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A generalized Pettis measurability criterion
and integration of vector functions

by

I. Dobrakov (Bratislava) and T. V. Panchapagesan (Mérida)

Dedicated to Professor V. Balakrishnan, Pondicherry,
on the occasion of his seventieth birthday

Abstract. For Banach-space-valued functions, the concepts of P-measurability,
λ-measurability and m-measurability are defined, where P is a δ-ring of subsets of a
nonvoid set T , λ is a σ-subadditive submeasure on σ(P) and m is an operator-valued
measure on P. Various characterizations are given for P-measurable (resp. λ-measurable,
m-measurable) vector functions on T . Using them and other auxiliary results proved here,
the basic theorems of [6] are rigorously established.

1. Introduction. The first author developed a theory of integration for
Banach-space-valued functions with respect to an operator-valued measure
(σ-additive in the strong operator topology) in a series of papers as cited
in [17]; among them, the papers [6] and [7] are fundamental. This theory
has many interesting features which are not shared by other Lebesgue-type
integrals. For example, there are four distinct L1 spaces here; in contrast to
the abstract Lebesgue integral and Bochner integral, the integrable functions
cannot all be defined through convergence in measure (see Remark 12);
this integral is a complete generalization of the abstract Lebesgue integral
in the sense of Remark 11; it can be used to represent certain types of
operators which arise naturally in analysis (see [8]), etc. Though this work
is very interesting, it is not widely known since [6] and [7] were written
concisely without giving details of the proofs, and many results were stated
without proofs, which are indispensable either for the development of the
theory or for distinguishing it from other Lebesgue-type integration theories.
Moreover, there are lacunas in the proofs of some of the basic theorems of [6].
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The aim of the present paper and the companion paper [9] is to pro-
vide proofs of the unproved results mentioned in [6, 7] (one such important
result is a stronger version of the Pettis measurability criterion), to clar-
ify the statements made in the proofs of certain theorems of [6, 7], to give
rigorous proofs of the theorems whose original proofs have lacunas and to
strengthen the statements of some of these theorems, and finally, to discuss
in detail some of the the distinguishing features of the theory through ex-
amples which are much simpler than those given in [6, 7]. We hope that
these two papers will be very helpful to the interested readers to under-
stand the theory of integration developed in [6, 7] and in other papers cited
in [17].

The set-up of δ-rings is used because the integral representation theorems
given in [8] are stated for σ-rings and δ-rings. Moreover, using some of
the ideas of [6, 7] and of Thomas [20], the second author has studied a
generalization of the Bartle–Dunford–Schwartz integral of scalar functions
(as given in [10]) when the σ-additive measure is defined on a δ-ring with
values in a Banach space, and more generally, in a quasicomplete locally
convex Hausdorff space. See [23–25]. This integral defined on δ-rings plays
a key role in the more recent papers [26–28] of the second author which
generalize the results of [15, 16] to Radon vector measures treated in [20].
In this context we would like to remark that Thomas’ work [20] is based
on the locally compact version of Theorem 6 of Grothendieck [11]. But,
contrary to Remark 2 on p. 161 of [11], the techniques of Grothendieck [11]
are not powerful enough to obtain the said version. In fact, his techniques
can be used to prove that version if and only if the locally compact Hausdorff
space is moreover σ-compact (see [19]). However, the version for arbitrary
locally compact Hausdorff spaces with many more equivalent statements
has recently been proved in [18] and hence the work of Thomas [20] remains
valid. An alternative method to prove the results of [18] is given in [21]. See
also [22].

In Section 2 we fix notation and terminology and state some definitions
and results from the literature, sometimes with proof. In Section 3, following
the techniques of [14] and in the set-up of σ-rings, we obtain the Kelley–
Srinivasan measurability criterion (see Lemma 3) without using the Bochner
integral unlike the original proof in [14]. We give a detailed proof of Theo-
rem 1 which is essentially Corollary 1.5 of [14] (not proved in [14]) and which
gives several characterizations of P-measurable vector functions in the set-up
of σ-rings, including a stronger version of the Pettis measurability criterion
(which is stated without proof on p. 518 of [6]). In Section 4 we introduce the
concept of λ-measurability (resp. m-measurability) for Banach-space-valued
functions, and using Theorem 1, we obtain in Theorem 2 a generalization
of Theorems III.6.10 and III.6.11 of [10] for these functions. One of these
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characterizations is a generalized Pettis measurability criterion. We give a
direct proof of Theorem 3 which is the same as the last part of Theorem 2,
to the effect that the set of all λ-measurable (resp. m-measurable) vector
functions is closed under the formation of a.e. sequential limits. Using The-
orem 1 we prove the two unproved results on convergence in measure and
semivariation mentioned on p. 519 of [6] (see Proposition 8).

In Section 5 we prove the Egorov–Lusin theorem for a continuous sub-
measure and obtain an analogue of the Pettis theorem on absolute continuity
for σ-subadditive submeasures. In Section 6 we rigorously establish Theo-
rems 1, 2, 10, 14 and 15 of [6], filling the gaps in the original proofs (thanks
to Theorems 1 and 3 we can not only define integrability for m-measurable
functions which are not necessarily P-measurable, but also strengthen the
statements of some of these theorems). Using Theorem 2 we deduce that the
Bartle–Dunford–Schwartz integral as given in [10] is a particular case of the
integral treated here (see Remarks 5 and 8). We also give a strengthened
version of Theorem 14 of [6], and using Proposition 8 we provide a detailed
proof of Theorem 13 of [6].

2. Preliminaries. In this section we fix notation and terminology and
give some definitions and results from the literature.

T denotes a nonvoid set; P (resp. S) is a δ-ring (resp. a σ-ring) of subsets
of T ; σ(P) denotes the σ-ring generated by P; X,Y are Banach spaces over
K (K = R or C), with norm denoted by | · |; L(X,Y ) denotes the Banach
space of all continuous linear maps U : X → Y , with |U | = sup|x|≤1 |Ux|.
The dual X∗ of X is the Banach space L(X,K).

Definition 1. An additive set function γ : P → X is called a vector
measure. It is said to be σ-additive if |γ(

⋃∞
i=1 Ei) −

∑n
i=1 γ(Ei)| → 0 as

n → ∞, whenever (Ei)∞i=1 is a disjoint sequence in P with
⋃∞
i=1 Ei ∈ P.

Thus γ(
⋃∞
i=1 Ei) =

∑∞
i=1 γ(Ei).

Definition 2. A family (γi)i∈Ω of X-valued σ-additive vector mea-
sures defined on the σ-ring S is said to be uniformly σ-additive if, given
ε > 0 and a sequence En ↘ ∅ of members of S, there exists n0 such that
supi∈Ω |γi(En)| < ε for n ≥ n0.

The following result, known as the Vitali–Hahn–Saks–Nikodym theorem,
plays a crucial role in the definition of the integral of vector functions in
Section 6. We shall refer to it as VHSN.

Proposition 1 (VHSN). Let γn : S → X, n ∈ N, be σ-additive and
suppose limn γn(E) = γ(E) exists in X for each E ∈ S. Then (γn)∞n=1 are
uniformly σ-additive, and consequently , γ is a σ-additive vector measure
on S.
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The first part of the above theorem is given for σ-algebras in Theo-
rem I.4.8 of [4]. However, the result is easily extended to σ-rings by an
argument of negation. The last part is obvious.

Definition 3. A set function λ : S → [0,∞] is called a submeasure if
λ(∅) = 0 and is monotone and subadditive. A submeasure λ on S is said
to be continuous (resp. σ-subadditive) if λ(En)↘ 0 whenever En ↘ ∅ in S
(resp. if λ(

⋃∞
n=1En) ≤∑∞n=1 λ(En) for any sequence (En)∞n=1 in S).

Definition 4. Let γ : P → X be a vector measure. Then the semivari-
ation ‖γ‖ : σ(P)→ [0,∞] of γ is defined by

‖γ‖(E) = sup
{∣∣∣

r∑

i=1

aiγ(E ∩ Ei)
∣∣∣ : (Ei)ri=1 ⊂ P disjoint,

ai ∈ K, |ai| ≤ 1, r ∈ N
}

for E ∈ σ(P). We define ‖γ‖(T ) = sup{‖γ‖(E) : E ∈ σ(P)}. The suprema-
tion γ of γ is defined by

γ(E) = sup{|γ(F )| : F ⊂ E, F ∈ P}
for E ∈ σ(P) and we define γ(T ) = sup{γ(E) : E ∈ σ(P)}.

By Proposition I.1.11 of [4] which also holds for rings of sets, and by
Theorem I.2.4 of [4] which is valid for σ-rings too, we have

Proposition 2. Let γ : σ(P) → X be a σ-additive vector measure.
Then:

(i) γ(E) ≤ ‖γ‖(E) ≤ 4γ(E) for E ∈ σ(P), and moreover , ‖γ‖(T ) <∞.
(ii) ‖γ‖,γ : σ(P)→ [0,∞) are continuous submeasures.

By Proposition I.3.1 of Bombal [3] which also holds for σ-rings, we have

Proposition 3. Let γn : S → X, n ∈ N, be uniformly σ-additive.
Then, given a sequence (Ek)∞k=1 ⊂ S with Ek ↘ ∅ and ε > 0, there exists
k0 such that ‖γn‖(Ek) < ε for all n and for k ≥ k0.

Definition 5. A set function m : P → L(X,Y ) is called an operator-
valued measure if m(·)x : P → Y is a σ-additive vector measure for each
x ∈ X; in other words, if m is σ-additive in the strong operator topology
of L(X,Y ).

Definition 6. Let m : P → L(X,Y ) be an operator-valued measure.
Then we define the semivariation m̂(E) and the scalar semivariation
‖m‖(E) for E ∈ σ(P) by

m̂(E) = sup
{∣∣∣

r∑

i=1

m(E ∩Ei)xi
∣∣∣ : (Ei)ri=1 ⊂ P disjoint,

xi ∈ X, |xi| ≤ 1, r ∈ N
}
,
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‖m‖(E) = sup
{∣∣∣

r∑

i=1

aim(E ∩ Ei)
∣∣∣ : (Ei)ri=1 ⊂ P disjoint,

ai ∈ K, |ai| ≤ 1, r ∈ N
}
.

We define m̂(T ) = sup{m̂(E) : E ∈P} and ‖m‖(T ) = sup{‖m‖(E) : E ∈P}.
Remark 1. For an operator-valued measure m on P, we have ‖m‖(E) ≤

m̂(E), and ‖m‖(E) = 0 if and only if m̂(E) = 0 for E ∈ σ(P).

It is easy to deduce the following result from Definition 6.

Proposition 4. Let m : P → L(X,Y ) be an operator-valued measure.
Then m̂ and ‖m‖ are σ-subadditive submeasures on σ(P).

Definition 7. A function s : T → X is said to be a P-simple function
if the range of s is a finite set (xi)ni=1 of vectors such that s−1({xi}) ∈ P for
each xi 6= 0, i = 1, . . . , n. Thus an X-valued P-simple function s is of the
form s =

∑r
i=1 xiχEi , (Ei)

r
i=1 ⊂ P being disjoint and xi 6= 0, i = 1, . . . , r.

Notation 1. S(P,X) = {s : T → X : s P-simple} is a normed space
under the operations of pointwise addition and scalar multiplication with
norm ‖·‖T given by ‖s‖T = maxt∈T |s(t)|. For a bounded function f : T → X
and A ⊂ T , ‖f‖A = supt∈A |f(t)|.

Notation 2. Following Halmos [12], for a function f : T → X, N(f)
denotes the set {t ∈ T : f(t) 6= 0}.

Definition 8. Let m : P → L(X,Y ) be an operator-valued measure.
For an X-valued P-simple function s =

∑r
i=1 xiχEi , with xi 6= 0 for all i

and with (Ei)ri=1 disjoint in P, we define
�
E

s dm =
∑r
i=1 m(E ∩Ei)xi ∈ Y

for E ∈ σ(P) and we set
�
T

s dm =
�
N(s) s dm.

Note that the above integrals are well defined.
The following result is immediate from Definitions 6 and 8.

Proposition 5. Let m : P → L(X,Y ) be an operator-valued measure
and let s ∈ S(P,X). Then:

(i) |
�
E

s dm| ≤ ‖s‖E · m̂(E) for E ∈ σ(P).
(ii) If γ(·) =

�
(·) s dm, then γ : σ(P)→ Y is σ-additive.

3. Stronger version of the Pettis measurability criterion. Using
a representation theorem for Bochner integrable functions, Kelley and Srini-
vasan [14] characterized X-valued P-measurable functions as σ-simple func-
tions with respect to P. Employing the techniques of [14] we give a direct
proof of this characterization, avoiding the use of Bochner integrals and in
the set-up of σ-rings. Then we pass on to obtain several characterizations
of these functions, including a stronger version of the Pettis measurability
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criterion (which is stated without proof on p. 518 of [6]). These character-
izations are given in Corollary 1.5 of [14] but the corollary is not proved
there.

Definition 9. Let M(P,X) = {f : T → X : there exists a sequence
(sn)∞n=1 ⊂ S(P,X) such that sn(t) → f(t) for all t ∈ T}. The members of
M(P,X) are called X-valued P-measurable functions. When X = K, we
denote M(P,K) by M(P). (In [6], X-valued P-measurable functions are
called measurable functions.)

Let us recall from §20 of Halmos [12] that a function f : T → K is
σ(P)-measurable if N(f) ∩ f−1(B) ∈ σ(P) for each Borel set B in K. Then
by Theorem 20.B of Halmos [12], such a function f is the pointwise limit
of a sequence (sn)∞n=1 of σ(P)-simple functions. As N(f) ∈ σ(P) and as
P is a δ-ring, there exists an increasing sequence (En)∞n=1 in P such that
N(f) =

⋃∞
n=1 En. Then snχEn are P-simple and converge pointwise to f

in T . Thus f ∈ M(P). Conversely, if f ∈ M(P), then by Theorem 20.A
and Exercise 9 in §18 of Halmos [12], f is σ(P)-measurable in the sense of
Halmos [12]. Thus we have the following

Proposition 6. A scalar function on T belongs to M(P) if and only if
it is σ(P)-measurable in the sense of Halmos [12].

Following Kelley and Srinivasan [14], we give the following definition.

Definition 10. If f : T → X is of the form f =
∑∞
i=1 xiχEi , where

(Ei)∞i=1 ⊂ P and
∑∞
i=1 |xi|χEi(t) < ∞ for each t ∈ T , then f is called an

X-valued σ-simple function with respect to P. If the sets (Ei)∞i=1 and vectors
(xi)∞i=1 can further be chosen so that (Ei)∞i=1 is a disjoint sequence in P and
xi 6= 0 for all i, then f is called an X-valued P-elementary function.

Lemma 1. If f : T →X has separable range and if f−1(B(x, r))∩N(f)
∈ σ(P) for all x ∈ X and r > 0, then f is the uniform limit of a sequence of
X-valued P-elementary functions belonging to M(P,X). (Here B(x, r) =
{y ∈ X : |x− y| ≤ r}.)

Proof. Let D = {wn : n ∈ N, wn 6= 0} be dense in f(T ). Let An,p =
{t ∈ T : |f(t)−wn| ≤ 1/p} ∩N(f) for n, p ∈ N and Bn,p = An,p \

⋃
i<nAi,p.

Then (Bn,p)∞n=1 are disjoint in σ(P). Since D is dense in f(T ) we have
N(f) =

⋃∞
n=1 Bn,p for each p. In particular, N(f) ∈ σ(P) and hence there

exists a disjoint sequence (Fn) in P such that
⋃∞
n=1 Fn = N(f). Let gn,p =∑

i,j<n wiχFi∩Bj,p and fp =
∑∞
n,m=1 wnχBn,p∩Fm . Then (gn,p)∞n=1 are

P-simple and converge pointwise to fp on T . Thus the P-elementary func-
tions fp belong to M(P,X), and clearly fp → f uniformly on T .
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Lemma 2. Suppose f : T → X has separable range and x∗f ∈ M(P)
for each x∗ ∈ X∗. Then f is the uniform limit of a sequence of X-valued
P-elementary functions.

Proof. Let D be a countable set of nonzero vectors in X such that
D ⊃ f(T ). Let x0 ∈ X and let X0 be the closed linear subspace spanned
by D ∪ {x0}. Then by Theorem 2.5 of [13] there exists a sequence (x∗n)∞n=1
in the closed unit ball of X∗0 such that |x| = supn |x∗n(x)| for each x ∈ X0.
Consequently, (x∗n)∞n=1 is total in X0 and hence N(f) =

⋃∞
n=1N(x∗nf). Then

by hypothesis and Proposition 6 it follows that N(f) ∈ σ(P). Moreover, for
r > 0, we have f−1(B(x0, r)) ∩ N(f) =

⋂∞
n=1(x∗nf)−1(B(x∗n(x0), r)) ∩ N(f)

∈ σ(P). Since x0 is arbitrary, the result follows from Lemma 1.
The following lemma is a consequence of Theorem 1.4 of [14]. We modify

the proof of that theorem avoiding the use of the Bochner integral.

Lemma 3 (Kelley–Srinivasan [14]). Suppose f : T → X is the uniform
limit of a sequence of P-elementary functions on T . Then f is σ-simple with
respect to P. Consequently , f is P-measurable.

Proof. Clearly, f satisfies the hypothesis of Lemma 2 and hence, as shown
in the proof of that lemma, N(f) ∈ σ(P) and N(f) =

⋃∞
n=1Bn, where

Bn = N(f) ∩ f−1(B(0, n)) = {t ∈ T : 0 < |f(t)| ≤ n} ∈ σ(P) by Lemma 1.
If En = {t ∈ T : n − 1 < |f(t)| ≤ n}, then (En)∞n=1 is a disjoint sequence
in σ(P) and N(f) =

⋃∞
n=1En. Clearly, f =

∑∞
n=1 fχEn , and for each n, by

hypothesis fχEn is the uniform limit of a sequence (f (n)
k )∞k=1 of X-valued

P-elementary functions on T vanishing outside En. Then we can choose a
subsequence (f (n)

kr
)∞r=1 of (f (n)

k )∞k=1 such that ‖f (n)
kr+1

− f (n)
kr
‖T < 1

2n .
1
2r for

r = 1, 2, . . . . Now

f(t)χEn(t) = f (n)
k1

(t) +
∞∑

r=1

(f (n)
kr+1

(t)− f (n)
kr

(t)), t ∈ T,

and the series converges uniformly to fχEn and is absolutely convergent for
each t ∈ T . Moreover, from the above representation we have

‖f (n)
k1
‖T ≤ n+

1
2n

∞∑

r=1

1
2r

< n+ 1.

Let g(n)
1 = f (n)

k1
and g(n)

r = f (n)
kr+1
−f (n)

kr
. Then g(n)

r areX-valued P-elementary
functions vanishing on T \ En, and hence there exist disjoint sequences
(E(n)

r,j )∞j=1 of subsets of En belonging to P and of nonzero vectors (x(n)
r,j )∞j=1

in X for r = 1, 2, . . . such that g(n)
r =

∑∞
j=1 x

(n)
r,j χE(n)

r,j
. Thus

fχEn =
∞∑

j=1

x
(n)
1,j χE(n)

1,j
+
∞∑

r=1

∞∑

j=1

x
(n)
r,j χE(n)

r,j
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and
|f(t)χEn(t)| ≤ n+ 1 +

∞∑

r=1

1
2n
· 1

2r
< n+ 2

for t ∈ T . Clearly, the series is absolutely convergent for each t ∈ T , and
hence we can rewrite fχEn =

∑∞
j=1 x

(n)
j χ

A
(n)
j

with (A(n)
j ) a sequence of

subsets of En belonging to P with
∑∞
j=1 |x

(n)
j |χA(n)

j
(t) < n + 2 for t ∈ T .

Thus
∑∞
j=1 x

(n)
j χ

A
(n)
j

is a σ-simple function with respect to P. Since En are

disjoint, f(t) =
∑∞
n=1 fχEn(t) =

∑∞
n=1

∑∞
j=1 x

(n)
j χ

A
(n)
j

(t) for t ∈ T and the

series is absolutely convergent for each t ∈ T . Thus f is an X-valued σ-simple
function with respect to P. Moreover, f(t) = limm

∑m
n=1

∑m
j=1 x

(n)
j χ

A
(n)
j

(t)

for t ∈ T and hence f ∈ M(P,X).
Using the above lemmas we prove the following theorem which is essen-

tially Corollary 1.5 of [14].

Theorem 1. Let P be a δ-ring of subsets of T and let f : T → X be a
vector function. Then the following conditions are equivalent :

(i) f is P-measurable.
(ii) (Stronger version of the Pettis measurability criterion) f has separ-

able range on T and is weakly P-measurable (i.e. x∗f is P-measur-
able for each x∗ ∈ X∗).

(iii) f has separable range on T and f−1(G)∩N(f) ∈ σ(P) for each open
set G in X.

(iv) f has separable range on T and f−1(E)∩N(f) ∈ σ(P) for each Borel
subset E of X.

(v) f is the uniform limit of a sequence of X-valued P-elementary func-
tions.

(vi) (Kelley–Srinivasan measurability criterion) f is an X-valued σ-
simple function with respect to P.

Consequently , the set M(P,X) of all X-valued P-measurable functions is
closed under the formation of sequential pointwise limits on T .

Proof. While (i)⇒(ii) is obvious, (ii)⇒(i) by Lemmas 2 and 3.
(i)⇒(iii). Clearly, f(T ) is separable. Let (sk)∞k=1 ⊂ S(P,X) be such

that sk(t) → f(t) for each t ∈ T . Let G be a nonvoid open set in X. Let
Gn = {x ∈ G \ {0} : B(x, 1/n) ⊂ G \ {0}}. Then G \ {0} =

⋃∞
n=1Gn.

Thus f−1(G \ {0}) =
⋃∞
n=1 f−1(Gn) =

⋃∞
n=1

⋃∞
m=1

⋂∞
k=m s−1

k (G2n). In fact,
f(t) ∈ Gn implies that B(f(t), 1/n) ⊂ G\{0} and hence there exists k0 such
that sk(t) ∈ B(f(t), 1/2n) for k ≥ k0. Therefore B(sk(t), 1/2n) ⊂ G \ {0}
so that sk(t) ∈ G2n for k ≥ k0. Since sk are P-simple, it follows that
f−1(G) ∩N(f) = f−1(G \ {0}) ∈ σ(P) and hence (iii) holds.
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By a routine argument one can show that (iii)⇒(iv). If (iv) holds, then
f(T ) is separable and N(f) ∩ f−1(B(x, r)) ∈ σ(P) for r > 0 and x ∈ X.
Then by Lemma 1, (v) holds. Clearly (v)⇒(vi)⇒(i) by Lemma 3. Finally,
by Proposition 6 the last part is immediate from (ii).

This completes the proof of the theorem.

Remark 2. The results mentioned without proof in paragraphs 4 and 5
of Section 1.2 on p. 518 of [6] are the same as the equivalences among (i),
(ii) and (iii) of the above theorem.

The following proposition is mentioned without proof in the second para-
graph of Section 1.2 on p. 518 of [6] and is used in the proof of Theorem 14
of [6].

Proposition 7. Let f ∈ M(P,X). Then |f(·)| ∈ M(P). Moreover ,
there exists a sequence (sn)∞n=1 ⊂ S(P,X) such that sn(t) → f(t) and
|sn(t)| ↗ |f(t)| for t ∈ T .

Proof. Let (un)∞n=1 ⊂ S(P,X) be such that un(t) → f(t) for t ∈ T .
Then |un(·)| → |f(·)| in T and hence by Proposition 6, |f(·)| is σ(P)-
measurable. Therefore, by Theorem 20.B of Halmos [12] there exists a non-
decreasing sequence (hn)∞n=1 of nonnegative σ(P)-simple functions such that
hn(t)↗ |f(t)| for t ∈ T . Since N(f) ∈ σ(P), there exists (En)∞n=1 ⊂ P such
that En ↗ N(f). Then ψn = hnχEn are P-simple and ψn(t) ↗ |f(t)| for
t ∈ T . Define sn(t) = un(t)ψn(t)/|un(t)| for t ∈ N(f)∩N(un) and sn(t) = 0
otherwise. Clearly, the sequence (sn)∞n=1 satisfies the conditions of the propo-
sition.

4. A generalized Pettis measurability criterion. In this section
we introduce the concept of X-valued λ-measurable (resp. m-measurable)
functions, where λ is a σ-subadditive submeasure on σ(P) (resp. m : P →
L(X,Y ) is an operator-valued measure), and using Theorem 1 we charac-
terize these functions in Theorem 2, thereby generalizing Theorems III.6.10
and III.6.11 of Dunford and Schwartz [10] (see Remark 4). As a consequence,
we deduce that the class of all X-valued λ-measurable (resp. m-measurable)
functions is closed under the formation of a.e. sequential limits. Theorem 2
also permits us to show that the Bartle–Dunford–Schwartz integral as given
in [10], which is a modified version of that in [2], is a particular case of
the integral defined in Section 6 (see Remarks 5 and 8). The results about
convergence in measure m and in semivariation m̂ stated without proof on
p. 519 of [6] are needed to prove Theorem 13 of [6], and hence they are
treated in Proposition 8.

Definition 11. Let S be a σ-ring of sets and let λ : S → [0,∞] be
a σ-subadditive submeasure. The generalized Lebesgue completion (briefly,
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GL-completion) S̃ of S with respect to λ is defined by S̃ = {E ∪N : E ∈ S,
N ⊂M ∈ S with λ(M) = 0}. The generalized Lebesgue completion (briefly,
GL-completion) λ̃ of λ with respect to S is defined by λ̃(E ∪ N) = λ(E),
where E ∪N ∈ S̃ with E and N as above.

Lemma 4. Let S be a σ-ring of sets and λ : S → [0,∞] be a σ-subaddi-
tive submeasure on S. Then the GL-completion S̃ of S with respect to λ is a
σ-ring containing S, and the GL-completion λ̃ of λ is well defined , extends
λ and is a σ-subadditive submeasure.

Proof. Since λ is monotone, σ-subadditive and λ(∅) = 0, the proofs of
Theorem 13.B of [12] and Theorem III.5.17 of [10] can be combined to prove
the present lemma. The details are left to the reader.

Remark 3. If λ is a positive measure on a σ-ring S, then the Lebesgue
completion of S with respect to λ and of λ with respect to S coincide with
their respective GL-completions.

Definition 12. Let P be a δ-ring of subsets of T , λ : σ(P)→ [0,∞] be
a σ-subadditive submeasure and f : T → X. Then:

(i) A sequence (fn)∞n=1 of X-valued functions on T is said to converge
to f λ-a.e. in T if there exists N ∈ σ(P) with λ(N) = 0 such that
fn(t)→ f(t) for all t ∈ T \N .

(ii) f is said to be λ-measurable if there exists a sequence (sn)∞n=1 ⊂
S(P,X) such that limn sn(t) = f(t) λ-a.e. in T ; in other words, if
there exists a set M ∈ σ(P) with λ(M) = 0 such that fχT\M is
P-measurable.

(iii) f is said to have λ-essentially separable range on T if there exists a
set N ∈ σ(P) with λ(N) = 0 such that f(T \N) is separable.

(iv) f is said to be weakly λ-measurable if x∗f is λ-measurable for each
x∗ ∈ X∗.

Suppose m : P → L(X,Y ) is an operator-valued measure. Note that
m̂(E) = 0 if and only if ‖m‖(E) = 0 for E ∈ σ(P), and by Proposition
4, ‖m‖ and m̂ are σ-subadditive submeasures on σ(P). Thus with λ = m̂
or λ = ‖m‖ in the above definition, we note that an X-valued function f
on T is m̂-measurable if and only if it is ‖m‖-measurable, and in that case
we say that f is m-measurable; we say that fn → f m-a.e. if fn → f m̂-a.e.
(equivalently, ‖m‖-a.e.) in T .

Lemma 5. Let P be a δ-ring of subsets of T and let λ : σ(P)→ [0,∞]
be a σ-subadditive submeasure. Let σ̃(P) and λ̃ be the GL-completions of
σ(P) and λ, respectively. Then:
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(i) A scalar function f on T is λ-measurable if and only if it is σ̃(P)-
measurable (in the sense of Halmos [12]).

(ii) If f, g : T → K are equal λ-a.e. in T and if g is σ̃(P)-measurable,
then so is f .

(iii) Suppose f, fn : T → K, n = 1, 2, . . . , are λ-measurable and fn → f
λ-a.e. in T . Then f is λ-measurable.

Proof. The proof is similar to the classical case and so we leave it to the
reader.

The following theorem is a generalization of Theorems III.6.10 and
III.6.11 of Dunford and Schwartz [10] and Corollary 1.5 of Kelley and
Srinivasan [14] (i.e. Theorem 1 above) to X-valued λ-measurable (resp.
m-measurable) functions on T .

Theorem 2. Let P be a δ-ring of subsets of T . Let λ : S = σ(P) →
[0,∞] be a σ-subadditive submeasure, or let λ = m̂ or ‖m‖, where m : P →
L(X,Y ) is an operator-valued measure. Let f : T → X. Then the following
conditions are equivalent :

(i) f is λ-measurable.
(ii) (Generalized Pettis measurability criterion) f has λ-essentially sep-

arable range on T and is weakly λ-measurable.
(iii) f has λ-essentially separable range on T and f−1(G)∩N(f) ∈ S̃ for

each open set G in X.
(iv) f has λ-essentially separable range on T and f−1(E)∩N(f) ∈ S̃ for

each Borel subset E of X.
(v) There exists a set M ∈ S with λ(M) = 0 such that fχT\M is the

uniform limit of a sequence of P-elementary functions on T .
(vi) (Generalized Kelley–Srinivasan measurability criterion) There exists

a set M ∈ S with λ(M) = 0 such that fχT\M is a σ-simple function
with respect to P.

Consequently , the set M(P,X, λ) of all X-valued λ-measurable functions is
closed under the formation of λ-a.e. sequential limits in T . When λ = m̂ or
‖m‖, M(P,X, λ) is denoted by M(P,X,m).

Proof. (i)⇒(ii). By hypothesis there exists M ∈ S such that λ(M) = 0
and fχT\M is P-measurable. Then by Theorem 1(i)⇒(ii), f(T \M) is sep-
arable and x∗fχT\M is S-measurable for each x∗ ∈ X∗. Consequently, x∗f
is S̃-measurable and hence x∗f is λ-measurable by Lemma 5(i). Thus (ii)
holds.

(ii)⇒(i). By hypothesis and Lemma 5(i) there exists M ∈ S with
λ(M) = 0 such that f(T \ M) is separable and x∗f is S̃-measurable for
each x∗ ∈ X∗. Then Theorem 1 shows that fχT\M is S̃-measurable and
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hence there exists a sequence (sn)∞n=1 of X-valued S̃-simple functions con-
verging pointwise to fχT\M in T . Then N(fχT\M ) = N(|f |χT\M) ∈ S̃ and
hence N(fχT\M ) = E ∪ N , where E ∈ S and N ⊂ H ∈ S with λ(H) = 0.
Let (En)∞n=1 ⊂ P be such that En ↗ E. Let un be S-simple such that
un = sn λ-a.e. in T , for n = 1, 2, . . . . Let wn = unχEn . Then (wn)∞n=1 are
P-simple and converge to fχT\M λ-a.e. in T and hence f is λ-measurable.
Thus (i) holds.

(i)⇒(iii). Let M ∈ S with λ(M) = 0 be such that fχT\M ∈ M(P,X).
Then by Theorem 1(i)⇒(iii), f(T \M) is separable and

(fχT\M )−1(G) ∩N(fχT\M) ∈ S and consequently f−1(G) ∩N(f) ∈ S̃
for all open sets G in X. Hence (iii) holds. By a routine argument, one can
show that (iii)⇒(iv).

(iv)⇒(i). By hypothesis there exists M ∈ S with λ(M) = 0 such that
f(T \M) is separable and f−1(E) ∩N(f) ∈ S̃ for all Borel subsets E of X.
Hence N(f)∩f−1(E)∩(T \M) ∈ S̃. Then by Theorem 1(i)⇒(iv), fχT\M is S̃-
measurable. Therefore, there exists a sequence (sn)∞n=1 of S̃-simple functions
converging pointwise to fχT\M on T . Then following an argument similar to
that in the proof of (ii)⇒(i), we conclude that f is λ-measurable and hence
(i) holds.

(i)⇒(v). Since there exists M ∈ S with λ(M) = 0 such that fχT\M is
P-measurable, by Theorem 1(i)⇒(v), (v) holds. Moreover, (v)⇒(vi)⇒(i) by
Lemma 3 applied to fχT\M . By Lemma 5(iii) the last part is immediate
from the equivalence of (i) and (ii).

This completes the proof of the theorem.

Remark 4. Clearly the above theorem subsumes Theorem 3.5.3 of [13],
Theorem 2, §6 of [5] and Theorems III.6.10 and III.6.11 of [10]. The proofs
of the above theorems of [5] and [10] make use of the Egorov theorem
which is not available for countably subadditive submeasures. However,
thanks to the ingenious techniques of Kelley and Srinivasan [14], we are
able to generalize those classical theorems to X-valued λ-measurable (resp.
m-measurable) functions when λ is a σ-subadditive submeasure (resp. when
m is an operator-valued measure).

Remark 5. Let ν : Σ → X be σ-additive, where Σ is a σ-algebra
of subsets of T . If we define m(E)(α) = α · ν(E) for α ∈ K, then m :
Σ → L(K,X) is an operator-valued measure and it is well known that
m̂ = ‖ν‖. If µ is the control measure of ν, then µ(E) = 0 if and only if
‖ν‖(E) = 0 and hence if and only if m̂(E) = 0. Therefore, the Lebesgue
completion Σ∗ of Σ with respect to µ as in Section IV.10 of [10] coincides
with the GL-completion of Σ with respect to m̂, and then Theorem 2 implies
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that a scalar function is ν-measurable according to the definition on p. 322
of [10] if and only if it is m-measurable in our sense.

Because of the importance of the last part of the above theorem in the
theory of integration of vector functions, we state it as a separate theorem
and also prove it directly.

Theorem 3. Let λ be a σ-subadditive submeasure on σ(P) (resp. m be
an operator-valued measure on P). Then M(P,X, λ) (resp. M(P,X,m))
is closed under the formation of λ-a.e. (resp. m-a.e.) sequential limits.

Proof. It suffices to prove the assertion for λ. Let (fn)∞n=1 ⊂M(P,X, λ).
If f0 : T → X and if fn → f0 λ-a.e. in T , then there exist (Ni)∞i=0 ⊂ σ(P)
with λ(Ni) = 0 for i = 0, 1, 2, . . . such that fn(t) → f0(t) for t ∈ T \ N0

and fnχT\Nn ∈ M(P,X) for n ∈ N. If N =
⋃∞
n=0 Nn, then N ∈ σ(P),

λ(N) = 0, (fnχT\N )∞n=1 ⊂ M(P,X) and fn(t)χT\N(t) → f0(t)χT\N (t)
for t ∈ T . Therefore, from the last part of Theorem 1 we deduce that
f0χT\N ∈ M(P,X). Since λ(N) = 0, we conclude that f0 is λ-measurable
in T .

Definition 13. Let m : P → L(X,Y ) be an operator-valued measure
and let f , fn : T → X,n ∈ N, be m-measurable. Then (fn)∞n=1 is said to
converge to f in measure m (resp. in semivariation m̂) if, for each η > 0,
limn→∞ ‖m‖({t ∈ T : |fn(t) − f(t)| ≥ η}) = 0 (resp. limn→∞ m̂({t ∈ T :
|fn(t) − f(t)| ≥ η}) = 0). As in Halmos [12], the concepts of fundamen-
tal sequence in measure m (resp. in semivariation m̂), and almost uniform
convergence in measure m (resp. in semivariation m̂) are defined.

The proofs of the two results mentioned in the first two paragraphs on
p. 519 of [6] are based on Theorem 1, and as these results are indispens-
able for proving Theorem 13 of [6], the following proposition treats these
results.

Proposition 8. Let m : P → L(X,Y ) be an operator-valued measure
and let fn : T → X, n ∈ N, be m-measurable. Then:

(i) If (fn)∞n=1 is fundamental in measure m (resp. in semivariation m̂),
then there exist a subsequence (fnk)∞k=1 and an m measurable func-
tion f : T → X such that fnk → f almost uniformly in measure
m (resp. in semivariation m̂) in T . Consequently , fnk → f m-a.e.
in T .

(ii) If (fn)∞n=1 converges to an m-measurable function f : T → X in
measure m or in semivariation m̂ in each set E ∈ P, then there
exists a subsequence (fnk)∞k=1 converging to f m-a.e. in T .
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Proof. Let ν = ‖m‖ or m̂. Then by Proposition 4, ν is a σ-subadditive
submeasure on σ(P).

(i) By hypothesis and by the σ-subadditivity of ν there exists M ∈ σ(P)
with ν(M) = 0 such that (fnχT\M )∞n=1 are P-measurable. Let ε > 0 and let
En,p(ε) = {t ∈ T \M : |fn(t)−fp(t)| ≥ ε}. Proceeding as in the proof of The-
orem 22.D of Halmos [12], we can construct a subsequence (nk)∞k=1 of N such
that ν(En,p(1/2k)) < 1/2k for n, p ≥ nk. Defining Ek = Enk,nk+1(1/2k), let
Fk =

⋃
i≥k Ei. Then Ei, Fk ∈ σ(P) for all i, k. Then as in the proof of

the above-mentioned theorem of Halmos [12] it can be shown that (fni) is
Cauchy for uniform convergence on T \M \Fk for each k, and consequently,
as X is complete, limi fni(t) = f(t) (say) exists in X for each t ∈ T \M \Fk.
Moreover, as ν is σ-subadditive, ν(Fk) ≤ 1/2k−1 for each k, and hence
(fni)

∞
i=1 is almost uniformly Cauchy (in ν) in T \ M . Let N =

⋂∞
k=1 Fk.

Then ν(N) = 0 and hence m̂(N) = 0. If we define f(t) = 0 for t ∈ M ∪N ,
then f : T → X and as seen above, fni(t)→ f(t) for t ∈ ⋃∞k=1(T \M \Fk) =
T \M \N . In other words, fniχT\M\N converges pointwise to fχT\M\N in T ,
and hence by Theorem 1, fχT\M\N is P-measurable. Since ν(M ∪N) = 0,
we conclude that f is ν-measurable and (fni)

∞
i=1 converges to f ν-a.e. in T .

(ii) Let f0 = f . Take M as in the proof of (i) so that fnχT\M , n ∈
N∪{0}, are P-measurable. Let F =

⋃∞
n=0(T \M)∩N(fn). Then F ∈ σ(P).

Choose an increasing sequence (Fk)∞k=1 ⊂ P such that F =
⋃∞
k=1 Fk. By

hypothesis and (i), there exist a subsequence (f1,i)∞i=1 of (fn)∞n=1, a set N1 ∈
σ(P)∩ F1 with ν(N1) = 0, and a P ∩ (F1 \N1)-measurable function g such
that f1,i → g almost uniformly in ν in F1. Then by adapting the proofs
of Theorems 22.B and 22.C of Halmos [12], we conclude that f = g ν-a.e.
in F1, and consequently, there exists Ñ1 ⊂ F1, Ñ1 ∈ σ(P) with ν(Ñ1) = 0
such that f1,i(t) → f(t) for t ∈ F1 \ Ñ1. Repeating the argument with the
subsequence (f1,i)∞i=1 and the set F2, we get a subsequence (f2,i)∞i=1 and

a set Ñ2 ⊂ F2, Ñ2 ∈ σ(P) with ν(Ñ2) = 0 such that f2,i(t) → f(t) for

t ∈ F2 \ Ñ2. Repeating this process successively, in the nth stage we obtain
a subsequence (fn,i)∞i=1 of (fn−1,i)∞i=1 and a set Ñn ⊂ Fn, Ñn ∈ σ(P) with
ν(Ñn) = 0 such that fn,i(t) → f(t) for t ∈ Fn \ Ñn. Let N =

⋃∞
n=1 Ñn.

Then N ∈ σ(P), ν(N) = 0 and the diagonal sequence (fn,n)∞n=1, which is a
subsequence of (fn)∞n=1, converges to f pointwise in F \N . Since T = F ∪M
and ν(M ∪N) = 0, (ii) holds.

5. Submeasures which are continuous or σ-subadditive. Impor-
tant results such as the Egorov theorem and the Egorov–Lusin theorem
(resp. Pettis theorem on absolute continuity of measures) are now gener-
alized to continuous (resp. σ-subadditive) submeasures. The Egorov–Lusin
theorem and Pettis theorem are used in Section 6.
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Proposition 9. A continuous submeasure λ defined on a σ-ring S is
σ-subadditive.

Proof. Since λ is monotone, it suffices to show that λ(
⋃∞
n=1En) ≤∑∞

n=1 λ(En) for any disjoint sequence (En)∞n=1 ⊂ S. For such a sequence,
let E =

⋃∞
n=1En and Fn =

⋃∞
k=nEk. Then Fn ↘ ∅. As λ is finitely subad-

ditive, we have λ(E) ≤ ∑n−1
n=1 λ(Ek) + λ(Fn). Taking the limit as n → ∞,

we have λ(E) ≤∑∞n=1 λ(En) since λ is continuous and Fn ↘ ∅.
In the proof of the classical Egorov theorem with respect to a finite

positive measure µ, only the continuity from above and the σ-subadditivity
of µ are used. Thus, in the light of Proposition 9, we can adapt the proof
of the classical Egorov theorem to generalize it to the case of continuous
submeasures. Thus we have:

Theorem 4 (Egorov). Let λ : S → [0,∞] be a continuous submeasure
on the σ-ring S and let f , fn : T → X, n ∈ N, be S-measurable. If fn → f
λ-a.e. in T , then, given ε > 0, there exists a set Eε ∈ S such that λ(Eε) < ε
and fn → f uniformly on T \Eε.

From the above theorem we deduce the following result, known as the
Egorov–Lusin theorem.

Theorem 5 (Egorov–Lusin). Let P be a δ-ring of subsets of T and
let λ : σ(P) → [0,∞] be a continuous submeasure. Let f , fn : T → X,
n = 1, 2, . . . , be P-measurable and suppose fn(t) → f(t) for t ∈ T . If F =⋃∞
n=1N(fn), then there exist N ∈ σ(P) with λ(N) = 0 and a sequence

(Fk)∞k=1 ⊂ P with Fk ↗ F \N such that fn → f uniformly on every Fk.

Proof. By applying the Egorov theorem successively with ε = 1/n in the
nth step, we can construct a decreasing sequence (Gn)∞n=1 ⊂ σ(P) such that
λ(Gn) < 1/n and fn → f uniformly on Gn−1 \Gn, where G0 = F . Let N =⋂∞
n=1Gn. Then N ∈ σ(P) and λ(N) = 0. Moreover, F \N =

⋃∞
n=1(F \Gn)

and F \Gn ↗. Clearly, fn → f uniformly on F \Gn =
⋃n
k=1(Gk−1 \Gk) for

each n. As F\Gn ∈ σ(P) there exists an increasing sequence (Hn,m)∞m=1 ⊂ P
such that

⋃∞
m=1Hn,m = F \ Gn. Let Fn =

⋃n
p,m=1 Hp,m. Then Fn ∈ P for

all n, Fn ↗ F \N and fk → f uniformly on each Fn.

The easy proof of the following corollary is left to the reader.

Corollary 1. If µ : S = σ(P)→ [0,∞] is a σ-finite measure, then the
Egorov–Lusin theorem holds for µ.

Definition 14. Let λ be a submeasure on a σ-ring S and let γ : S → X
be σ-additive. We say that γ is absolutely continuous with respect to λ and
write γ � λ (resp. λ-continuous) if λ(E) = 0 implies γ(E) = 0 (resp. if
limλ(E)→0 γ(E) = 0) for E ∈ S.
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Theorem 6 (Pettis). Let S be a σ-ring of subsets of T . Let λ :
S → [0,∞] be a σ-subadditive submeasure and let γ : S → X be σ-additive.
Then γ � λ if and only if γ is λ-continuous.

Proof. Clearly the condition is sufficient. Suppose γ � λ and γ is not λ-
continuous. Then there exists an ε > 0 such that, for each n ∈ N, there exists
a set En ∈ S with λ(En) < 1/2n for which |γ(En)| ≥ ε. If E = lim supEn
and An =

⋃∞
k=nEk, then λ(E) = λ(

⋂∞
n=1 An) ≤ λ(An) ≤ ∑∞k=n λ(Ek) <

1/2n−1 for each n and hence λ(E) = 0. Then by hypothesis γ(E) = 0.
Clearly,An ↘ E and hence by Proposition 2(ii), limn ‖γ‖(An\E) = 0. Thus,
there exists n0 such that ‖γ‖(An\E) < ε for n ≥ n0. Since λ(E) = 0 implies
λ(F ) = 0 for all F ⊂ E, F ∈ S, by hypothesis we have γ(F ) = 0 for F ⊂ E,
F ∈ S, and hence ‖γ‖(E) = 0. Therefore ‖γ‖(An) = ‖γ‖(An) − ‖γ‖(E) ≤
‖γ‖(An \E) < ε for n ≥ n0. This is impossible since ‖γ‖(An) ≥ ‖γ‖(En) ≥
|γ(En)| ≥ ε for all n. Thus the theorem holds.

6. Integration of X-valued m-measurable functions. Theorem 1
of [6] is used in the proofs of Theorems 2, 10, 14 and 15 of [6]. If µ is the
Y -valued σ-additive measure constructed in the proof of Theorem 1 of [6],
then µ(N) = 0 does not imply

�
E
fnχE dm = 0, contrary to what is claimed

there. Because of this lacuna, the said theorems remain unestablished in [6].
However, using the results of Sections 4 and 5, we can modify the original
proofs of [6] and establish those results rigorously. Besides, using Theorems 1
and 3 of Section 4, we not only dispense with the hypothesis of measurability
of the limit functions in these theorems but also strengthen the statements
of those theorems by using m-measurable functions in place of P-measurable
functions. It is also noted in Remark 8 that the Bartle–Dunford–Schwartz
integral treated in Section IV.10 of [10] is a particular case of the integral
defined here. Employing Proposition 7 we provide a strengthened version
of Theorem 14 of [6], and using Proposition 8 we give a detailed proof
of Theorem 13 of [6]. Also we clarify certain statements in the proofs of
Theorems 10 and 14 of [6].

Basic Assumption. In what follows m : P → L(X,Y ) is σ-additive in
the strong operator topology of L(X,Y ) with m̂(E) <∞ for each E ∈ P.

Remark 6. The finiteness of m̂ on P has to be imposed and is not a
consequence even if m is σ-additive in the uniform operator topology, con-
trary to the claim made by Bartle on p. 339 of [1]. This has been established
in Example 5 on p. 517 of [6].

Under the additional hypothesis that m̂(E) < ∞ for all E ∈ P, the
X-valued P-simple functions are called simple integrable functions.



Integration of vector functions 221

Lemma 6. Let γn,ηn : σ(P)→ Y , n ∈ N, be σ-additive. Let

λ(E) =
∞∑

n=1

1
2n

(
γn(E)

1 + γn(T )
+

ηn(E)
1 + ηn(T )

)
, E ∈ σ(P).

Then λ is a continuous submeasure on σ(P).

Proof. By Proposition 2, γn and ηn, n ∈ N, are bounded continuous sub-
measures on σ(P) and hence λ is also a bounded submeasure. To show that
λ is also continuous, let ε > 0 be given. Choose n0 such that 1/2n0 < ε/2.
Let (En)∞n=1 ⊂ σ(P) be such that En ↘ ∅. As γn,ηn, n = 1, . . . , n0, are
continuous, there exists k0 such that γn(Ek) + ηn(Ek) < ε/2 for k ≥ k0

and for n = 1, . . . , n0. Then it follows that λ(Ek) < ε for k ≥ k0. Hence λ is
continuous.

The following theorem combines Theorems 2 and 7 of [6] for simple
integrable functions.

Theorem 7. Let f : T → X be a vector function. If there exists a
sequence (sn)∞n=1 ⊂ S(P,X) such that limn sn(t) = f(t) m-a.e. in T , then
f is m-measurable. Let γn(·) =

�
(·) sn dm : σ(P) → Y , n ∈ N. Then the

following statements are equivalent :

(i) limn γn(E) = γ(E) exists in Y for each E ∈ σ(P).
(ii) γn(·) : σ(P)→ Y , n ∈ N, are uniformly σ-additive on σ(P).
(iii) limn γn(E) exists in Y uniformly with respect to E ∈ σ(P).

Moreover , if (s′n)∞n=1 is another sequence in S(P,X) with limn s′n(t) = f(t)
m-a.e. in T , satisfying any of the above conditions, then limn

�
E

sn dm =
limn

�
E

s′n dm for all E ∈ σ(P). Finally , γ : σ(P) → Y is σ-additive and
m̂-continuous (resp. ‖m‖-continuous).

Proof. By Theorem 3, f is m-measurable. Since the γn are σ-additive
on σ(P) by Proposition 5(ii), by VHSN we have (i)⇒(ii), and obviously
(iii)⇒(i).

Let now (ii) hold. In the definition of the continuous submeasure λ
of Lemma 6 let us take γn as above and ηn = 0 for all n. Let M ∈
σ(P) with m̂(M) = 0 such that sn(t) → f(t) for t ∈ T \ M . Let F =⋃∞
n=1N(sn)∩(T \M). Now by the Egorov–Lusin theorem applied to λ, there

exist N ∈ σ(P)∩F with λ(N) = 0 and an increasing sequence (Fk)∞k=1 ⊂ P
with Fk ↗ F \N such that sn → f uniformly on each Fk. Let G = F \N .
Given ε > 0, by hypothesis (ii) and Proposition 3 there exists k0 such
that ‖γn‖(G \ Fk0) < ε/3 for all n. Since m̂(Fk0) < ∞ and sn → f uni-
formly on Fk0 , there exists n0 such that ‖sn − sp‖Fk0

·m(Fk0) < ε/3 for all
n, p ≥ n0. As m̂(M) = 0, by Proposition 5(i) we have γn(M) = 0 for all n
and hence λ(M) = 0. Moreover, λ(M) = λ(N) = 0 implies that γn(E∩N) =
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γn(E ∩M) = 0 for all n and E ∈ σ(P). Thus we have
∣∣∣ �
E

sn dm− �
E

sp dm
∣∣∣ ≤

∣∣∣ �
E∩(G\Fk0 )

sn dm
∣∣∣+
∣∣∣ �
E∩(G\Fk0 )

sp dm
∣∣∣

+
∣∣∣ �
E∩Fk0

(sn − sp) dm
∣∣∣

≤ ‖γn‖(G \ Fk0) + ‖γp‖(G \ Fk0)

+ ‖sn − sp‖Fk0
· m̂(Fk0) < ε

for all n, p ≥ n0 and E ∈ σ(P). Thus {γn(E)}∞n=1 is uniformly Cauchy for
E ∈ σ(P), and as Y is Banach, (iii) holds. The uniqueness of the limit is
established as in the third paragraph on p. 522 of [6] by considering the
sequence (gn)∞n=1 with g2n = sn and g2n−1 = s′n for all n.

By VHSN, γ is σ-additive on σ(P), and it is m̂-continuous (resp.
‖m‖-continuous) by Theorem 6 as m̂ (resp. ‖m‖) is a σ-subadditive sub-
measure by Proposition 4 and because m̂(E) = 0 implies by Proposition 5(i)
that γn(E) = 0 for all n and hence γ(E) = 0.

This completes the proof of the theorem.

Remark 7. In the above proof we could have defined

λ(E) =
∞∑

n=1

1
2n

µn(E)
1 + ‖µn‖

for E ∈ σ(P), where µn is the control measure of γn and ‖µn‖ = sup{µn(E) :
E ∈ σ(P)}. In that case, λ is a finite positive measure and hence the Egorov–
Lusin theorem applies. We preferred to use the supremations of γn as they
can be described directly by the vector measures, unlike their control mea-
sures.

Using the above theorem we extend Definition 2 of [6] to a wider class
I(m) which contains S(P,X) and which is contained in M(P,X,m).

Definition 15. An X-valued m-measurable function f is said to be m-
integrable if there exists a sequence (sn)∞n=1 ⊂ S(P,X) such that sn → f
m-a.e. in T and the conditions of Theorem 7 are satisfied by the integrals�
(·) sn dm, n ∈ N. In that case, we define

�
E

f dm = limn

�
E

sn dm; the defi-
nition is correct for E ∈ σ(P) by the last part of Theorem 7. By

�
T

f dm we
mean the integral

�
N(f) f dm. The set of all X-valued m-integrable functions

is denoted by I(m).

The above integral includes the Bartle–Dunford–Schwartz integral of [10]
as a particular case. In fact, we have the following
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Remark 8. Let ν, Σ and m be as in Remark 5. Then by that remark,
the Bartle–Dunford–Schwartz integral of scalar functions with respect to ν
(Definition 4.10.7 of [10] which is a modified version of the integral given
in [2]) coincides with the m-integral given in Definition 15. Moreover, in
this case, I(m) = L1(m), where L1(m) is as defined in [7] (see [9, 17] and
also [24]).

In the proof of Theorem 14 of [6], Proposition 7 in Section 3 above guar-
antees the existence of a sequence (fn)∞n=1 of X-valued P-simple functions
such that fn(t)→ f(t) and |fn(t)| ↗ |f(t)| for t ∈ T . The Egorov–Lusin the-
orem referred to in the proof of the said theorem should be with respect to
the continuous submeasure λ of Lemma 6 with γn(·) =

�
(·) fn dm and ηn = 0

for n ∈ N. Also a clarification is needed in regard to the claim (in the said
proof) that |

�
E∩Fk(f−fn) dm| < ε/2. Since (fn)∞n=1 converges to f uniformly

on Fk, we have |
�
E∩Fk fn dm−

�
E∩Fk fp dm| ≤ ‖fn− fp‖Fk ·m̂(Fk) by Propo-

sition 5(i) and hence (
�
E∩Fk fn dm)∞n=1 is uniformly Cauchy (in Y ) with re-

spect to E ∈ σ(P). Hence f is m-integrable on E ∩ Fk and
�
E∩Fk f dm =

limp

�
E∩Fk fp dm. Thus by Proposition 5(i) we have

∣∣∣ �
E∩Fk

(f − fn) dm
∣∣∣ = lim

p

∣∣∣ �
E∩Fk

(fp − fn) dm
∣∣∣ ≤ lim

p
‖fn − fp‖Fk · m̂(Fk)

= ‖f − fn‖Fk · m̂(Fk) < ε/2

for sufficiently large n. However, Theorem 14 of [6] can be improved as
follows.

Theorem 8. If f ∈I(m), then there exist a sequence (sn)∞n=1⊂S(P,X)
and a set M ∈ σ(P) with m̂(M) = 0 such that sn(t) → f(t) and
|sn(t)| ↗ |f(t)| for t ∈ T \M and limn

�
E

sn dm =
�
E

f dm for E ∈ σ(P),
the limit being uniform with respect to E ∈ σ(P). Consequently ,

m̂(E) = sup
{∣∣∣ �

E

f dm
∣∣∣ : f ∈ I(m), ‖f‖E ≤ 1

}
, E ∈ σ(P),

and hence ∣∣∣ �
E

f dm
∣∣∣ ≤ ‖f‖E · m̂(E)

for f ∈ I(m) and E ∈ σ(P).

Proof. Let f ∈ I(m). By Proposition 7 and Definition 15, there exist
two sequences (wn)∞n=1 and (hn)∞n=1 of X-valued P-simple functions and a
set M ∈ σ(P) with m̂(M) = 0 such that wn(t) → f(t), hn(t) → f(t) and
|wn(t)| ↗ |f(t)| for t ∈ T \M and such that γn(·) =

�
(·) hn dm, n ∈ N,

are uniformly σ-additive on σ(P) with limn γn(E) =
�
E

f dm for E ∈ σ(P).
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Let ηn(·) =
�
(·) wn dm, n ∈ N. Let ν(E) =

�
E

f dm, E ∈ σ(P). Let F =⋃∞
n=1{t ∈ T \M : |hn(t)|+|wn(t)| > 0}. Let λ be the continuous submeasure

defined as in Lemma 6 with respect to these σ-additive vector measures
(γn)∞n=1 and (ηn)∞n=1. Let u2n−1 = hn and u2n = wn for n ∈ N. Then
(un)∞n=1 ⊂ S(P,X) converges to f pointwise in T \M . So by the Egorov–
Lusin theorem (with respect to λ) there exist N ∈ F ∩ σ(P) with λ(N) = 0
and a sequence (Fk)∞k=1 ⊂ P with Fk ↗ F \N such that un → f uniformly
on each Fk.

As un → f uniformly on each Fk, we can select a subsequence (nk)∞k=1
of N such that ‖hnk −wnk‖Fk · m̂(Fk) < 1/k for each k. Let sk = wnkχN +
wnkχFk . Clearly the P-simple functions sk converge pointwise to f in T \M
with |sk(t)| ↗ |f(t)| for t ∈ T \M . Let G = F \N . Now, m̂(M) = 0 implies
by Proposition 5(i) that γn(M) = ηn(M) = 0 for all n and hence λ(M) = 0.
Moreover, as λ(N) = λ(M) = 0, ηn(E ∩N) = ηn(E ∩M) = γn(E ∩N) =
γn(E ∩M) = 0 for all n and clearly sk(t) = 0 for t ∈ E ∩ (G \ Fk). Hence
∣∣∣ �
E

f dm− �
E

sk dm
∣∣∣

≤
∣∣∣ �
E∩Fk

(sk − hnk) dm
∣∣∣+
∣∣∣ �
E∩(G\Fk)

hnk dm
∣∣∣+
∣∣∣ �
E

f dm− �
E

hnk dm
∣∣∣.

Consequently, by Proposition 5(i) we obtain
∣∣∣ �
E

f dm− �
E

sk dm
∣∣∣

≤ ‖wnk − hnk‖Fk · m̂(Fk) + ‖γnk‖(G \ Fk) +
∣∣∣ �
E

f dm− �
E

hnk dm
∣∣∣.

Given ε > 0, choose k0 such that 1/k0 < ε/3. By Theorem 7, ν(E) =
limk

�
E

hnk dm exists uniformly with respect to E ∈ σ(P) and hence we can
choose k1 ≥ k0 such that |ν(E) −

�
E

hnk dm| < ε/3 for all k ≥ k1 and all
E ∈ σ(P). Thus choosing k ≥ k1 we have

(1) ‖wnk − hnk‖Fk · m̂(Fk) < ε/3

and

(2)
∣∣∣ν(E)− �

E

hnk dm
∣∣∣ < ε/3 for all E ∈ σ(P).

Now by hypothesis (γn)∞n=1 are uniformly σ-additive on σ(P) and as
G \ Fp ↘ ∅, by Proposition 3 there exists k2 ≥ k1 such that ‖γn‖(G \ Fk)
< ε/3 for all k ≥ k2 and n ∈ N. Thus, in particular,

(3) ‖γnk‖(G \ Fk) < ε/3

for k ≥ k2. Consequently, by (1)–(3) we have |
�
E

sk dm −
�
E

f dm| < ε
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for k ≥ k2 and E ∈ σ(P). This proves the first part of the theorem. The
remaining parts are immediate from the first and the definition of m̂.

This completes the proof of the theorem.

Remark 9. For any sequence (sn) of X-valued P-simple functions
satisfying the hypothesis of the above theorem, generally

�
(·) f dm 6=

limn

�
(·) sn dm. However, equality holds if and only if f ∈ L1(m). See

[7, 9, 17]. For L1(m) the condition is sufficient by the Lebesgue dominated
convergence theorem (see [7]). The necessity part is proved via the construc-
tion of a counterexample when f does not belong to L1(m) (see [9]).

Remark 10. The inequality in Theorem 14 of [6] is used in place of that
of Proposition 5(i) to extend the proofs given for simple integrable functions
in [6] to general integrable functions. For example, see Theorems 2, 3, 9 and
11 of [6].

Theorem 10 of [6] is valid, but its proof should be corrected by applying
the Egorov–Lusin theorem with respect to the continuous submeasure λ of
Lemma 6 (and not by Theorem 1 of [6]), with γn(·) =

�
(·) sn dm and ηn = 0

for n ∈ N, where (sn)∞n=1 ⊂ S(P,X) and sn → f in T .
The following theorem is an improved version of Theorems 15 and 16

of [6] and the original proof of [6] is rectified here by suitably defining the
continuous submeasure λ.

Theorem 9 (Theorem of closure or of interchange of limit and inte-
gral). Let f : T → X and suppose (fn)∞n=1 ⊂ I(m) converges to f m-a.e.
in T . Then f is m-measurable. Let γn(·) =

�
(·) fn dm : σ(P)→ Y for n ∈ N.

Then the following statements are equivalent :

(i) limn γn(E) = γ(E) exists in Y for each E ∈ σ(P).
(ii) γn, n ∈ N, are uniformly σ-additive on σ(P).
(iii) limn γn(E) = γ(E) exists in Y uniformly with respect to E ∈ σ(P).

If any of the above conditions holds, then f is m-integrable and

�
E

f dm = �
E

(lim
n

fn) dm = lim
n

�
E

fn dm, E ∈ σ(P),

the limit being uniform with respect to E ∈ σ(P).

Proof. By Theorem 7, γn, n ∈ N, are σ-additive on σ(P). Then (i)⇒(ii)
by VHSN, and the implication (iii)⇒(i) is obvious.

Suppose (ii) holds. By Theorem 3, f is m-measurable, and by hypoth-
esis there exists M ∈ σ(P) with m̂(M) = 0 such that fn(t) → f(t) for
t ∈ T \M and (fnχT\M )∞n=1 are P-measurable. By Theorem 1, fχT\M is also
P-measurable. Define λ of Lemma 6 with γn as above and ηn = 0 for n ∈ N.
Let F =

⋃∞
n=1N(fn) ∩ (T \M). Then F ∈ σ(P). As m̂(M) = 0, by Theo-

rem 8 we have |γn(E)| ≤ ‖fn‖E ·m̂(E) = 0 for E ⊂M, E ∈ σ(P), where we
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define 0 · ∞ = 0. Thus γn(M) = 0 for all n and hence λ(M) = 0. Following
the proof of Theorem 7 and applying the Egorov–Lusin theorem (with re-
spect to λ), using the inequality in Theorem 8 instead of Proposition 5(i) and
observing that λ(M) = λ(N) = 0 implies that γn(E ∩M) = γn(E ∩N) = 0
for all n and E ∈ σ(P), we deduce that (

�
E

fn dm)∞n=1 is uniformly Cauchy
for E ∈ σ(P). Since Y is complete, (iii) holds.

Since fχT\M is P-measurable, there exists a sequence (wn)∞n=1 of
P-simple functions such that wn(t) → f(t)χT\M(t) for t ∈ T . Let F =⋃∞
n=1{t ∈ T \ M : |fn(t)| + |wn(t)| > 0}. Let ηn(·) =

�
(·) wn dm. Then

F ∈ σ(P) and ηn are σ-additive on σ(P). Let λ be as in Lemma 6 with ηn
and γn (as above). Taking u2n−1 = fn and u2n = wn, we have un(t)→ f(t)
for t ∈ T \M . As observed above, m̂(M) = 0 implies that γn(M) = 0 for
all n. Similarly, by Proposition 5(i), ηn(M) = 0 for all n. Thus λ(M) = 0.
By the Egorov–Lusin theorem (with respect to λ) there exist N ∈ F ∩σ(P)
with λ(N) = 0 and an increasing sequence (Fk)∞k=1 ⊂ P with Fk ↗ F \ N
such that un → f uniformly on each Fk. As γn are uniformly σ-additive
by hypothesis (ii), we can repeat the argument given in the second para-
graph of the proof of Theorem 8 by replacing hn by fn, choosing a sub-
sequence (nk) of N such that ‖wnk − fnk‖Fk · m̂(Fk) < 1/k, and defining
sk = wnkχN + wnkχFk . Then (sk)∞k=1 are P-simple and sk(t) → f(t) for
t ∈ T \M . Let G = F \ N . As λ(N) = λ(M) = 0, we have ηn(E ∩ N) =
ηn(E ∩ M) = γn(E ∩ N) = γn(E ∩M) = 0 for all n and sk(t) = 0 for
t ∈ E ∩ (G \ Fk). Given ε > 0, using the inequality in Theorem 8 and
arguing as in the proof of Theorem 8, we have

∣∣∣γ(E)− �
E

sk dm
∣∣∣ ≤

∣∣∣ �
E∩Fk

(sk − fnk) dm
∣∣∣+ ‖γnk‖(E ∩ (G \ Fk))

+
∣∣∣γ(E)− �

E

fnk dm
∣∣∣

≤ ‖wnk − fnk‖Fk · m̂(Fk) + ‖γnk‖(G \ Fk)

+ |γ(E)− γnk(E)| < ε

for sufficiently large k and all E ∈ σ(P). Thus f is m-integrable and�
E

f dm = γ(E) = limn

�
E

fn dm for E ∈ σ(P), the limit being uniform
with respect to E ∈ σ(P).

This completes the proof of the theorem.

Remark 11. The above theorem is called the closure theorem for the
following reason. If the process of Theorem 7 is repeated with sequences
of functions in I(m) instead of X-valued P-simple functions, we obtain
only I(m) and no new m-measurable functions are obtained. Clearly, the
theorem gives necessary and sufficient conditions for the validity of the in-
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terchange of integral and limit, which hold in particular for the abstract
Lebesgue integral. Moreover, I(m) is the smallest class in M(P,X,m)
containing S(P,X) for which Theorem 9 holds. More precisely, let J (m)
be another class of X-valued m-measurable functions which are integrable
in a different sense (J ) with the integral being denoted by (J )

�
(·) f dm

for f ∈ J (m). If for each X-valued P-simple function s and for each
E ∈ σ(P), (J )

�
E

s dm =
�
E

s dm and if Theorem 9 holds for f ∈ J (m),
then I(m) ⊂ J (m). The last observation shows that Theorem 9 does not
hold for Bochner and Dinculeanu integrable vector functions (see p. 102
of [17]). In other words, among various Lebesgue-type integration theories
developed in the literature (see [6, 17]), it is only the integral developed by
Dobrakov (particular case being the Bartle–Dunford–Schwartz integral , see
Remark 8) that preserves the theorem of interchange of limit and integral
for the class of all integrable functions and hence it can be considered as the
complete generalization of the abstract Lebesgue integral , while others are
only its partial generalizations. In the case of the Bartle–Dunford–Schwartz
integral, a shorter proof of the analogue of the above theorem is given in [23].

Using Theorems 7 and 9 and Proposition 8 we provide a detailed proof of
the following theorem which is the same as Theorem 13 of [6]. The original
proof in [6] is rather sketchy.

Theorem 10. Let f : T → X be m-measurable and let fn : T → X,
n ∈ N, be P-simple functions or more generally , m-integrable functions
converging to f in measure m (resp. in semivariation m̂) on each E ∈ P.
Let γn(·) =

�
(·) fn dm : σ(P) → Y , n ∈ N. Then the following conditions

are equivalent :

(i) limn γn(E) = γ(E) exists in Y for each E ∈ σ(P).
(ii) γn, n ∈ N, are uniformly σ-additive on σ(P).
(iii) limn γn(E) = γ(E) exists in Y uniformly with respect to E ∈ σ(P).

If any of these conditions holds, then f is m-integrable and
�
E

f dm =
limn γn(E) for each E ∈ σ(P), the limit being uniform with respect to
E ∈ σ(P).

Proof. The set functions γn are σ-additive by Proposition 5(ii) if fn
are simple functions, and by Theorem 7 and by Definition 15 if fn are m-
integrable functions. Then (i)⇒(ii) by VHSN, and (iii)⇒(i) obviously.

Let now (ii) hold. If (iii) does not hold, then there would exist an ε > 0,
a subsequence (kp)∞p=1 of N and a sequence (Ep)∞p=1 ⊂ σ(P) such that
|γkp(Ep) − γ(Ep)| ≥ ε for p ∈ N. But, on the other hand, by hypothesis
and by Proposition 8 there exists a subsequence (fkpq )∞q=1 of (fkp)∞p=1 such
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that fkpq → f m-a.e. Then by Theorem 7 in the case of simple functions
and by Theorem 9 in the case of m-integrable functions, there exists q0 such
that |γkpq (E) − γ(E)| < ε for all E ∈ σ(P) and q ≥ q0. This contradiction
shows that (ii)⇒(iii). Thus these conditions are equivalent.

By Proposition 8 there exists a subsequence (fnk)∞k=1 such that fnk → f
m-a.e. in T . Then by Theorem 7 in the case of simple functions and by
Theorem 9 in the case of m-integrable functions, f is m-integrable and�
E

f dm = limk γnk(E) = limn γn(E) for E ∈ σ(P), and by (iii) the limit is
uniform with respect to E ∈ σ(P).

This completes the proof of the theorem.

Remark 12. In the case of the abstract Lebesgue integral as in Hal-
mos [12] and of the Bochner integral as in Dunford and Schwartz [10], the
class of all integrable functions is obtained by starting with sequences of
simple functions which converge in measure to a measurable function, sat-
isfying certain Cauchy conditions. But in the present theory of integration
of vector functions, there exist functions f ∈ I(m) for which there does
not exist any sequence of simple functions converging to f in measure m or
in semivariation m̂ on each E ∈ P and satisfying any of the conditions of
Theorem 10, even though P is a σ-algebra. See Example 7′′ of [6]. A much
simpler example is given in [9]. Thus, in contrast to the classical cases of the
abstract Lebesgue integral and the Bochner integral, the class I(m) cannot
be obtained by considering convergence in measure m or in semivariation
m̂ as in Theorem 10.
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type C(K), Canad. J. Math. 5 (1953), 129–173.



Integration of vector functions 229

[12] P. R. Halmos, Measure Theory , Van Nostrand, New York, 1950.
[13] E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc.

Colloq. Publ. 31, Providence, 1957.
[14] J. L. Kelley and T. P. Srinivasan, On the Bochner integral , in: Vector and Operator-

Valued Measures and Applications, Academic Press, New York, 1973, 165–174.
[15] T. V. Panchapagesan, On complex Radon measures I , Czechoslovak. Math. J. 42

(1992), 599–612.
[16] —, On complex Radon measures II , ibid. 43 (1993), 65–82.
[17] —, On the distinguishing features of the Dobrakov integral , Divulgaciones Mat. 3

(1995), 79–114.
[18] —, Characterizations of weakly compact operators on C0(T ), Trans. Amer. Math.

Soc. 350 (1998), 4849–4867.
[19] —, On the limitations of the Grothendieck techniques, Rev. R. Acad. Cienc. Exact.

Fis. Nat. 94 (2000), 437–440.
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