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A semigroup analogue of the
Fonf–Lin–Wojtaszczyk ergodic characterization of

reflexive Banach spaces with a basis

by

Delio Mugnolo (Tübingen and Bari)

Abstract. In analogy to a recent result by V. Fonf, M. Lin, and P. Wojtaszczyk, we
prove the following characterizations of a Banach space X with a basis.

(i) X is finite-dimensional if and only if every bounded, uniformly continuous, mean
ergodic semigroup on X is uniformly mean ergodic.

(ii) X is reflexive if and only if every bounded strongly continuous semigroup is mean
ergodic if and only if every bounded uniformly continuous semigroup on X is
mean ergodic.

1. Introduction. E. R. Lorch proved in the 1930s that if a Banach
space X is reflexive, then every power-bounded operator T on X is mean
ergodic, i.e., the sequence (n−1∑n

k=1 T
kx)n∈N converges for all x ∈ X. In

a recent article Fonf, Lin, and Wojtaszczyk have proven ([FLW01, Cor. 1])
that the converse is also true if we assume X to have a basis. Indeed, under
this assumption, namely that X is a non-reflexive Banach space with a basis,
they have been able to construct a power-bounded operator T on X which
is not mean ergodic.

Paralleling their technique, we show in Section 3 that an analogous char-
acterization holds if bounded strongly continuous semigroups of operators
are considered instead of power-bounded operators. To this purpose, we in-
troduce in Section 2 a semigroup that in turn permits us to prove an ergodic
characterization of finite-dimensional Banach spaces that is the semigroup
analogue of [FLW01, Cor. 3].

We emphasize that mean ergodicity of a bounded strongly continuous
semigroup (T (t))t≥0 is not equivalent to mean ergodicity of the individ-
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ual operators T (t), t > 0. If for some t0 > 0 the power-bounded oper-
ator T (t0) is mean ergodic, so is the bounded semigroup (T (t))t≥0 (see
[DS58, Thm. VII.7.1] for t0 = 1). However, there exist examples of bounded,
mean ergodic, strongly continuous semigroups (T (t))t≥0 so that no operator
T := T (t0), t0 > 0, is mean ergodic, cf. [EN00, Expl. V.4.13.3] (see also
[Kr85, p. 83]).

2. Introductory results. We begin with a brief reminder of some er-
godic theory, and refer to [Kr85] or [EN00, §V.4] for details.

Definition 2.1. Let T := (T (t))t≥0 be a strongly continuous semigroup
of linear operators on a Banach space X. We denote by

C(r)x :=
1
r

r�

0

T (s)x ds, x ∈ X, r > 0,

the Cesàro means of T . Then the semigroup T is called mean ergodic (uni-
formly mean ergodic, resp.) if (C(r))r>0 converges strongly (with respect to
the operator norm, resp.) as r →∞.

The following useful characterization of mean ergodicity of a strongly
continuous semigroup is due to Nagel ([Na73, Thm. 1.7]). It is the semigroup
analogue of the result of Sine stated in Lemma 3.5 below.

Lemma 2.2. A bounded strongly continuous semigroup is mean ergodic
if and only if its fixed space separates the fixed space of its adjoint.

Remark 2.3. We recall that the fixed space of a strongly continuous
semigroup equals the null space of its generator (use [EN00, Cor. IV.3.8(i)]).
Using the theory of sun dual semigroups, one can also see that the same holds
for the adjoint of a strongly continuous semigroup (which in general is not
strongly continuous). Hence, a bounded strongly continuous semigroup is
mean ergodic if and only if the null space of its generator A separates the
null space of its adjoint A′.

In particular, a bounded strongly continuous semigroup is mean ergodic
if the adjoint of its generator has trivial null space.

For uniformly mean ergodic semigroups the following characterization is
well known (cf. [EN00, Thm. V.4.10]).

Lemma 2.4. A bounded strongly continuous semigroup is uniformly mean
ergodic if and only if either its generator is invertible with bounded inverse,
or the origin is a pole for its resolvent operator.

For a thorough treatment of the theory of Schauder bases and Schauder
decompositions on infinite-dimensional spaces we refer the reader to [Si70,
§I.14] or [GD92, Chapt. 1]. We only recall that the notions of basis and
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Schauder basis are equivalent on Banach spaces (see [Si70, p. 170]) and that
a Schauder basis is always associated with a Schauder decomposition, but
the converse implication fails to hold.

Let us moreover mention the following general result: If X is a Banach
space with a Schauder decomposition X =

∑
k∈NXk, then the norm of X

can, without loss of generality, be assumed to make the operators Qh and
Ph, h ∈ N, defined by

(2.1) Qhx := xh, Phx :=
h∑

k=1

xk, x :=
∑

k∈N
xk ∈ X,

contractive. Observe that, due to the uniqueness of the Schauder expansion
of x ∈ X, x = 0 if and only if Pnx = 0 for all n ∈ N.

With this notation we now prove the following.

Lemma 2.5. Let X be a Banach space with a Schauder decomposition.
Then

M(t)x :=
∑

h∈N
e−t/hQhx, x ∈ X, t ≥ 0,

defines a bounded uniformly continuous semigroup M := (M(t))t≥0 on X.

For the proof (and later on) we will repeatedly use the auxiliary family
(bn,t)n∈N, t ≥ 0, of sequences of positive numbers defined by

(2.2) b1,t := e−t, bn,t := e−t/n − e−t/(n−1) for n = 2, 3, . . . , t ≥ 0.

Observe that

(2.3)

n∑

h=m+1

bh,t = e−t/n − e−t/m,
n∑

h=1

bh,t = e−t/n,

∞∑

h=m+1

bh,t = 1− e−t/m

for all m,n ∈ N, m < n, t ≥ 0.

Proof of Lemma 2.5. We first show that M is well defined on X. Let
x =

∑
k∈N xk ∈ X. Then

n∑

k=m+1

e−t/kxk
(2.3)
=

n∑

k=m+1

( k∑

h=m+1

bh,t + e−t/m
)
xk

= e−t/m
n∑

k=m+1

xk +
n∑

j=m+1

bj,t

( n∑

h=j

xh

)
,

for all m,n ∈ N, m < n, and the convergence of
∑
k∈N xk implies that

(
∑n
k=1 e

−t/kxk)n∈N is a Cauchy sequence. It is also clear that M is a semi-
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group, and that its generator A, defined by

Ax := −
∑

h∈N

1
h
Qhx, x ∈ X,

is bounded, henceM is uniformly continuous. Also,M is bounded since for
t ≥ 0 and m ∈ N

m∑

k=1

(1− e−t/k)xk
(2.3)
=

m∑

k=1

∞∑

h=k+1

bh,txk

=
m∑

h=2

bh,t

( h−1∑

k=1

xk

)
+

∞∑

h=m+1

bh,t

( m∑

k=1

xk

)

=
m∑

h=2

bh,tPh−1x+
∞∑

h=m+1

bh,tPmx.

Recall that the operators Ph, h ∈ N, are contractive, and hence
∥∥∥

m∑

k=1

(1− e−t/k)xk
∥∥∥ ≤

m∑

h=2

bh,t‖x‖+
∞∑

h=m+1

bh,t‖x‖

=
∞∑

h=2

bh,t‖x‖
(2.3)
= (1− e−t)‖x‖.

It follows that

‖M(t)x− x‖ =
∥∥∥
∑

k∈N
(1− e−t/k)xk

∥∥∥ ≤ (1− e−t)‖x‖ ≤ ‖x‖,

and therefore ‖M(t)− I‖ ≤ 1, hence ‖M(t)‖ ≤ 2 for all t ≥ 0.

Theorem 2.6. Let X be a Banach space with a basis. Then X is finite-
dimensional if and only if every bounded , mean ergodic, uniformly continu-
ous semigroup on X is uniformly mean ergodic.

Proof. The necessity follows by [EN00, Cor. I.2.11 and Thm. V.4.10].
Assume now X to be infinite-dimensional with a basis, thus in particular

with a Schauder decomposition. Hence, we can define, as in Lemma 2.5, the
bounded uniformly continuous semigroupM generated by A. We prove that
M is mean ergodic, but not uniformly mean ergodic.

Let x′ ∈ ker(A′). Then

0 = 〈Ax, x′〉 = −
∑

k∈N

〈Qkx, x′〉
k

for all x ∈ X. Taking into account the uniqueness of the expansion of ele-
ments of X we obtain x′ = 0. By Remark 2.3 this implies that M is mean
ergodic.
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The generator A is injective, and its inverse is given by

(2.4) A−1x = −
∑

h∈N
hQhx

for those x ∈ X such that the right-hand side of (2.4) converges. Hence
A−1 is not bounded. Moreover, 0 is an accumulation point for the set of
eigenvalues of A. The claim now follows by Lemma 2.4.

3. Ergodic characterizations of reflexivity. The technique involved
in the proof of Theorem 3.4 below relies on a general result on the ge-
ometry of Banach spaces. Answering a question raised by Singer ([Si62,
Problem P2]), Zippin was able to prove ([Zi68, Thm. 1]) that on every non-
reflexive Banach space with a basis there exists a non-shrinking basis (we
refer to [Zi68] for details). Using this property, Fonf, Lin, and Wojtaszczyk
have obtained ([FLW01]) a result that can be summarized as follows.

Lemma 3.1. Let X be a non-reflexive Banach space with a basis. Then
there exists a Schauder decomposition X =

∑
k∈NXk, an (equivalent) norm

‖ · ‖ on X, a functional f ∈ X ′, and a sequence (ek)k∈N ∈
∏
k∈NXk such

that ‖ek‖ ≤ 1 and f(ek) = 1 for all k ∈ N, and the operators Ph and Qh,
h ∈ N, defined as in (2.1) are contractive with respect to ‖ · ‖.

Remark 3.2. The proof ([FLW01, p. 149]) shows in particular that the
sequence (ek)k∈N is in general not a basis; in fact, the space X1 need
not be one-dimensional and accordingly the Schauder decomposition X =∑
k∈NXk need not be associated with a basis.

In the following we use the notations of Lemmas 2.4 and 3.1.

Lemma 3.3. Let X be a non-reflexive Banach space with a basis. Define
a family of operators on X by

Ntx :=
∑

h∈N
f(Phx)bh+1,teh+1, x ∈ X, t ≥ 0,

with (bn,t)n∈N, t ≥ 0, as in (2.2). Then

T (t)x := M(t)x+Ntx, x ∈ X, t ≥ 0,

defines a bounded uniformly continuous semigroup T := (T (t))t≥0 on X.

Proof. Since M(0) = I and N0 = 0, we have T (0) = I. Let now xk ∈ Xk,
k ∈ N, t, s ≥ 0. To show that T satisfies the semigroup law, it suffices to
check that T (t+s)xk = T (t)T (s)xk, or rather, since (M(t))t≥0 is a semigroup
by Lemma 2.5, that

M(t)Nsxk +NtM(s)xk +NtNsxk = Nt+sxk.
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Observe that

Ntxk = f(xk)
∞∑

h=k+1

bh,teh, and in particular Ntek =
∞∑

h=k+1

bh,teh.

Hence, we obtain

M(t)Nsxk +NtM(s)xk +NtNsxk

=
∞∑

j=k+1

f(xk)bj,se−t/jej + e−s/k
∞∑

h=k+1

f(xk)bh,teh

+
∞∑

j=k+1

f(xk)bj,s
( ∞∑

h=j+1

bh,teh
)

= f(xk)
( ∞∑

j=k+1

(e−t/jbj,s + e−s/kbj,t)ej +
∞∑

l=k+2

bl,t

( l−1∑

j=k+1

bj,s

)
el
)

(2.3)
= f(xk)

( ∞∑

j=k+1

(e−t/jbj,s + e−s/kbj,t)ej +
∞∑

j=k+1

bj+1,t(e−s/j − e−s/k)ej+1

)

= f(xk)
∞∑

j=k+1

(e−(t+s)/j − e−(t+s)/(j−1))ej= f(xk)
∞∑

j=k+1

bj,t+sej = Nt+sxk.

Observe now that Nt/t converges strongly as t→ 0+, and we obtain

Ṅx := lim
t→0+

Ntx

t
=
∑

h∈N

f(Phx)
h2 + h

eh+1, x ∈ X.

The semigroup T is then generated by the operator B given by

Bx := Ax+ Ṅx = −
∑

h∈N

(
1
h
Qhx−

f(Phx)
h2 + h

eh+1

)
, x ∈ X.

Since ‖Ṅ‖ ≤ ‖f‖, and hence also B is bounded, it follows that T is uniformly
continuous.

Finally, observe that

‖Ntx‖ =
∥∥∥
∑

j∈N
f(Pjx)bj+1,tej+1

∥∥∥

≤ ‖f‖
∑

j∈N
bj+1,t‖x‖

(2.3)
≤ ‖f‖ ‖x‖ for all x ∈ X.

Here, we have used the fact that the operators Ph, h ∈ N, are contractive by
Lemma 3.1. Since the semigroup (M(t))t≥0 is bounded, it also follows that
‖T (t)‖ ≤ ‖M(t)‖+ ‖Nt‖ ≤ 2 + ‖f‖ for all t ≥ 0.
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Theorem 3.4. If X is a Banach space with a basis, then the following
are equivalent :

(a) X is reflexive.
(b) Every bounded strongly continuous semigroup on X is mean ergodic.
(c) Every bounded uniformly continuous semigroup on X is mean ergodic.

Proof. (a)⇒(b). This is a well known result due to Lorch (see [EN00,
Expl. V.4.7]).

(b)⇒(c). Obvious.
(c)⇒(a). In Lemma 3.3 we have constructed a semigroup T on a non-

reflexive Banach space with a basis. We prove that T is not mean ergodic
by showing that its generator B has trivial null space, and that f 6= 0 is in
the null space of B′.

Let x ∈ ker(B). Then −Ax = Ṅx and hence
∑

k∈N

Qkx

k
=
∑

k∈N

f(Pkx)
k2 + k

ek+1.

By the uniqueness of the Schauder expansion of elements of X we deduce
that x solves the system





Q1x = 0,

Qkx =
f(Pk−1x)
k − 1

ek, k = 2, 3, . . . .

It suffices to show by induction that Pnx = 0 for all n ∈ N, with P1x = x1 =
0. Let Pn−1x = 0. It follows that Qnx = 0, hence Pnx = Pn−1x+Qnx = 0,
and we conclude that ker(B) = {0}.

Let now xk ∈ Xk, k ∈ N. Then

Bxk = −1
k
xk + f(xk)

∞∑

h=k

1
h2 + h

eh+1,

and we obtain

〈xk, B′f〉 = 〈Bxk, f〉 = f(xk)
(
−1
k

+
∞∑

h=k

1
h2 + h

)
= 0.

It follows by linearity that f ∈ ker(B′), and by Lemma 2.2 the claim holds.

The following alternative proof of Theorem 3.4 is due R. Nagel, and
seems to be much shorter, but is based on the original result of Fonf, Lin,
and Wojtaszczyk.

Recall the following, due to R. Sine ([Se70]).

Lemma 3.5. A power-bounded operator is mean ergodic if and only if its
fixed space separates the fixed space of its adjoint.
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Alternative proof of the implication (c)⇒(a) in Theorem 3.4. Let (X, ‖·‖)
be a non-reflexive Banach space with a basis. Then by [FLW01, Cor. 1] there
exists a power-bounded operator T that is not mean ergodic. Consider now
the semigroup (S(t))t≥0 generated by the bounded operator G := T − I
on X. Since the null space of the generator G is the fixed space of T , the
semigroup (S(t))t≥0 is not mean ergodic by Lemma 3.5 and Remark 2.3.

It remains to prove that (S(t))t≥0 is bounded. Observe now that formula
(2.5) in [FLW01] shows that the power-bounded operator T is in general not
a contraction. Define a norm on X by

x := sup
n∈N
‖Tnx‖.

The norm · is equivalent to the original norm ‖ · ‖, and T is contractive
with respect to it. Further, we can now estimate the norm of (S(t))t≥0 with
respect to · by

S(t) = e−tetT ≤ e−t · et T = et( T −1) ≤ 1 for all t ≥ 0,

and therefore (S(t))t≥0 is bounded in the original norm.

As in [FLW01, Cor. 2], using a result of Pełczyński, we can also derive
the following characterization from Theorem 3.4.

Corollary 3.6. An arbitrary Banach space is reflexive if and only if
every bounded uniformly continuous semigroup on any of its closed subspaces
is mean ergodic.

Example 3.7. To better understand the construction presented in the
first proof of Theorem 3.4, let us consider a simple case where the objects
introduced in Lemma 3.1 can be written explicitly.

Take the Banach space X = l1, which admits the Schauder decompo-
sition X =

∑
k∈N span(ek), where ek is the kth vector of the usual basis

of l1, i.e., ek := (δjk)j∈N. Moreover, the functional f := (1, 1, . . .) ∈ X ′ = l∞

meets the assumptions of Lemma 3.1.
The generator B of the bounded, uniformly continuous, non-mean er-

godic semigroup T constructed as in the proof of Theorem 3.4 is now given
by the matrix



−1
1/2 −1/2
1/6 1/6 −1/3 0

...
. . .

...
. . .

1/(h2 − h) · · · 1/(h2 − h) · · · 1/(h2 − h) −1/h
...

. . .




.
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