have ordinary lateral limitsat every point [6℄. The lassial regulated funtions play a role in many areas



Distributionally regulated funtions 213of mathematis suh as onformal mapping theory [29℄, in the desription ofurves by their radius of urvature [12℄ and the appliation of these ideas tothe study of rystals [37℄, and in theories of integration more general than theLebesgue integral, a subjet that has reeived inreased attention in reentyears [1, 17℄. Atually, �ojasiewiz proved that there is a desriptive integralthat an be de�ned for distributions that have a value at every point, and itis easy to see that this integral is also de�ned for distributionally regulatedfuntions. For this integral one has(1.2) 〈f(x), φ(x)〉 =

∞\
−∞

f̃(x)φ(x) dxfor any test funtion φ ∈ D(R).The artile is organized as follows. In Setion 2 we give some preliminarynotions on distributions, point values and the Cesàro behavior of distri-butions. Distributionally regulated funtions are de�ned in Setion 3. Thenext setion introdues the φ-transform, a funtion of two variables F (x, y),
x ∈ R, y > 0, that satis�es F (x, 0+) = f(x) distributionally and that allowsus to study the loal behavior of a distribution f. In Setions 4 and 5 weonsider the pointwise boundary behavior of F (x, y) as (x, y) approahes thepoint (x0, 0) in the ases when the distributional value f(x0) exists and whenjust the distributional limits f(x±0 ) exist. We give several formulas for thedistributional jumps of f in terms of the φ-transform and related funtions;these formulas are very general versions of the jump formulas initially givenby Fejér [15℄, [39, 9.11℄ and by Lukás [22℄, [39, Thm. 8.13℄ for the ordinaryjumps of a Fourier series, and reently generalized by Móriz [25℄, [11℄. Ourformulas apply to distributions with arbitrary support, whih do not need tobe periodi, and are given not only in terms of onjugate harmoni funtionsbut in terms of more general solutions of partial di�erential equations, asfollows from the results of Setion 7.In Setion 6 we show that the set of singular points of a distributionallyregulated funtion, namely where the lateral limits do not oinide, or wherethere are delta funtions, is ountable at the most; this result is easily provedfor lassial regulated funtions, but a new proof is required in this ase. InSetion 7 we show that the φ-transform is often a solution of a partial dif-ferential equation, suh as the Laplae equation or the heat equation, andtherefore our results beome results on the boundary behavior of solutionsof partial di�erential equations. Finally, in Setion 8 we provide two hara-terizations of the Fourier transform of tempered distributionally regulatedfuntions. One is in terms of the existene of the limits of integrals of thetype lims→∞

Tas
−s f̂(u)e−iux du, in the Cesàro sense, for a > 0, the other interms of the deomposition of the distribution f̂(u) in terms of boundaryvalues of analyti funtions from the upper and lower half planes.



214 J. Vindas and R. Estrada2. Preliminaries. In this setion we desribe the spaes of test funtionsand distributions needed in this paper. We also give a summary of the notionof Cesàro behavior of a distribution at in�nity [9℄ and at a point [14, 21℄. Allof our funtions and distributions are over one-dimensional spaes.The spaes of test funtions D, E , and S and the orresponding spaesof distributions D′, E ′, and S ′ are well-known [19, 20, 30℄. In general [38℄ weall a topologial vetor spae A a spae of test funtions if D ⊂ A ⊂ E , theinlusions being ontinuous, and if the derivative d/dx is a ontinuous oper-ator of A. Another useful spae, partiularly in the study of distributionalasymptoti expansions [14, 28, 31℄, is K′, the dual of K. A smooth funtion
φ belongs to K if there is a onstant γ suh that φ(k)(x) = O(|x|γ−k) as
|x| → ∞ for k = 0, 1, 2, . . . , that is, if φ(x) = O(|x|γ) strongly. The spae
K is formed by the so-alled GLS symbols [18℄; the topology of K is givenby the anonial seminorms. The spae K′ plays a fundamental role in thetheory of summability of distributional evaluations [9℄. The elements of K′are exatly the generalized funtions that deay very rapidly at in�nity inthe distributional sense or, equivalently, in the Cesàro sense.The Cesàro behavior of a distribution at in�nity is studied by usingthe order symbols O(xα) and o(xα) in the Cesàro sense. If f ∈ D′(R) and
α ∈ R\{−1,−2,−3, . . .}, we say that f(x) = O(xα) as x→ ∞ in the Cesàrosense and write(2.1) f(x) = O(xα) (C) as x→ ∞if there exists N ∈ N suh that every primitive F of order N of f, i.e.,
F (N) = f, is an ordinary funtion for large arguments and satis�es theordinary order relation(2.2) F (x) = p(x) +O(xα+N) as x→ ∞for a suitable polynomial p of degree N − 1 at the most. When the value of
N is important we use the notation(2.3) f(x) = O(xα) (C, N) as x→ ∞.A similar de�nition applies to the little o symbol. The de�nitions when
x→ −∞ are lear. One an also onsider the ase when α = −1,−2,−3, . . .[14, Def. 6.3.1℄.The equivalent notations f(x) = O(x−∞) and f(x) = o(x−∞) mean that
f(x) = O(x−β) for eah β > 0. It is shown in [9℄, [14, Thm. 6.7.1℄ that adistribution f ∈ D′ is of rapid deay at ±∞ in the (C) sense,(2.4) f(x) = O(|x|−∞) (C) as |x| → ∞,if and only if f ∈ K′. Funtions like sinx, J0(x), or x2eix belong to K′ andthus are �distributionally small.� The spae K′ is a distributional analogueof the spae S of rapidly dereasing smooth funtions [14, Setion 2.9℄.



Distributionally regulated funtions 215These ideas an be readily extended to the study of the loal behavior ofgeneralized funtions [14, 31℄. Atually, �ojasiewiz [21℄ de�ned the value ofa distribution f ∈ D′(R) at a point x0 as the limit(2.5) f(x0) = lim
ε→0

f(x0 + εx),if the limit exists in D′(R), that is, if(2.6) lim
ε→0

〈f(x0 + εx), φ(x)〉 = f(x0)

∞\
−∞

φ(x) dxfor eah φ ∈ D(R). He showed that the existene of the distributional pointvalue γ = f(x0) is equivalent to the existene of n ∈ N, and a primitive oforder n of f, that is, F (n) = f, whih is ontinuous near x = x0 and satis�es(2.7) lim
x→x0

n!F (x)

(x− x0)n
= γ.For example the generalized funtion f(x) = sin(1/x) is osillatory near

x = 0, however, it is easy to see that f(0) exists and equals 0.More generally, one ould try to look for a representation of the form(2.8) f(x0 + εx) ∼ εδg(x) as ε→ 0in the spae D′(R), where g is non-null. One an then show that g has tobe homogeneous of order δ. When f(x0 + εx) = o(εδ) as ε→ 0+, beause ofequivalenes similar to (2.7), we sometimes write f(x0 + x) = o(xβ) (C) as
x→ 0+ [14, Thm. 6.9.1℄.If we onsider the limit of f(x0 + εx) in D′(R \ {0}), then we obtain theonept of the distributional limit of f(x) at x = x0. Thus limx→x0

f(x) = Ldistributionally if(2.9) lim
ε→0

〈f(x0 + εx), φ(x)〉 = L

∞\
−∞

φ(x) dx, φ ∈ D(R \ {0}).Notie that the distributional limit limx→x0
f(x) an be de�ned for f ∈

D′(R \ {x0}). If the point value f(x0) exists distributionally then the distri-butional limit limx→x0
f(x) exists and equals f(x0). On the other hand, if

limx→x0
f(x) = L distributionally then there exist onstants a0, . . . , an suhthat f(x) = f0(x)+

∑n
j=0 ajδ

(j)(x−x0), where the distributional point value
f0(x0) exists and equals L.We may also onsider lateral limits. We say that the distributional lateralvalue f(x+

0 ) exists if f(x+
0 ) = limε→0+ f(x0 + εx) in D′(0,∞), that is,(2.10) lim

ε→0+
〈f(x0 + εx), φ(x)〉 = f(x+

0 )

∞\
0

φ(x) dx, φ ∈ D(0,∞).



216 J. Vindas and R. EstradaSimilar de�nitions apply to f(x−0 ). Notie that the distributional limit
limx→x0

f(x) exists if and only if the distributional lateral limits f(x−0 ) and
f(x+

0 ) exist and oinide.3. Regulated funtions. In his pioneering work, �ojasiewiz [21℄ intro-dued and studied the distributions that have a distributional point valueat every point. He proved that if one onsiders the funtion having thosedistributional values as values, then this funtion is measurable and in avery preise sense, the distribution orresponds to the funtion. It is om-mon usage to all a distribution �regular� if it arises from a loally Lebesgueintegrable funtion. The funtions studied by �ojasiewiz are more generalinstanes of what one should all �regular� distributions, namely those aris-ing from a funtion by integration. However, in general, the funtions thatarise from the distributional point values are often not loally integrable inthe sense of Lebesgue; sometimes they are loally integrable with respet tomore general integration proesses suh as the Denjoy�Perron�Henstok in-tegral, like the funtion f1(x) = x−1 sinx−1, x 6= 0, f1(0) = 0, but sometimesthey are not, like f2(x) = x−2 sinx−1, x 6= 0, f2(0) = 0.In this artile we shall study a somewhat bigger lass, that of distribu-tionally regulated funtions. The de�nition is as follows.Definition. A distribution f ∈ D′(R) is alled a distributionally reg-ulated funtion if at eah point x0 ∈ R both distributional lateral limits
f(x±0 ) exist and f has no Dira delta funtions at x = x0. We say that fis a distributionally regulated funtion with delta funtions if at eah point
x0 ∈ R both distributional lateral limits f(x±0 ) exist.It will follow from our study that a distribution that is a distributionallyregulated funtion atually orresponds to an atual funtion, the funtiongiven by the distributional point value f(x0), whih is de�ned whenever
f(x+

0 ) = f(x−0 ), an equation that holds for all x0 exept for those of anexeptional set that is ountable at the most.On the other hand, a distributionally regulated funtion with delta fun-tions is a distribution, and the name �funtion� is used in the way the namefuntion is used for the Dira delta funtion.Sometimes we shall refer to distributionally regulated funtions as �dis-tributionally regulated funtions without delta funtions.�The distributionally regulated funtions that have no distributional jumpat any point are the funtions studied in [21℄, and therefore we shall all them�ojasiewiz funtions .Our de�nitions were given for a distribution f ∈ D′(R), de�ned over thewhole real line. However, one an onsider any of these notions over �niteintervals in the obvious way, namely, a distribution is, say, a distributionally



Distributionally regulated funtions 217regulated funtion over the interval (a, b) if its distributional lateral limitsexist at eah point, and no delta funtions are present.It is worth pointing out that the lassial regulated funtions are thoselassial funtions that have lateral limits at every point. They are preiselythe uniform limits of step funtions [6℄. Observe that the lassial analogueof the �ojasiewiz funtions are the ontinuous funtions.Example. If a, b, c, d are onstants, and H is the Heaviside funtion,then(3.1) f0(x) =

(
a+ b sin

1

x

)
H(x) +

(
c+ d sin

1

x

)
H(−x)is a distributionally regulated funtion; it is not a lassial regulated funtionand it is not a funtion of bounded variation. One an use some ondensationof singularities tehnique to obtain examples that show this behavior not onlyat x = 0 but over a dense set. For instane, if {ωn}∞n=0 is dense in R, and if∑∞

n=0 |an| <∞, then(3.2) f1(x) =
∞∑

n=0

anf0(x− ωn)is a distributionally regulated funtion with distributional jumps at thepoints x = ωn. Similarly, if q > 1, the funtion(3.3) f2(x) =
∞∑

n=1

f0(sinnx)

nqis ontinuous at all the irrational points and has distributional jump dison-tinuities at eah rational number.4. The φ-transform. Our main tool to study the loal behavior ofdistributions is the φ-transform, a funtion of two variables that we nowde�ne.Let φ ∈ D(R) be a �xed test funtion that satis�es(4.1) ∞\
−∞

φ(x) dx = 1.

If f ∈ D′(R) we introdue the funtion of two variables F = Fφ{f} bythe formula(4.2) F (x, y) = 〈f(x+ yξ), φ(ξ)〉, x ∈ R, y > 0,the distributional evaluation with respet to the variable ξ. We all F the
φ-transform of f.The φ-transform an also be de�ned if φ does not belong to D(R) as longas we onsider only distributions f of a more restrited lass. Indeed, we an



218 J. Vindas and R. Estradaonsider the ase when φ ∈ A(R) and f ∈ A′(R) for any suitable spae A(R)of test funtions, suh as S(R), K(R), or E(R). Observe that we assume (4.1)in every ase.Our �rst result shows that f(x) is the distributional boundary value of
F (x, y) as y → 0.Theorem 1. If f ∈ D′(R) and F is its φ-transform de�ned by (4.2)then(4.3) lim

y→0
F (x, y) = f(x)distributionally in the spae D′(R), that is,(4.4) lim

y→0
〈F (x, y), ψ(x)〉 = 〈f(x), ψ(x)〉, ∀ψ ∈ D(R).Proof. If ψ ∈ D(R) then(4.5) 〈F (x, y), ψ(x)〉 = 〈Ψ(yξ), φ(ξ)〉,where(4.6) Ψ(z) = 〈f(x), ψ(x− z)〉is a smooth funtion of z. Therefore, Ψ(0) exists in the ordinary sense andonsequently in the distributional sense of �ojasiewiz. Hene,(4.7) lim
y→0

〈Ψ(yξ), φ(ξ)〉 = Ψ(0) = 〈f(x), ψ(x)〉,and (4.4) follows.The result will also hold when f ∈ E ′(R) and φ ∈ E(R) if φ ∈ L1(R). Inthat ase (4.7) follows from the Lebesgue dominated onvergene theorem,sine Ψ ∈ D(R). Another ase when f(x) is the distributional boundaryvalue of F (x, y) as y → 0 is if
f(x) = O(|x|β) (C) as |x| → ∞,(4.8)

φ(x) = O(|x|α) strongly as |x| → ∞,(4.9)and(4.10) α < −1, α+ β < −1,as follows from [11, Theorem 1℄. It is true in partiular if f ∈ S ′(R) and
φ ∈ S(R).For future referene, we say that if f ∈ D′(R) and φ ∈ D(R) we are inCase I . If (4.8)�(4.10) are satis�ed, we say that we are in Case II . When
f ∈ S ′(R) and φ ∈ S(R) we say that we are in Case III . Most of our resultswill hold in any of these three ases. However, the results are usually falsewhen we just assume that f ∈ E ′(R) and φ ∈ E(R).Theorem 2. Suppose(4.11) f(x0) = γ



Distributionally regulated funtions 219distributionally. In any of Cases I , II , or III , we have(4.12) lim
(x,y)→(x0,0)

F (x, y) = γin any setor y ≥ m|x− x0| for any m > 0.Proof. Let us show that if |x1| ≤ 1/m then limε→0+ F (x0 + εx1, ε) = γ.Indeed, if φ ∈ D(R), then
F (x0 + εx1, ε) = 〈f(x0 + εx1 + εξ), φ(ξ)〉 = 〈f(x0 + εω), φ(ω − x1)〉

= 〈f(x0 + εω), φx1
(ω)〉where φx1

(ω) = φ(ω − x1) also belongs to D(R) and T∞−∞ φx1
(ω) dω = 1.Thus (4.12) follows. The limit is uniform with respet to x1 for |x1| ≤ 1/msine {φx1

: |x1| ≤ 1/m} is a ompat set in D(R). The proof in Cases IIand III is similar.Angular onvergene of F (x, y) to γ = f(x0) is obtained when thedistributional point value exists. On the other hand, the radial limit,
limy→0+ F (x0, y), exists under a weaker hypothesis.Theorem 3. Suppose Case I , II , or III holds , and the test funtion φis even. Let χx0

(s) = (f(x0 + s) + f(x0 − s))/2. If(4.13) χx0
(0) = γdistributionally , then(4.14) lim

y→0+
F (x0, y) = γ.Proof. The fat that φ is even yields

lim
y→0+

F (x0, y) = lim
y→0+

〈f(x0 + yξ), φ(ξ)〉

= lim
y→0+

〈f(x0 + yξ), (φ(ξ) + φ(−ξ))/2〉

= lim
y→0+

〈χx0
(yξ), φ(ξ)〉 = γ,as required.Remark. The above result does not hold if f ∈ E ′(R) and φ ∈ E(R).Indeed, if(4.15) φ(x) =
3 sinx3

πx
,then φ ∈ E and T∞−∞ φ(x) dx = 1. If f(x) = δ(x), then(4.16) F (x, y) =

(
3

πx

)
sin

(
x

y

)3

.If x0 6= 0 then f(x0) = 0 but even the radial limit limy→0+ F (x0, y) does notexist.



220 J. Vindas and R. EstradaSuppose now that the distribution f ∈ D′(R) has lateral distributionallimits f(x±0 ) = γ± as x → x0 from the right and from the left, respetively,and no delta funtions at x = x0. This means that for eah ψ ∈ D(R),(4.17) lim
ε→0+

〈f(x0 + εξ), ψ(ξ)〉 = γ−

0\
−∞

ψ(ξ) dξ + γ+

∞\
0

ψ(ξ) dξ.Then we have the ensuing result.Theorem 4. Suppose Case I , II , or III holds and f satis�es (4.17).Then for eah θ ∈ (0, π) there exists α = α(θ) ∈ [0, 1] suh that(4.18) lim
(x,y)→(x0,0)

(x,y)∈lθ

F (x, y) = α(θ)γ+ + (1 − α(θ))γ−

where lθ is the line y = tan θ (x− x0).In Cases II or III , limθ→0 α(θ) = 1, limθ→π α(θ) = 0. In Case I atuallythere exist θ0, θ1 ∈ (0, π) suh that α(θ) = 1 for θ ≤ θ0 while α(θ) = 0 for
θ ≥ θ1.If φ is even then α(π/2) = 1/2.Proof. The limit of F (x, y) as (x, y) → (x0, 0) along lθ is given as

lim
ε→0+

〈f(x0 + ε cos θ + ε sin θ ξ), φ(ξ)〉 = lim
ε→0+

〈f(x0 + εω), φθ(ω)〉

= γ−

0\
−∞

φθ(ω) dω + γ+

∞\
0

φθ(ξ) dω,where(4.19) φθ(ω) =
1

sin θ
φ

(
ω − cos θ

sin θ

)
.The result follows by taking(4.20) α(θ) =

∞\
0

φθ(ω) dω =

∞\
− cot θ

φ(ω) dω,whih has the stated properties.Remark. If f(x±0 ) = γ± exist distributionally, then f(x) = f0(x) +∑m
j=0 cjδ

(j)(x − x0) where f0 has no delta funtions at x = x0. It followsthat(4.21) F (x, y) = F0(x, y) +

m∑

j=0

cj
yj+1

φ(j)

(
x0 − x

y

)
.Therefore (4.18) is still valid for the �nite part of the limit:(4.22) F.p. lim

(x,y)→(x0,0)
(x,y)∈lθ

F (x, y) = α(θ)γ+ + (1 − α(θ))γ−.



Distributionally regulated funtions 221Remark. If φ is even and f(x±0 ) = γ± exist distributionally while fhas no delta funtions at x = x0 then (4.18) shows that the radial limit
limy→0+ F (x0, y) exists and equals (γ+ + γ−)/2. However, Theorem 3 is astronger result, sine the lateral limits may not exist if χx0

(s) has the dis-tributional limit γ at s = 0. More generally, if(4.23) lim
s→0+

χx0
(s) = γdistributionally, then(4.24) F.p. lim

y→0+
F (x0, y) = γ.Remark. If f is a distributionally regulated funtion with delta fun-tions then the �nite part limit F.p. limy→0+ F (x, y) exists for eah x ∈ R,and equals (f(x+

0 ) + f(x−0 ))/2. It will follow from the results of Setion 6that the set of points where the limit is not an ordinary limit is ountableat the most. If f is a distributionally regulated funtion without delta fun-tions then the limit is an ordinary limit for eah x ∈ R. On the other hand,if f is a distributionally regulated funtion without delta funtions then
lim(x,y)→(x0,0), (x,y)∈l F (x, y) exists for eah non-horizontal line l, and the setof points where the limit is not independent of l is ountable at the most,while if f is a �ojasiewiz funtion then the limit is independent of l for eah
x0 ∈ R.5. Limits and jumps. Suppose f ∈ D′(R) is suh that the laterallimits f(x±0 ) = γ± exist distributionally. In this setion we onsider ertainformulas for the jump d = [f ]x=x0

= γ+ − γ− in terms of the radial limits ofsome funtions related to F (x, y).Let us start with the ase when f does not have delta funtions at x = x0.Observe that sometimes we shall use the notation F,x or F,y for the partialderivatives ∂F/∂x and ∂F/∂y, respetively.Theorem 5. Let f be a distribution and φ a test funtion that satis-�es (4.1). Suppose Case I , II , or III holds. Suppose the distributional lat-eral limits f(x±0 ) = γ± exist and f has no delta funtions at x = x0. Let
d = γ+ − γ− be the jump of f at x = x0 and let ν = φ(0). Then(5.1) lim

y→0+
yF,x(x0, y) = νd.Proof. The hypotheses yield the asymptoti formula(5.2) f(x0 + εx) = γ+H(x) + γ−H(−x) + o(1), ε→ 0+,in the spae D′(R), where H is the Heaviside funtion. Sine distributional



222 J. Vindas and R. Estradaexpansions an be di�erentiated, we obtain(5.3) f ′(x0 + εx) =
d

ε
δ(x) + o

(
1

ε

)
, ε→ 0+.Observe now that F,x is preisely the φ-representation of f ′(x). Thus (5.3)yields(5.4) F,x(x0, y) =

dφ(0)

y
+ o

(
1

y

)
, y → 0+,and (5.1) follows.If we just assume that the distributional lateral limits f(x±0 ) = γ± exist,then f may have delta funtions at x = x0 and thus the formula (5.1) anbe modi�ed by using the �nite part of the limit:(5.5) F.p. lim

y→0+
yF,x(x0, y) = νd.Atually, to obtain (5.5) and in partiular (5.1) there is no need to assumethat the distributional lateral limits f(x±0 ) exist; it is enough to suppose thatthe symmetri jump funtion(5.6) ψx0

(s) =
f(x0 + s) − f(x0 − s)

2has a distributional limit as s→ 0.Theorem 6. Let f be a distribution and φ a test funtion that satis-�es (4.1). Suppose Case I , II , or III holds. Suppose(5.7) ψx0
(0+) = d/2distributionally. If φ is even then(5.8) F.p. lim

y→0+
y
∂F

∂x
(x0, y) = νd.When ψx0

(s) does not have delta funtions at s = 0 then (5.8) is an ordinarylimit.Proof. Indeed, the result follows by applying (5.5) or (5.1) to Ψ(x, y),the φ-representation of ψx0
(x), and by observing that

F,x(x0, y) = 〈f ′(x0 + yξ), φ(ξ)〉 = 〈f ′(x0 + yξ), (φ(ξ) + φ(−ξ))/2〉
= 〈(f ′(x0 + yξ) − f ′(x0 + yξ))/2, φ(ξ)〉 = 〈ψ′

x0
(yξ), φ(ξ)〉

= Ψ,x(0, y),sine ψx0
(0+) = d/2.Another formula for the jump is given in terms of logarithmi aver-ages. Observe that in Case II, that is, f(x) = O(|x|β) (C) and φ(x) =

O(|x|α) strongly as |x| → ∞, we need to assume not only that α < −1 and
α+ β < −1, but also that β < 0.



Distributionally regulated funtions 223Theorem 7. Let f be a distribution and φ a test funtion that satis-�es (4.1). Suppose Case I or Case II with β < 0 holds. If ψx0
(0+) = d/2,then(5.9) F.p. lim

y→0+

1

ln y

〈
f(x0 + yξ),

φ(ξ) − φ(0)

ξ

〉
= νd.Proof. Observe that the ondition β < 0, or Case I, guarantees thatthe Cesàro evaluation 〈f(x0 + yξ), ̺(ξ)〉, where ̺(ξ) = (φ(ξ) − φ(0))/ξ, iswell-de�ned. Notie also that if f(x±0 ) = γ± exist and f has no delta fun-tions at x = x0 then one may argue that 〈f(x0 + yξ), ̺(ξ)〉 approahes

γ−
T0
−∞ ̺(ξ) dξ + γ+

T∞
0 ̺(ξ) dξ as y → 0+; however, both integrals diverge:

|
T0
−∞ ̺(ξ) dξ| = |

T∞
0 ̺(ξ) dξ| = ∞.On the other hand,

∂

∂y

〈
f(x0 + yξ),

φ(ξ) − φ(0)

ξ

〉
=

〈
ξf ′(x0 + yξ),

φ(ξ) − φ(0)

ξ

〉

= 〈f ′(x0 + yξ), φ(ξ) − φ(0)〉

= 〈f ′(x0 + yξ), φ(ξ)〉 =
∂F

∂x
(x0, y).Thus we may use the L'H�pital rule to obtain

F.p. lim
y→0+

1

ln y

〈
f(x0 + yξ),

φ(ξ) − φ(0)

ξ

〉
= F.p. lim

y→0+
y
∂F

∂x
(x0, y) = νd,as required.Remark. The funtion F̃ (x, y) = 〈f(x+ yξ), (φ(ξ) − φ(0))/ξ〉 is a typeof �onjugate� funtion to the φ-transform F (x, y). Atually if φ(x) =

π−1(1 + x2)−1 then F (x, y) is a harmoni funtion and F̃ (x, y) is preiselyits harmoni onjugate.Example. Let us onsider the distributional behavior of the distribu-tion fα, α > 0, given by the non-harmoni series(5.10) fα(x) =
∞∑

n=1

sinnαx

nas x → 0. Observe that fα(x) = O(|x|−∞) (C) as |x| → ∞. Let us onsiderthe onjugate funtion F̃ (x, y) with φ(x) = π−1(1 + x2)−1 as in the remarkabove. Then(5.11) F̃ (x, y) =
∞∑

n=1

e−nαy cosnαx

n
,

and thus F̃ (0, y) ∼ (1/α) ln y, sine ∑
nα≤N 1/n ∼ (1/α) lnN as N → ∞,and it follows that νd = 1/α, or d = π/α, sine φ(0) = 1/π. Therefore, sine
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fα is odd, we obtain the distributional lateral limits(5.12) fα(0+) =

π

2α
, fα(0−) =

−π
2α

.Observe that this is easy to see for α = 1 from the well-known formula(5.13) f1(x) =
π − x

2
, 0 < x < π,and for α = 1/2 from the formula(5.14) f1/2(x) = π +

∞∑

j=0

(−1)jζ(1/2 − j)x2j+1

(2j + 1)!
, x > 0,obtained by Boersma [3℄ when solving a problem proposed by Glasser [16℄;see also [7℄. It is not hard to see that if α > 1 then (5.12) are not ordinarylimits, sine fα is unbounded as x→ 0.6. The number of singularities. In this setion we show that if f isa distributionally regulated funtion, with or without delta funtions, thenthe distributional point value f(x) exists for all x apart from an exeptionalset whih is ountable at the most.The orresponding result for ordinary regulated funtions is well-known,and atually very easy to prove. Indeed, if f(x) is a regulated funtion insome interval I then for any λ > 0 the set Sλ onsisting of the points xwhere |f(x+) − f(x−)| ≥ λ is disrete in I, sine at an aumulation pointof Sλ at least one of the lateral limits annot exist. Thus Sλ is ountable atthe most, and hene so is S =

⋃
λ>0 Sλ =

⋃∞
n=1 S1/n.When f is a regulatedfuntion of bounded variation, then one an even bound nλ(K), the numberof elements of Sλ ∩K for any ompat interval K, by nλ(K) ≤ V/λ, where

V is the total variation of f over K.This argument does not work if f is distributionally regulated, sine inthat ase the set Sλ ould have limit points, as the next example shows.Example. Consider the funtion f with support in [0,∞) with deriva-tive(6.1) f ′(x) =

∞∑

n=1

(−1)nnqδ

(
x− 1

n

)
(C),where q ∈ R. Then f is a distributionally regulated funtion, onstant in allthe intervals (1/(n + 1), 1/n) for n ∈ N, and in (−∞, 0) where it vanishes.The set of points where f has a non-zero jump is exatly S = {1/n : n ∈ N}.In partiular, 0 /∈ S, sine the funtion has the distributional point value

f(0) = 0. If q > 0 then Sλ = S for λ ≤ 1, and thus 0 is an aumu-lation point of Sλ. Atually, we may replae the sequene {(−1)nnq}∞n=1by any distributionally small sequene {cn}∞n=1, that is, a sequene with
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∑∞

n=1 cnδ(x− n) in K′(R) [14, Setion 5.4℄, and still keep f(0) = 0. Indeed,
〈f ′(εx), φ(x)〉 =

〈 ∞∑

n=1

cnδ(εx− 1/n), φ(x)

〉
=

∞∑

n=1

cn
ε
φ

(
1

εn

)

=

∞∑

n=1

ncnτ(εn) = o(ε∞) as ε→ 0+,where τ(x) = (1/x)φ(1/x) belongs to K(R) if φ ∈ D(R), and where all seriesare onsidered in the Cesàro sense. Hene f is �distributionally smooth� at
x = 0 sine it follows that f (m)(0) = 0 for all m ≥ 0.We have the following result on the number of singularities of a distribu-tionally regulated funtion.Theorem 8. Let f ∈ D′(R) be distributionally regulated , with or withoutdelta funtions. Let(6.2) S = {x ∈ R : f(x) does not exist distributionally}.Then S is ountable at the most.Proof. Consider �rst the set S0 of those elements of S where f doesnot have delta funtions. If x0 ∈ S0 then f(x+

0 ) 6= f(x−0 ). Let φ ∈ D(R)satisfy (4.1), and let F (x, y) be the φ-representation of f. There exists θ ∈
(0, π/2) suh that(6.3) lim

x→x±

0

F (x, |x− x0| tan θ) = f(x±0 ), ∀x0 ∈ R.Let U0 = {(r,∞) : r ∈ Q} ∪ {(−∞, r) : r ∈ Q} and let U = {(I+, I−) ∈
U0 × U0 : I+ ∩ I− = ∅}. If x0 ∈ S0 then there exist (I+, I−) ∈ U and n ∈ Nsuh that

F (x, (x− x0) tan θ) ∈ I+ for x0 < x < x0 + 1/n,(6.4)

F (x, (x0 − x) tan θ) ∈ I− for x0 − 1/n < x < x0.(6.5)For �xed (I+, I−) ∈ U and �xed n ∈ N the family of intervals (x0 − 1/n,
x0 + 1/n), where x0 ∈ S0 satis�es (6.4) and (6.5), is pairwise disjoint, andonsequently, there are an at most ountable number of suh intervals. Hene(6.6) S0 =

⋃

(I+,I−)∈U

∞⋃

n=1

{x0 ∈ R : x0 satis�es (6.4) and (6.5)}is also ountable at the most.The analysis at points where f has delta funtions of a given order followsby integrating f a suitable number of times. Indeed, let SN be the set ofpoints of S where f has no delta funtion of order greater than N. Let Fbe a primitive of f of order N + 1, i.e., F (N+1)(x) = f(x). Then F is alsoa distributionally regulated funtion, and SN \ SN−1 is exatly the set of



226 J. Vindas and R. Estradapoints where F has a jump but no delta funtions; hene SN \ SN−1 isountable at the most, and thus so is SN . It follows that S is ountable atthe most.7. Boundary behavior of solutions of partial di�erential equa-tions. The results of the previous setions apply to general distributionsand test funtions. When the test funtion φ is of ertain speial forms,however, the φ-transform beomes a partiular solution of a partial di�eren-tial equation, and those results beome results on the boundary behavior ofsolutions of partial di�erential equations.Suppose �rst that φ = φ1 where(7.1) φ1(x) =
p(x)

q(x)
,

p and q are polynomials, α = deg q − deg p ≥ 2, q does not have real zeros,and T∞−∞ φ1(x) dx = 1. Let(7.2) q(x) =
n∑

k=0

akx
k.

Then if f ∈ D′(R) satis�es the estimate f(x) = O(|x|β) (C) as |x| → ∞,where α+ β < −1, then the φ-transform(7.3) F1(x, y) = 〈f(x+ yξ), φ1(ξ)〉, x ∈ R, y > 0,is a solution of the partial di�erential equation(7.4) n∑

k=0

an−k
∂nF

∂xk∂yn−k
= 0,

with F (x, 0+) = f(x) distributionally, sine
n∑

k=0

an−k
∂nF

∂xk∂yn−k
=

n∑

k=0

an−k〈f (n)(x+ yξ)ξn−k, φ1(ξ)〉

= 〈f (n)(x+ yξ)q(ξ), φ1(ξ)〉
= 〈f (n)(x+ yξ), p(ξ)〉 = 0.In the partiular ase when q(x) = x2 + 1, p(x) = 1/π, we obtain(7.5) φ2(x) =

1

π(x2 + 1)
,and F2(x, y) is the Poisson �integral� of f, whih in ase f(x) = O(|x|β) (C)as |x| → ∞, for some β < 1, is the harmoni funtion with F2(x, 0

+) = f(x)distributionally that satis�es F2(x, y) = O(|x|β) (C) as |x| → ∞, for eah



Distributionally regulated funtions 227�xed y > 0. Observe that(7.6) F2(x, y) =
y

π

∞\
−∞

f(ξ) dξ

(x− ξ)2 + y2if f is loally integrable.Let us now take φ = ϕν with Fourier transform given by(7.7) ϕ̂ν(u) = e−uν

,where ν = 2p is an even positive integer. Alternatively, ϕν is the only solutionin S of the ordinary di�erential equation(7.8) ϕ(ν−1)(ξ) = (−1)p ξ

ν
ϕ(ξ),with T∞−∞ ϕ(ξ) dξ = 1. Then if f ∈ S ′(R), and F is the φ-transform orre-sponding to ϕν , the funtion(7.9) Gν(x, t) = F (x, t1/ν), x ∈ R, t > 0,is a solution of the initial value problem

∂G

∂t
= (−1)p−1∂

νG

∂xν
,(7.10)

G(x, 0+) = f(x) distributionally.In partiular, if ν = 2, then(7.11) ϕ̂ν(u) = e−u2

, ϕν(ξ) =
1

2
√
π
e−ξ2/4,and G2(x, t) is the solution of the heat equation G,t = G,xx that satis�es

G(x, 0+) = f(x) distributionally, and with G(x, t) ∈ S ′(R) for eah �xed
t > 0. If f is a loally integrable funtion then G2(x, t) takes the familiarform(7.12) G2(x, t) =

1

2
√
πt

∞\
−∞

f(ξ)e−(ξ−x)2/4t dξ.If the distributional value f(x0) = γ exists, then F1(x, y), and in par-tiular F2(x, y), satis�es F1(x, y) → γ as (x, y) → (x0, 0) in any setor
y ≥ m|x − x0| for m > 0. Also Gν(x, t) → γ in any region of the type
t ≥ m(x− x0)

ν for m > 0. Atually, if χx0
(s) = (f(x0 + s) + f(x0 − s))/2,and the distributional value χx0

(0) = γ exists, then F1(x0, y) → γ as y → 0+and Gν(x0, t) → γ as t → 0+. If instead of the existene of the distribu-tional value one just has the existene of the distributional limit f(x±0 ) = γ,then the �nite part of the limit of F1(x, y) as (x, y) → (x0, 0) in any setor
y ≥ m|x−x0| exists and equals γ; similarly, one obtains the existene of the�nite part of the limits in the other ases.



228 J. Vindas and R. EstradaRemark. In priniple one an take a test funtion in (7.1) with deg q−
deg p = 1. For example, we an take φ(x) = (2πi)−1(x ∓ i)−1, but theresults will not hold, sine in this ase the φ-transform beomes the analytirepresentation, whih obeys di�erent rules [13, Chapter 6℄; atually evenTheorem 1 does not hold for the analyti representation.It is interesting to observe that if f is almost periodi or periodi, then(7.13) f(x) =

∞∑

n=−∞

ane
iαnx,where αn → ±∞ as n→ ±∞. It follows that(7.14) F (x, y) =

∞∑

n=−∞

ane
iαnxφ̂(αny),so that in partiular(7.15) F2(x, y) =

∞∑

n=−∞

ane
iαnxe−|αn|y =

∞∑

n=−∞

ane
iαnxr|αn|,

where r = e−y → 1− as y → 0+. The study of the behavior of the φ-transformin this ase beomes the study of the series (7.13) in the Abel sense. Also(7.16) Gν(x, t) =

∞∑

n=−∞

ane
iαnxe−|αn|νt.

The problem of �nding the (ordinary) jumps of a Fourier series was �rstsolved by Fejér [15℄ in terms of the partial sums of the series, and was lateronsidered by Zygmund [39, 9.11, Chapter III, �108℄ in terms of the Abel�Poisson means of the Fourier series. A di�erent formula using logarithmimeans was given by Lukás [22℄, [39, Thm. 8.13℄, and reently studied interms of the Abel�Poisson means by Móriz [25℄ for point values of the �rstorder and for general distributional point values in [11℄. Theorems 6 and 7provide very general results of the Fejér and Lukás type, respetively, for ageneral test funtion φ (whih provides many di�erent types of summabilitymeans, suh as (7.15) or (7.16)) and not only for Fourier series, but also fornon-harmoni series and atually for any distribution.8. The Fourier transform of regulated funtions. In this setionwe shall haraterize the Fourier transform of distributionally regulated fun-tions, with or without delta funtions. We �rst start with some ommentson distributional evaluations and the notation used for them.Let f ∈ D′(R) with support bounded on the left. If φ ∈ E(R) thenthe evaluation 〈f(x), φ(x)〉 will not be de�ned, in general. We say that the



Distributionally regulated funtions 229evaluation exists in the Cesàro sense and equals L, written as(8.1) 〈f(x), φ(x)〉 = L (C),if g(x) = L+o(1) (C) as x→ ∞, where g is the primitive of fφ with supportbounded on the left. A similar de�nition applies if supp f is bounded on theright. Observe that if f is loally integrable with supp f ⊂ [a,∞) then (8.1)means that(8.2) ∞\
a

f(x)φ(x) dx = L (C),while if f(x) =
∑∞

n=0 anδ(x− n) then (8.1) tells us that(8.3) ∞∑

n=0

anφ(n) = L (C).In the general ase when the support of f extends to both −∞ and +∞,there are various di�erent but related notions of evaluations in the Cesàrosense (or in any other summability sense, in fat). If f admits a representa-tion of the form f = f1 + f2, with supp f1 bounded on the left and supp f2bounded on the right, suh that 〈fj(x), φ(x)〉 = Lj (C) exist, then we saythat the (C) evaluation 〈f(x), φ(x)〉 (C) exists and equals L = L1 +L2. Thisis learly independent of the deomposition. The notation (8.1) is used inthis situation.It often happens that 〈f(x), φ(x)〉 (C) does not exist, but the symmetrilimit, limx→∞{g(x) − g(−x)} = L, where g is any primitive of fφ, existsin the (C) sense. Then we say that the evaluation 〈f(x), φ(x)〉 exists in theprinipal value Cesàro sense, and write(8.4) p.v.〈f(x), φ(x)〉 = L (C).Observe that p.v.
∑∞

n=−∞ anφ(n) = L (C) if and only if ∑N
n=−N anφ(n)

→ L (C) as N → ∞, while p.v.
T∞
−∞ f(x)φ(x) dx = L (C) if and only ifTA

−A f(x)φ(x) dx → L (C) as A→ ∞.An intermediate notion, very useful for our purposes, is the following. Ifthere exists k suh that(8.5) lim
x→∞

{g(ax) − g(−x)} = L (C, k), ∀a > 0,we say that the distributional evaluation exists in the e.v. Cesàro sense andwrite(8.6) e.v.〈f(x), φ(x)〉 = L (C, k),or just e.v.〈f(x), φ(x)〉 = L (C) if there is no need to all attention to thevalue of k; observe, however, that the same value of k works for all a > 0.Clearly (8.1)⇒(8.6)⇒(8.4), but the onverse impliations do not hold.For example, p.v.〈x, 1〉 = 0 (no (C) needed), but e.v.〈x, 1〉 (C) does not



230 J. Vindas and R. Estradaexist. Furthermore,(8.7) e.v.

〈 ∞∑

n=−∞
|n|≥2

δ(x− n)

n ln |n| , 1
〉

= 0,

with no (C) needed, but the Cesàro evaluation does not exist in the sense of(8.1).Our next aim is to haraterize the Fourier transforms of distributionsthat have a jump disontinuity at a point. The haraterization of the Fourierseries of those periodi distributions that have a distributional point valuewas given in [8℄: if f(θ) =
∑∞

n=−∞ ane
inθ in the spae D′(R) then(8.8) f(θ0) = γ distributionallyif and only if there exists k suh that(8.9) lim

x→∞

∑

−x≤n≤ax

ane
inθ0 = γ (C, k), ∀a > 0.We shall show that a similar result holds for Fourier transforms.Lemma 1. Let f ∈ S ′(R). If x0 ∈ R then(8.10) f(x0) = γ distributionallyif and only if(8.11) lim

λ→∞
λf̂(λu)e−iλux0 = 2πγδ(u)in the spae S ′(R).Proof. Indeed,

f(x0) = γ dist. ⇔ lim
ε→0

f(x0 + εx) = γ

⇔ lim
ε→0

F{f(x0 + εx);u} = 2πγδ(u)

⇔ lim
λ→∞

λf̂(λu)e−iλux0 = 2πγδ(u),as required.In what follows we use the notation spec f = supp f̂ for the spetrumof f. The next lemma follows from the ideas of [14, Setion 6.5℄; see also [36℄.Lemma 2. Let f ∈ S ′(R). Suppose spec f is bounded on the left or onthe right. Then f(x0) = γ distributionally if and only if(8.12) 〈f̂(u), e−iux0〉 = 2πγ (C).Our next lemma onerns the ase of a distribution that vanishes on awhole interval.



Distributionally regulated funtions 231Lemma 3. Let f ∈ S ′(R). Suppose f(x) = 0 for x0 − η < x < x0 + η.Then f admits a deomposition f = f+−f− with f± ∈ S ′(R), where spec f+is bounded on the right , spec f− is bounded on the left , and where the distri-butional point values f±(x0) = ±µ both exist.Proof. If f ∈ D′(R) then ([4, Theorem 3.14℄, [26℄) there exists a setion-ally analyti funtion F (z) de�ned for z ∈ C\R suh that the distributionallimits(8.13) f±(x) = F (x± i0) = lim
y→0

F (x± iy)exist and f = f+−f−.When f ∈ S ′(R) we an hoose the funtion F in suha way that both f± ∈ S ′(R) [13, Setion 6.4℄; atually if f(x) = O(|x|β) (C)as x→ ∞ for some β < 0, then we may take(8.14) F (z) =
1

2πi

〈
f(x),

1

x− z

〉
(C).In general F is not unique, but an arbitrary polynomial an be added atwill.It is lear that spec f+ ⊂ (−∞, 0] while spec f− ⊂ [0,∞).It remains to show that the distributional point values f±(x0) exist. Butsine f(x) = 0 for x0−η < x < x0+η it follows that F is analyti aross thisinterval [2, Setion 5.8℄, and thus f±(x) are atually real analyti funtionsfor x0 − η < x < x0 + η and thus f±(x0) are well-de�ned ordinary values.We are now ready to give the haraterization of the Fourier transformsof tempered distributions that have a distributional point value.Theorem 9. Let f ∈ S ′(R). If x0 ∈ R then(8.15) f(x0) = γ distributionallyif and only if(8.16) e.v.〈f̂(u), e−iux0〉 = 2πγ (C),whih in ase f̂ is loally integrable means that(8.17) e.v.

∞\
−∞

f̂(u)e−iux0 du = 2πγ (C).Proof. Choose any number η with 0 < η < π. There exists a distribution
f1 of period 2π suh that f(x) = f1(x) for x0 − η < x < x0 + η. This means,beause of Lemma 3, that f = f1+f2 where f2 satis�es e.v.〈f̂2(u), e

−iux0〉 = 0
(C), and thus the result will be true if it is true for periodi distributionsof period 2π, but this is exatly the equivalene of (8.8) and (8.9) provedin [8℄.



232 J. Vindas and R. EstradaWe now proeed to the ase of tempered distributions that have distri-butional lateral limits at a point.Theorem 10. Let f ∈ S ′(R). If x0 ∈ R then the distributional laterallimits f(x±0 ) = γ± exist and f has no Dira delta funtion at x = x0 if andonly if there exists k suh that whenever g(u) is a primitive of f̂(u)e−iux0then the Cesàro limit(8.18) lim
u→∞

(g(au) − g(−u)) = Ix0
(a) (C, k)exists for all a > 0. If this is the ase then(8.19) Ix0

(a) = π(γ+ + γ−) + i(γ+ − γ−) ln a.Proof. Suppose that the distributional lateral limits f(x±0 ) = γ± existand f has no Dira delta funtion at x = x0. Write f = f1 + f2 where
f1(x) = f(x)− (d/2) sgn(x−x0), d = γ+−γ−. Thus for f = f1, the quantity
Ix0,f1

(a) exists and equals π(γ+ + γ−) sine the distributional point value
f1(x0) exists and equals (γ+ + γ−)/2, and therefore(8.20) e.v.〈f̂1(u), e

−iux0〉 = π(γ+ + γ−) (C).On the other hand,(8.21) f̂2(u) = (γ+ − γ−)ieiux0p.v.

(
1

u

)
,where p.v.(1/u) is the usual prinipal value regularization of the non-inte-grable funtion 1/u. Then

Ix0,f2
(a) = lim

s→∞
p.v.

as\
−s

f̂2(u)e
−iux0 du

= lim
s→∞

p.v.

as\
−s

(γ+ − γ−)i
du

u
= (γ+ − γ−)i ln a,

and (8.18) and (8.19) follow.Conversely, suppose that Ix0
(a) exists for eah a > 0. Clearly Ix0

(a) isa measurable funtion of a. Then an easy omputation shows that Ix0
(a)satis�es the funtional equation(8.22) Ix0

(ab) = Ix0
(a) + Ix0

(b) − Ix0
(1).While this funtional equation has many solutions, onstruted using a suit-able Hamel basis, an analysis that an be traed bak to Sierpi«ski showsthat the only measurable solutions are(8.23) Ix0

(a) = Ix0
(1) + ω ln a



Distributionally regulated funtions 233for some onstant ω.Writing f = f1+f2, f2(x) = −i(ω/2) sgn(x−x0) showsthat the distributional value f1(x0) exists and equals Ix0
(1)/(2π) sine(8.24) e.v.〈f̂1(u), e

−iux0〉 = Ix0
(1) (C).Hene the distributional lateral limits f(x±0 ) exist and equal(8.25) γ± =

Ix0
(1)

2π
∓ iω

2
,whih is equivalent to (8.19).Observe in partiular that if f̂ is loally integrable, then the distributionallateral limits f(x±0 ) = γ± exist and f has no Dira delta funtion at x = x0if and only if there exists k suh that for all a > 0,(8.26) lim

s→∞

as\
−s

f̂(u)e−iux0 du = π(γ+ + γ−) + i(γ+ − γ−) ln a (C, k).In ase f is periodi of period 2π with Fourier series(8.27) f(x) =
∞∑

n=−∞

ane
inx,the ondition beomes(8.28) lim

N→∞

∑

−aN≤n≤N

ane
inx0 =

γ+ + γ−
2

+
i

2π
(γ+ − γ−) ln a (C, k).We obtain the following haraterization of the Fourier transforms ofdistributionally regulated funtions.Theorem 11. Let f ∈ S ′(R). The distribution f is a distributionallyregulated funtion with delta funtions if and only if for all x0 ∈ R, thedistribution f̂(u)e−iux0 admits the deomposition(8.29) f̂(u)e−iux0 = px0

(u) + g′x0
(u),where px0

(u) is a polynomial and where for some k,(8.30) lim
u→∞

(g(au) − g(−u)) = Ix0
(a) (C, k)exists for all a > 0. The distribution f is a distributionally regulated funtion(without delta funtions) if px0

(u) = 0 for eah x0 ∈ R; if also Ix0
(a) is aonstant funtion of a for eah x0 ∈ R then f is a �ojasiewiz funtion.In any ase, the set of points x0 where px0

(u) 6= 0 is ountable, as is theset of points x0 where Ix0
(a) is not a onstant funtion of a.We now give another haraterization of distributions having lateral lim-its based on a deomposition in terms of boundary limits of analyti fun-tions from the upper and lower half planes. Observe that only prinipal valueCesàro evaluations are needed in the following theorem.



234 J. Vindas and R. EstradaTheorem 12. Let f ∈ S ′(R). Let x0 ∈ R. Then the distributional laterallimits f(x±0 ) = γ± exist and f has no Dira delta funtion at x = x0 if andonly if(8.31) f̂(u)e−iux0 = Hx0
(u+ i0) +Hx0

(u− i0),where Hx0
(z) is analyti for z ∈ C \ R, the distributional boundary distribu-tions Hx0

(u± i0) belong to S ′(R), and the prinipal value Cesàro evaluations(8.32) p.v.〈Hx0
(u± i0), 1〉 = ν± (C)both exist. In this ase ν± = πγ±.Proof. If the distributional lateral limits f(x±0 ) = γ± exist and f has noDira delta funtion at x = x0 we an write f = f+ + f− where f± do nothave delta funtions at x = x0, supp f+ ⊂ [x0,∞), supp f− ⊂ (−∞, x0],

f+(x+
0 ) = γ+, and f−(x−0 ) = γ−. Then we de�ne(8.33) Hx0

(z) =

{ 〈f+(x), eiz(x−x0)〉, Re z > 0,
〈f−(x), eiz(x−x0)〉, Re z < 0,so that Hx0

(u± i0) = f̂±(u), and onsequently(8.34) p.v.〈Hx0
(u± i0), 1〉 = πγ± (C).Conversely, if (8.31) holds, then f = f+ + f− where(8.35) f±(x) = F−1{eiux0Hx0

(u± i0), x}.But this implies that supp f+ ⊂ [x0,∞), while supp f− ⊂ (−∞, x0]. Then(8.32) shows that the even parts of f± have the distributional values γ±/2at x = x0. But sine the distributions f± vanish on one side of x0, itfollows that the distributional lateral limits exist and no delta funtion ispresent.We immediately obtain the ensuing result.Theorem 13. Let f ∈ S ′(R). The distribution f is a distributionallyregulated funtion with delta funtions if and only if for all x0 ∈ R, thedistribution f̂(u)e−iux0 admits the deomposition(8.36) f̂(u)e−iux0 = px0
(u) +Hx0

(u+ i0) +Hx0
(u− i0),where px0

(u) is a polynomial and where Hx0
(z) is analyti for z ∈ C \R, thedistributional boundary distributions Hx0

(u ± i0) belong to S ′(R), and theprinipal value Cesàro evaluations(8.37) p.v.〈Hx0
(u± i0), 1〉 = ν± (C)both exist. The distribution f is a distributionally regulated funtion (withoutdelta funtions) if px0

(u) = 0 for eah x0 ∈ R; if also ν+ = ν− for eah
x0 ∈ R then f is a �ojasiewiz funtion.



Distributionally regulated funtions 235In any ase the set of points x0 ∈ R where px0
(u) 6= 0 is ountable, as isthe set of points where ν+ 6= ν−.One an use these ideas to prove that if the distributional lateral limitsof a distribution that is the boundary value of an analyti funtion from theupper or lower half plane exist, then they must oinide [10℄.
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