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Quasi-invariant subspaces generated
by polynomials with nonzero leading terms

by

Kunyu Guo (Shanghai) and Shengzhao Hou (Linfen and Jiaxing)

Abstract. We introduce a partial order relation in the Fock space. Applying it we
show that for the quasi-invariant subspace [p] generated by a polynomial p with nonzero
leading term, a quasi-invariant subspace M is similar to [p] if and only if there exists a
polynomial q with the same leading term as p such that M = [q].

1. Introduction. The Fock space, also called the Segal–Bargmann
space, is the analog of the Bergman space in the context of the complex
n-space Cn. It is a Hilbert space consisting of entire functions in Cn. Let

dµ(z) = e−|z|
2/2dv(z)(2π)−n

be the Gaussian measure on Cn (here dv is the ordinary Lebesgue measure).
The Fock space L2

a(Cn, dµ) (for short, L2
a(Cn)) is, by definition, the space

of all µ-square-integrable entire functions on Cn. It is easy to check that
L2
a(Cn) is a closed subspace of L2(Cn) with the reproducing kernel function

Kλ(z) = eλz/2 (here λz =
∑n

i=1 λizi).
For the theory of the Fock space we mention the work of [Jan1, Jan2, JS,

CS], where Toeplitz operators on the Fock space were investigated, which is
related to our work in this note. The Fock space is important because of the
relationship between the operator theory on it and the Weyl quantization
[Be]. For the Fock space, unlike the Hardy space H2(D) and the Bergman
space L2

a(D) over the open unit disk D, Guo and Zheng [GZh] showed that
there exists no nontrivial invariant subspace for polynomials. That is, if p is
a polynomial and M is a closed subspace of L2

a(Cn), then the relation pM
⊂ M implies that either p is a constant or M = {0}. Thus, an appropriate
substitute for invariant subspace, the so-called quasi-invariant subspace is

2000 Mathematics Subject Classification: 46J15, 46H25, 47A15.
The first author is partially supported by NNSFC (10171019), Shuguang project in

Shanghai, Young Teacher Fund for Higher Education of the National Educational Ministry
of China and the grant of STCSM (03JC14013). The second author is partially supported
by NNSFC (10301019) and the Natural Science Foundation of Shanxi province (20021005).

[231]



232 K. Y. Guo and S. Z. Hou

needed. Namely, a (closed) subspace M of L2
a(Cn) is called quasi-invariant if

pM ∩L2
a(Cn) ⊂M for each polynomial p. In [GZh], it is proved that for each

finite-codimensional ideal I of the polynomial ring C[z1, . . . , zn], the closure
of I, denoted by [I], is quasi-invariant. Furthermore, Guo [Guo3] proved that
[I] is quasi-invariant if I is a homogeneous ideal. However it is not known
whether [I] is quasi-invariant for any ideal I. Moreover, following Douglas
and Paulsen [DP] and Guo [Guo1, Guo2, Guo3] we are naturally concerned
with classifying all quasi-invariant subspaces in a reasonable sense.

Let M1 and M2 be two quasi-invariant subspaces of L2
a(Cn). A bounded

linear operator A : M1 →M2 will be called a quasi-module map if A(pf) =
pA(f) whenever p f ∈M1 (here p is any polynomial, and f ∈M1). Further-
more, we say that

(1) M1 and M2 are unitarily equivalent if there exists a unitary quasi-
module map A : M1 → M2 such that A−1 : M2 → M1 is also a
quasi-module map;

(2) M1 and M2 are similar if there exists an invertible quasi-module map
A : M1 →M2 such that A−1 : M2 →M1 is also a quasi-module map;

(3) M1 and M2 are quasi-similar if there exist quasi-module maps A :
M1 →M2 and B : M2 →M1 with dense ranges.

It is easy to check that unitary equivalence, similarity and quasi-similarity
are equivalence relations.

In Section 2, we explore a partial order relation on the entire function
ring Hol(Cn) of the complex n-space Cn. Let f, g be entire functions on Cn.
We say f � g if there exist positive constants r,M such that

|f(z1, . . . , zn)| ≤M |g(z1, . . . , zn)|

whenever |zi| > r for i = 1, . . . , n. Then we prove that f � g if and only if
there exist a polynomial p and another polynomial q with nonzero leading
term satisfying degzi p ≤ degzi q for i = 1, . . . , n such that

f/g = p/q.

This result will be used in Section 3 to study the order structure of the
Fock space. In Section 3, we prove that if f � g and g ∈ L2

a(Cn), then
f ∈ L2

a(Cn). Applying this result in Section 4 it is shown that for the quasi-
invariant subspace [p] generated by a polynomial p with nonzero leading
term, a quasi-invariant subspace M is similar to [p] if and only if there
exists a polynomial q with the same leading term as p such that M = [q].

2. A partial order on the entire function ring Hol(Cn). In [CGH],
we proved the following proposition.
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Proposition 2.1. Let f and g be entire functions on C. Then f � g if
and only if there exist polynomials p and q with deg p ≤ deg q such that

f/g = p/q.

The purpose of this section is to generalize this result to the case of
several variables, and it will be applied to the study of similarity of quasi-
invariant subspaces of the Fock space.

For an entire function f on Cn, we write Z(f) for the set of all z ∈ Cn
at which f(z) = 0.

To give the characterization of the relation “ � ” on the entire function
ring Hol(Cn), we need two lemmas from [Guo2].

Lemma 2.2 ([Guo2]). Let f = p/q be a rational function, where p and q
have no common factor. If f is analytic on Ω (⊂ Cn), then Z(q) ∩Ω = ∅.

Lemma 2.3 ([Guo2]). Let f be in the Nevanlinna class on the polydisk
Dn, and let the slice functions fw be rational (of one variable) for almost all
w ∈ Tn. Then f is a rational function (of n variables).

Let p(z1, . . . , zn)=
∑

ij≤mj ai1...inz
i1
1 z

i2
2 . . . zinn be a polynomial. If am1...mn

6= 0, we say that the leading term of p is nonzero. For a polynomial p, we
use degzi p to denote the degree of p in the variable zi for i = 1, . . . , n. For
0 < r <∞, set

Ωr = {(z1, . . . , zn) ∈ Cn : |zi| > r for i = 1, . . . , n}.
The next proposition gives a geometric characterization of polynomials with
nonzero leading terms.

Proposition 2.4. Let p be a polynomial in n variables. Then the leading
term of p is nonzero if and only if there exists a positive constant r such
that p has no zero in Ωr, that is,

Z(p) ∩Ωr = ∅.
Proof. For simplicity, we only give the proof for n = 2. If p(z, w) =∑
i≤m, j≤n aijz

iwj has nonzero leading term amnz
mwn, then

p(z, w) = zmwn
(
amn +

∑

(i,j)6=(m,n)

aijz
i−mwj−n

)
,

and hence there exists a positive constant r such that p has no zero in Ωr.
For the opposite direction, let degz p = m and degw p = n. Write

p(z, w) =
m∑

k=0

pk(w)zm−k =
n∑

l=0

p′l(z)wn−l.

Choose a large R0 (> r) such that both p0(w) 6= 0 and p′0(z) 6= 0 if both
|z| ≥ R0 and |w| ≥ R0. Note that on the circle {w : |w| = R0}, if R (> R0)
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is sufficiently large, then we have

|p0(w)Rm + p1(w)Rm−1 + · · ·+ pm(w)− p0(w)Rm| < |p0(w)|Rm.
Note that the polynomial p0(w)Rm+p1(w)Rm−1 + · · ·+pm(w) = p′0(R)wn+
p′1(R)wn−1 + · · · + pn(R) has exactly n zeros in the disk {w : |w| < R0}
(counting multiplicity). Now Rouché’s theorem [Con] shows that p0(w) has
n zeros (counting multiplicity), and hence deg p0 = n. This completes the
proof.

Theorem 2.5. Let f and g be entire functions on Cn. Then f � g if
and only if there exist a polynomial p and another polynomial q with nonzero
leading term satisfying degzi p ≤ degzi q for i = 1, . . . , n such that

f/g = p/q.

Proof. “⇒”. For convenience, we give the proof in the case of two vari-
ables. For an entire function f on C2 and w ∈ T2 (2-torus), the slice function
fw on the complex plane C is defined by fw(λ) = f(λw), λ ∈ C. Note that
f � g means that there exist positive constants r, M such that

|f(z, w)|/|g(z, w)| ≤M
for |z| > r and |w| > r. Let (z0, w0) ∈ C2 be such that g(z0, w0) 6= 0. Then
there is a constant r0 > 0 such that g(z, w) has no zero on

∆r0 = {(z, w) : |z − z0| ≤ 2r0, |w − w0| ≤ 2r0}.
Set f0(z, w) = f(r0z + z0, r0w + w0) and g0(z, w) = g(r0z + z0, r0w + w0).
Then f0 � g0. Set F = f0/g0. Then F is analytic on the closed bidisk D2 and
hence it is in the Nevanlinna class on D2. Now for each fixed (z, w) ∈ T2,

|F(z,w)(λ)| = |f0(λz, λw)|/|g0(λz, λw)| < M

if |λ| > (r + |z0|+ |w0|)/r0. Hence by Proposition 2.1, there exist polyno-
mials h1, h2 in one variable such that

F(z,w) = h1/h2.

Now by Lemma 2.3, there are polynomials p0 and q0 without common factor
such that

F(z,w) = f0(z, w)/g0(z, w) = p0(z, w)/q0(z, w),

and hence there are polynomials p and q without common factor such that

f/g = p/q.

From the relation p � q and Proposition 2.1, one easily obtains

degz p ≤ degz q, degw p ≤ degw q.

To obtain the desired conclusion, it is enough to show q(z, w) has nonzero
leading term. We claim

Z(q) ∩Ωr = ∅.
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In fact, note that

|p(z, w)|/|q(z, w)| < M if (z, w) ∈ Ωr.
Then by [KK], the function p(z, w)/q(z, w) is analytic on Ωr. Now Lemma
2.2 implies that the claim is true, and Proposition 2.4 shows that q has
nonzero leading term.

“⇐”. Let q =
∑

i≤m, j≤n aijz
iwj with nonzero leading term amnz

mwn

and p =
∑

i≤m, j≤n bijz
iwj . Note that

p/q =

∑
i≤m, j≤n bijz

i−mwj−n

amn +
∑

(i,j)6=(m,n) aijz
i−mwj−n

.

From the above equality, it is easy to see that there exist positive constants
r,M such that |f(z, w)|/|g(z, w)| < M whenever (z, w) ∈ Ωr, i.e. f � g.
This completes the proof.

For entire functions f, g on Cn, if f � g, then by Theorem 2.5, there
exist polynomials p and q without common factor such that f/p = g/q. Set

h = f/p = g/q.

Then h is analytic on Cn − Z(p) ∩ Z(q). Because p and q have no common
factor, the set Z(p) ∩ Z(q) is a removable singularity for analytic functions
[KK]. This means that h is analytic on all Cn. So, we have the following
conclusion.

Corollary 2.6. Let f, g be entire functions on Cn. Then f � g if and
only if there exist a polynomial p, another polynomial q with nonzero leading
term satisfying degzi p ≤ degzi q for i = 1, . . . , n, and an entire function h
such that

f = ph, g = qh.

We say that f ∼ g if f � g and g � f . Note that “∼” is an equivalence
relation on Hol(Cn). From Theorem 2.5, we get the following corollary.

Corollary 2.7. Let f, g ∈ Hol(Cn). Then f ∼ g if and only if there
exist polynomials p and q with the same nonzero leading term such that
f/g = p/q.

3. The order structure of the Fock space. Let f, g be entire func-
tions on C. If g ∈ L2

a(C) and f � g, then it is easy to verify that f ∈ L2
a(C).

However, in the case of several variables, this fact is not obvious.

Theorem 3.1. Let f, g be entire functions on Cn. If f � g and g ∈
L2
a(Cn), then f ∈ L2

a(Cn).

Proof. For simplicity, we prove the theorem in the case of two variables.
Since f � g, there exist positive constants r, M such that |f | ≤ M |g| on



236 K. Y. Guo and S. Z. Hou

Ωr = {(z, w) : |z| > r, |w| > r}. This implies that�

Ωr

|f(z, w)|2 dµ <∞.

Set
Ω1
r = {(z, w) : |z| ≤ r, |w| ≤ r}, Ω2

r = {(z, w) : |z| ≤ r, |w| > r},
Ω3
r = {(z, w) : |z| > r, |w| ≤ r}.

Then obviously, �

Ω1
r

|f(z, w)|2 dµ <∞.

Below we verify �

Ω2
r

|f(z, w)|2 dµ <∞.

Let f(z, w) =
∑

m,n amnz
mwn be the power series expansion of f . Then

�

Ωr

|f(z, w)|2 dµ =
∑

m,n

|amn|2
∞�
r

r2m+1
1 e−r

2
1/2 dr1

∞�
r

r2n+1
2 e−r

2
2/2 dr2

=
∑

m,n

2m+n|amn|2
∞�

r2/2

xme−x dx
∞�

r2/2

xne−x dx

=
1
4

∑

m,n

r2(m+n+2)|amn|2
∞�

1

tme−r
2t/2 dt

∞�

1

tne−r
2t/2 dt (x = r2t/2),

and
�

Ω2
r

|f(z, w)|2 dµ =
∑

m,n

|amn|2
r�
0

r2m+1
1 e−r

2
1/2 dr1

∞�
r

r2n+1
2 e−r

2
2/2 dr2

=
∑

m,n

2m+n|amn|2
r2/2�

0

xme−x dx
∞�

r2/2

xne−x dx

=
1
4

∑

m,n

r2(m+n+2)|amn|2
1�
0

tme−r
2t/2 dt

∞�
1

tne−r
2t/2 dt (x = r2t/2).

Since �
1
0 t
me−r

2t/2 dt�
∞
1 tme−r2t/2 dt

≤
�
1
0 e
−r2t/2 dt�

∞
1 e−r2t/2 dt

= er
2/2 − 1,

this gives �

Ω2
r

|f(z, w)|2 dµ ≤ (er
2/2 − 1)

�

Ωr

|f(z, w)|2 dµ <∞.
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The same reasoning yields �

Ω3
r

|f(z, w)|2 dµ <∞.

We thus conclude �

C2

|f(z, w)|2 dµ <∞.

This completes the proof of the theorem.

From Corollary 2.6 and Theorem 3.1, the next corollary is immediate.

Corollary 3.2. For entire functions f, g on Cn, if f � g and g ∈
L2
a(Cn), then there exist a polynomial p, another polynomial q with nonzero

leading term satisfying degzi p ≤ degzi q for i = 1, . . . , n, and a function
h ∈ L2

a(Cn) such that
f = ph, g = qh.

4. Quasi-invariant subspaces generated by polynomials with
nonzero leading terms. Let p be a polynomial, and let [p] be the clo-
sure of the principal ideal pC[z1, . . . , zn]. Then by [NS] or [Jan1, Jan2, JS],
it is easy to check that [p] is quasi-invariant. In this section we will prove
that for the quasi-invariant subspace [p] generated by a polynomial p with
nonzero leading term, a quasi-invariant subspace M is similar to [p] if and
only if there exists a polynomial q with the same leading term as p such that
M = [q].

For convenience, in what follows we only consider the case of two vari-
ables, while all conclusions hold for n variables.

Because the polynomial ring forms a core for Toeplitz operators with
polynomial symbols (cf. [JS]) the next lemma is obvious.

Lemma 4.1. For nonnegative integers m,n, we have

[zmwn] = {zmwnf ∈ L2
a(C2) : f ∈ Hol(C2)}.

Remark 4.2. By Theorem 3.1, the relation f � zmwnf ∈ L2
a(C2) im-

plies f ∈ L2
a(C2). It follows that

[zmwn] = {zmwnf ∈ L2
a(C2) : f ∈ L2

a(C2)}.
Let p(z, w) be a polynomial with leading term zmwn. Set

Lp = {pf ∈ L2
a(C2) : f ∈ Hol(C2)}.

Then clearly, Lp is quasi-invariant. Noting the relation pf ∼ zmwnf for any
entire function f we have

Lp = {pf ∈ L2
a(C2) : f ∈ L2

a(C2)}.
Now by Corollary 2.7, Theorem 3.1 and the closed graph theorem, the

following proposition is immediate.
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Proposition 4.3. There exists a similarity A : [zmwn] → Lp, where
Azmwnf = pf.

Theorem 4.4. Let p(z, w) be a polynomial with leading term zmwn.
Then [p] = Lp.

Proof. Obviously, [p]⊂Lp. Now let pf ∈L2
a(C2), and let f =

∑
s,t astz

swt

be the power series expansion of f . Set

fkl =
∑

s≤k, t≤l
astz

swt

for nonnegative integers k, l. By Proposition 4.3, there exist positive con-
stants C1, C2 such that

C1‖zmwnh‖ ≤ ‖ph‖ ≤ C2‖zmwnh‖
whenever zmwnh ∈ L2

a(C2). So, we have

C1‖zmwn(f − fkl)‖ ≤ ‖pf − pfkl‖ ≤ C2‖zmwn(f − fkl)‖.
Since

lim
k→∞
l→∞

‖zmwn(f − fkl)‖ = 0,

we obtain
lim
k→∞
l→∞

‖pf − pfkl‖ = 0

and hence pf ∈ [p]. This gives the desired conclusion.

Before going on we need the following lemma. For a quasi-invariant sub-
space M , it is easy to see that M ∩C[z, w] is an ideal. The following lemma
is essentially from [CG].

Lemma 4.5. Let A : M1 → M2 be a quasi-module map. Then A maps
M1 ∩C[z, w] to M2 ∩C[z, w]. Moreover , for each nonzero p ∈M1 ∩C[z, w],
we have

degz q ≤ degz p, degw q ≤ degw p,

where q = Ap.

Proof. We may assume that M1 contains a nonzero polynomial p. Set
q = A(p). We first claim that degz q ≤ degz p. Suppose degz q > degz p.
Then we expand p and q in the variable z by

p = p0 + p1z + · · ·+ plz
l, q = q0 + q1z + · · · .

Since degz q > degz p, there exists a positive integer s (> l) such that qs 6= 0.
From the equality

‖A(zkp)‖2 = ‖zkq‖2 =
∞∑

i=0

‖zk+iqi‖2,
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we have

‖zk+sqs‖2 ≤ ‖A‖2
l∑

i=0

‖zk+ipi‖2.

Since
‖zk+sqs‖2 = ‖zk+s‖2‖qs‖2 = 2k+s(k + s)!‖qs‖2

and
‖zk+ipi‖2 = 2k+i(k + i)!‖pi‖2, i = 0, 1, . . . , l,

for any natural number k, we infer that qs = 0. This yields the desired
contradiction. The same reasoning implies degw q ≤ degw p, and hence the
conclusion follows.

From Lemma 4.5, the next corollary is immediate.

Corollary 4.6. Let M be quasi-invariant. If there exists a quasi-module
map A : [zmwn] → M with dense range, then q = Azmwn is a polynomial
in two variables with degz q ≤ m and degw q ≤ n, and M = [q].

Now we can prove our main result in this section.

Theorem 4.7. Let M be quasi-invariant. Then [zmwn] and M are quasi-
similar if and only if there is a polynomial q with leading term zmwn such
that M = [q].

Proof. By Proposition 4.3 and Theorem 4.4, the sufficiency is obvious.
Now if [zmwn] and M are quasi-similar, then there exist quasi-module maps
A : [zmwn] → M and B : M → [zmwn] with dense ranges, and hence
Corollary 4.6 gives M = [q] for some polynomial q with degz q ≤ m and
degw q ≤ n. From [GZh, Lemma 5.2], [I] ∩ C[z, w] = I for each ideal I.
Combining this fact with Lemma 4.5 and Corollary 4.6, we see that there is
a nonzero constant γ such that Bq = γzmwn and degz q = m, degw q = n.
Let q(z, w) = q0(w)zm + q1(w)zm−1 + · · ·+ qm(w) be the expansion of q in
the variable z. Note that

‖Bzkwlq‖2 = |γ|2‖zm+k‖2 ‖wn+l‖2
≤ ‖B‖2‖zkwlq‖2
= ‖B‖2(‖wlq0(w)‖2‖zm+k‖2 + ‖wlq1(w)‖2‖zm+k−1‖2

+ · · ·+ ‖wlqm(w)‖2‖zk‖2).

Dividing the above inequality by ‖zm+k‖2 and letting k →∞ gives

|γ|2‖wn+l‖2 ≤ ‖B‖2 ‖wlq0(w)‖2

for any positive integer l. This implies deg q0 ≥ n and hence deg q0 = n. So,
q(z, w) is a polynomial with leading term zmwn, completing the proof.
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Corollary 4.8. Let M be a quasi-invariant subspace, and let p(z, w)
be a polynomial with leading term zmwn. Then the following statements are
equivalent.

(1) M is similar to [p];
(2) M is quasi-similar to [p];
(3) there exists a polynomial q(z, w) with leading term zmwn such that

M = [q].

Combining Corollary 4.8 with the proof of Theorem 5.12 in [GZh], one
can obtain

Corollary 4.9. Let M be a quasi-invariant subspace, and let p(z, w)
be a polynomial with leading term zmwn. Then M is unitarily equivalent to
[p] only if M = [p].
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