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A product of three projections

by

Eva Kopecká (Innsbruck) and Vladiḿır Müller (Praha)

Abstract. Let X and Y be two closed subspaces of a Hilbert space. If we send a
point back and forth between them by orthogonal projections, the iterates converge to the
projection of the point onto the intersection of X and Y by a theorem of von Neumann.

Any sequence of orthoprojections of a point in a Hilbert space onto a finite family
of closed subspaces converges weakly, according to Amemiya and Ando. The problem
of norm convergence was open for a long time. Recently Adam Paszkiewicz constructed
five subspaces of an infinite-dimensional Hilbert space and a sequence of projections on
them which does not converge in norm. We construct three such subspaces, resolving the
problem fully. As a corollary we observe that the Lipschitz constant of a certain Whitney-
type extension does in general depend on the dimension of the underlying space.

1. Introduction. Let K be a fixed natural number and let L =
{L1, . . . , LK} be a family of K closed subspaces of a Hilbert space H. Let
z0 ∈ H and k1, k2, . . . ∈ {1, . . . ,K} be arbitrary. Consider the sequence of
vectors {zn} defined by

(1) zn = Pknzn−1,

where Pk denotes the orthogonal projection of H onto Lk. The sequence
{zn} converges weakly by a theorem of Amemiya and Ando [AA]. If each
projection appears in the sequence {Pkn} infinitely many times, then this
limit is equal to the projection of z0 onto the intersection of all spaces in L .

If K = 2 then the sequence {zn} converges even in norm according to a
classical result of von Neumann [N].

If K ≥ 3 then additional assumptions are needed to ensure the norm-
convergence. That {zn} converges if H is finite-dimensional was originally
proved by Práger [Pr]; this also follows, of course, from [AA].

If H is infinite-dimensional, but the sequence {kn} is periodic, the se-
quence {zn} converges in norm according to Halperin [Ha]. The result was
generalized to quasiperiodic sequences by Sakai [S]. Recall that the sequence
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{kn} is quasiperiodic if there exists r ∈ N such that {km, km+1, . . . , km+r} =
{1, . . . ,K} for each m ∈ N.

The case of H infinite-dimensional, K ≥ 3 and {kn} arbitrary was open
for a long time. In 2012 Paszkiewicz [P1] constructed an ingenious example
of five subspaces of an infinite-dimensional Hilbert space and of a sequence
{zn} of the form (1) which does not converge in norm. An important input
towards the construction comes from Hundal’s example ([H], see also [K]
and [MR]) of two closed convex subsets of an infinite-dimensional Hilbert
space and a sequence of alternating projections onto them which does not
converge in norm.

The basic idea of Paszkiewicz was the observation that it is possible to
move a unit vector x1 with an arbitrary precision to another unit vector
x2 orthogonal to x1 by iterating just three projections. This construction is
then used to move the initial vector x1 to x2 ⊥ x1, then to x3 ⊥ {x1, x2} with
better and better precision along quarter circles connecting the orthogonal
sequence {x1, x2, . . .}. Such an iteration certainly does not converge in norm.

There is a technical difficulty in gluing these “90-degree” steps together
in such a way that the next step does not interfere with the preceding ones.
In Paszkiewicz’s example of five projections this was done by gluing the
odd and even steps together. The cases of three or four projections were
left open. The goal of this paper is to show that it is possible to glue the
Paszkiewicz “90-degree” steps constructions together to obtain three Hilbert
space projections with non-convergent iterations. The construction of three
projections with this property is not straightforward. In fact, there is a paper
[P2] claiming the same result, which is apparently not correct: ηk is chosen
on page 6 of [P2] based on M which depends on m(k, s), which in its turn
already depends on ηk.

Notation. Let H be a Hilbert space, and B(H) the space of bounded
linear operators from H to H. For M,N ⊂ H we denote by

∨
M the closed

linear hull of M , and by M ∨N the closed linear hull of M ∪N . Similarly we
use ∨x and x∨ y for x, y ∈ H. If M is a subspace and N ⊂M then M 	N
stands for M ∩ N⊥. By PN we denote the orthogonal projection onto the
closed linear hull of N .

For m ∈ N let Sm be the free semigroup with generators g1, . . . , gm
satisfying the relations g2j = gj (j = 1, . . . ,m). If ϕ = gir · · · gi1 ∈ Sm (for
some r ∈ N and ij ∈ {1, . . . ,m} with ij+1 6= ij for all j) and A1, . . . , Am ∈
B(H) are projections, then we write ϕ(A1, . . . , Am) = Air · · ·Ai1 ∈ B(H).
Denote by |ϕ| = r the “length” of ϕ.

2. Construction of the example. In this section, let H be an infinite-
dimensional Hilbert space. The example is “glued” together from finite-
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dimensional blocks. In each of these blocks three subspaces and a finite
product of projections are constructed so that the product maps a given
unit vector u with an arbitrary precision to a unit vector v orthogonal
to u.

This idea was already used by Hundal [H] to construct a cone and a
half-space in H which intersect at the origin, but the corresponding sequence
of alternating nearest point mappings (although weakly convergent to the
origin) does not converge pointwise in norm. All of Hundal’s blocks are
3-dimensional; here the dimension of the blocks increases exponentially.

Let u and v be two orthonormal vectors. It is very easy to get from u
approximately to v be means of finitely many projections onto the lines hj
dissecting the right angle between u and v into small enough angles.

For ε > 0 let k(ε) be the smallest positive integer k such that
(
cos π

2k

)k
>

1 − ε. That is, if u and v are two orthonormal vectors, and we project
u consecutively onto the lines dividing the right angle between u and v
into k angles of size π/(2k), then we land at v with error at most ε (see
Fig. 1.

u

v

π
2kπ

2k

π
2k

ε

Fig. 1. Approximating v by projections of u

Projecting onto a line can be arbitrarily approximated by iterating pro-
jections between two subspaces intersecting at this line. In Hundal’s example
(see [K]) one of the spaces is always the plane E = u ∨ v and the other is
a 2-dimensional space Vj intersecting E at hj . These 2-dimensional planes
support a part of the surface of a cone. Paszkiewicz’s ingeniously simple
idea was to replace the n pieces of 2-dimensional planes Vj by an increasing
family of n finite-dimensional spaces Z1 ⊂ · · · ⊂ Zn. He then replaced the
projections onto these spaces by projections onto the largest space X = Zn
and its suitable small variation Y . Lo and behold, instead of projecting
onto several spaces, Paszkiewicz is projecting just onto three of them: E,
X, and Y . In what follows, we significantly refine this construction in order
to be able at the end to glue together the “90-degree” steps to end up with
just three subspaces instead of Paszkiewicz’s five.
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The first statement of the next lemma is taken from [P1]; we supply a
slightly different proof.

Lemma 2.1. Let ε > 0. Then there exists φε ∈ Sk(ε)+1 with the following
properties:

(i) If u ∈ H with ‖u‖ = 1, then there exist v ⊥ u with ‖v‖ = 1 and
subspaces Z ′1 ⊂ · · · ⊂ Z ′k(ε) with dimZ ′j = j + 1 for all j such that

v ∈ Z ′k(ε) and

‖φε(PZ′1 , . . . , PZ′k(ε) , Pu∨v)u− v‖ < 2ε.

(ii) If M,R ⊂ H are finite-dimensional subspaces and u ∈M ∩R⊥ with
‖u‖ = 1, then there exist v ⊥ M ∨ R with ‖v‖ = 1 and subspaces
Z ′1 ⊂ · · · ⊂ Z ′k(ε) with dimZ ′j = j + 1 for all j such that v ∈ Z ′k(ε),
Z ′k(ε) ⊥ R, and

‖φε(PZ′1 , . . . , PZ′k(ε) , PM∨v)u− v‖ < 2ε.

Proof. Write k := k(ε).
To prove (i), choose orthonormal vectors z0, z1, . . . , zk−1, v ∈ H orthog-

onal to u. Let E = u ∨ v.
Let ξ = π/(2k). For j = 0, . . . , k, let hj = u cos jξ+v sin jξ be the points

on the quarter circle connecting h0 = u to hk = v. We inductively construct
a rapidly decreasing sequence of nonnegative numbers α0 > α1 > · · · >
αk−1 > αk = 0 in the following way. Choose α0 ∈ (0, 1) arbitrarily. Let
1 ≤ j ≤ k−1 and suppose that α0, . . . , αj−1 and subspaces Z ′1 ⊂ · · · ⊂ Z ′j−1
have already been constructed. Set

Z ′′j =
∨
{h0 + α0z0, h1 + α1z1, . . . , hj−1 + αj−1zj−1, hj}.

Since E ∩ Z ′′j = ∨hj , we have (PZ′′j PEPZ′′j )rx → Phjx for each x ∈ H as

r →∞, by [N]. As both spaces are finite-dimensional, there exists r(j) ∈ N
such that

‖(PZ′′j PEPZ′′j )r(j) − Phj‖ < ε/k.

Let αj > 0 be so small that

(2) ‖(PZ′jPEPZ′j )
r(j) − Phj‖ < ε/k,

where

Z ′j =
∨
{h0 + α0z0, h1 + α1z1, . . . , hj−1 + αj−1zj−1, hj + αjzj}.

Suppose that Z ′1 ⊂ · · · ⊂ Z ′k−1 have already been constructed. Set formally
αk = 0 and Z ′k = Z ′′k =

∨
{h0 + α0z0, h1 + α1z1, . . . , hk−1 + αk−1zk−1, hk}.

Find r(k) ∈ N such that (2) is true also for j = k. Then v = hk ∈ Z ′k. Let

φε(PZ′1 , . . . , PZ′k , PE) = (PZ′kPEPZ
′
k
)r(k) · · · (PZ′1PEPZ′1)r(1).
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We have

‖φε(PZ′1 , . . . , PZ′k , PE)u− v‖

≤ ‖(PZ′kPEPZ′k)r(k) · · · ((PZ′1PEPZ′1)r(1) − Ph1)u‖

+ ‖(PZ′kPEPZ′k)r(k) · · · ((PZ′2PEPZ′2)r(2) − Ph2)Ph1u‖+ · · ·

+ ‖((PZ′kPEPZ′k)r(k) − Phk)Phk−1
· · ·Ph1u‖+ ‖Phk · · ·Ph1u− v‖

≤ ε

k
+ · · ·+ ε

k
+ 1−

(
cos

π

2k

)k
< 2ε.

(ii) Let M0 = M ∩ u⊥. Let H0 = (R ∨M0)
⊥. Then u ∈ H0.

Clearly, the construction of (i) can be done in H0, so we can find v ∈
(M ∨ R)⊥ with ‖v‖ = 1 and subspaces Z ′1 ⊂ · · · ⊂ Z ′k(ε) ⊂ H0 ⊂ R⊥ with

dimZ ′j = j + 1 for all j such that v ∈ Z ′k(ε) and

‖φε(PZ′1 , . . . , PZ′k , Pu∨v)u− v‖ < 2ε.

All iterations in φε(PZ′1 , . . . , PZ′k , Pu∨v)u belong to H0 ⊂ M⊥0 , so we may
replace Pu∨v by PM∨v to get

‖φ(PZ′1 , . . . , PZ′k , PM∨v)u− v‖ = ‖φ(PZ′1 , . . . , PZ′k , Pu∨v)u− v‖ < 2ε.

The following two corollaries will come in handy when we will be joining
the “90-degree” blocks into one single example.

Corollary 2.2. Let ε > 0 and let φε ∈ Sk(ε)+1 be the element con-
structed in Lemma 2.1. Then there exists γε ∈ (0,min{1, ε}) (depending
only on ε) with the following property: if M,R ⊂ H are finite-dimensional
subspaces, u ∈ M ∩ R⊥ with ‖u‖ = 1, and w ∈ R⊥ with ‖w‖ = 1 and
|〈u,w〉| < γε, then there exist v ⊥ M ∨ R ∨ w with ‖v‖ = 1 and subspaces
Z1 ⊂ · · · ⊂ Zk(ε) ⊂ (R∨w)⊥ with dimZj = j+1 for all j such that v ∈ Zk(ε)
and

‖φε(PZ1 , . . . , PZk(ε)
, PM∨v)u− v‖ < 3ε.

Proof. Suppose that w ∈ R⊥, ‖w‖ = 1 and |〈u,w〉| is small enough
(how small will be clear from the proof). Let k = k(ε) and v, Z ′1, . . . , Z

′
k be

as in Lemma 2.1(ii) with v, z1, . . . , zn ⊥ w. We replace the subspaces Z ′j ,
j = 1, . . . , k, by the subspaces

Zj =

j∨
i=0

{hi + αizi − cos(iξ)〈u,w〉w},

which are orthogonal to w. If |〈u,w〉| is small enough, then ‖PZj − PZ′j‖ <
ε/|φε| for all j, hence

‖φε(PZ1 , . . . , PZk
, PM∨v)− φε(PZ′1 , . . . , PZ′k , PM∨v)‖ < ε
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and by the triangle inequality

‖φε(PZ1 , . . . , PZk
, PM∨v)u− v‖

≤ ‖φε(PZ1 , . . . , PZk
, PM∨v)u− φε(PZ′1 , . . . , PZ′k , PM∨v)u‖

+ ‖φε(PZ′1 , . . . , PZ′k , PM∨v)u− v‖ < 3ε.

The exact conditions on |〈u,w〉| depend on ε, k, α1, . . . , αk−1, where all the
parameters are determined by ε.

Corollary 2.3. Let ε > 0 and let k = k(ε). Then φε ∈ Sk+1 and γε > 0
constructed in Corollary 2.2 have the following property: if R,M ⊂ H are
finite-dimensional subspaces, u ∈M ∩R⊥, ‖u‖ = 1, u′ ∈ R⊥, ‖u− u′‖ < γε
and u′ ⊥ u′−u, then there exist v ⊥ R∨M ∨u′ with ‖v‖ = 1 and subspaces
Z1 ⊂ · · · ⊂ Zk ⊂ (R∨(u−u′))⊥ with dimZj = j+1 for all j such that v ∈ Zk,
‖φε(PZ1 , . . . , PZk

, PM∨v)u− v‖ < 3ε and u′ = PXu, where X = Zk ∨ u′.
Proof. If u′ = u then the statement follows from Corollary 2.1. If u′ 6= u

we set w = (u′ − u)/‖u′ − u‖. Then ‖w‖ = 1, and

〈u,w〉 = 〈u− u′, w〉 = ‖u− u′‖ < γε.

If v and Z1, . . . , Zk ⊂ (R ∨ (u − u′))⊥ are constructed as in the proof of
Corollary 2.2, then

‖φε(PZ1 , . . . , PZk
, PM∨v)u− v‖ < 3ε.

Let X = Zk ∨ u′. Since X ⊥ (u′ − u), we have PXu = u′.

Paszkiewicz replaced projections onto an increasing family of n finite-
dimensional spaces by projections onto just two spaces: onto the largest
space in the family and onto a suitable small variation of it. Again, we
modify the proof of his result, so that we can refine it in Lemma 2.5.

Lemma 2.4. Let Z1 ⊂ · · · ⊂ Zk ⊂ X ⊂ H be subspaces with dimZj =
j+1 for j = 1, . . . , k and dimX = k+2. Let ε, δ > 0 and a > 0. Then there
exist a subspace Y ⊂ H and numbers a < s(k) < s(k − 1) < · · · < s(1) such
that X ∩ Y = {0}, ‖PX − PY ‖ < δ and for each j ∈ {1, . . . , k},

‖(PXPY PX)s(j) − PZj‖ < ε.

Proof. Let e0, . . . , ek+1 be an orthonormal basis in X such that e0, e1 ∈
Z1, ej ∈ Zj 	 Zj−1 (2 ≤ j ≤ k), and ek+1 ∈ X 	 Zk. Let w0, . . . , wk+1 be
orthonormal vectors orthogonal to X. We construct Y as the linear span of
the vectors ej + βjwj , j ∈ {0, . . . , k + 1}, where βk+1 > · · · > β1 = β0 > 0
are chosen below.

Note that if Y is constructed in this way, for m ∈ N and j ∈ {0, . . . , k+1}
we have

(3) (PXPY PX)mej =
ej

(1 + β2j )m
.
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Now choose first βk+1 > 0 such that ‖Pek+1
− Pek+1+βk+1wk+1

‖ < δ. Choose

s(k) > a such that 1/(1 + β2k+1)
s(k) < ε.

Inductively choose numbers

βk, s(k − 1), βk−1, s(k − 2), . . . , s(1), β1, β0 = β1

such that

βk+1 > βk > · · · > β1 = β0 > 0,

a < s(k) < s(k − 1) < · · · < s(1),

1

(1 + β2j+1)
s(j)

< ε and

∣∣∣∣ 1

(1 + β2j )s(j)
− 1

∣∣∣∣ < ε for j = k, . . . , 1.

If x =
∑k+1

i=0 aiei ∈ X, then by (3),

(4) ‖(PXPY PX)s(j)x− PZjx‖2 =

∥∥∥∥k+1∑
i=0

ai
ei

(1 + β2i )s(j)
−

j∑
i=0

aiei

∥∥∥∥2

=

j∑
i=0

a2i

(
1− 1

(1 + β2i )s(j)

)2

+
k+1∑
i=j+1

a2i
1

(1 + β2i )2s(j)

≤ ε2
k+1∑
i=0

a2i = ε2‖x‖2.

For any z ∈ H we have

(PXPY PX)s(j)z − PZjz = (PXPY PX)s(j)(PXz)− PZj (PXz),

since Zj ⊂ X. Hence by (4) for j ∈ {1, . . . , k},

‖(PXPY PX)s(j) − PZj‖ < ε.

It is easy to see that ‖PX − PY ‖ = ‖Pek+1
− Pek+1+βk+1wk+1

‖ < δ.

The next lemma combines all the technical tools needed for the construc-
tion of the example we have developed so far.

Lemma 2.5. Let ε, δ > 0. Let R,M ⊂ H be finite-dimensional subspaces,
and let u ∈ M ∩ R⊥ with ‖u‖ = 1 and u′ ∈ R⊥ with ‖u − u′‖ < γε and
u′ ⊥ u′−u. Then there exist v ⊥ R∨M ∨u′ with ‖v‖ = 1, finite-dimensional
subspaces X,Y ⊂ R⊥ with X ∩ Y = {0} and ψ ∈ S3 such that PXu = u′,
‖PX − PY ‖ < δ and

‖ψ(PX , PY , PM∨v)u− v‖ < 4ε.

Moreover, there exists v′ ∈ Y with ‖v′‖ = 1 such that PXv
′ = cv for some

c > 0, ‖v′ − v‖ < 2δ and {u, u′} ⊥ {v, v′}.
Proof. Let v, Z1, . . . , Zk and X be as in Corollary 2.3. Let e0, . . . , ek+1 be

an orthonormal basis in X such that e0, e1 ∈ Z1, ej ∈ Zj	Zj−1 (2 ≤ j ≤ k),
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ek+1 ∈ X 	 Zk. Let w0, . . . , wk+1 be orthonormal vectors orthogonal to
X ∨ R ∨M . As in the proof of the previous lemma, let Y =

∨
{ei + βiwi :

0 ≤ i ≤ k + 1}, where δ/(k + 2) > βk+1 > · · · > β2 > β1 = β0 > 0 are
positive numbers which decrease so rapidly that

‖Pek+1
− Pek+1+βk+1wk+1

‖ < δ

and so that there exist exponents s(k) < s(k − 1) < · · · < s(1) such that

‖(PXPY PX)s(j) − PZj‖ < ε/|φε|
for j ∈ {1, . . . , k}. Then ‖PX − PY ‖ < δ. Set

ψ(PX , PY , PM∨v) = φε((PXPY PX)s(1), . . . , (PXPY PX)s(k), PM∨v).

Then

‖ψ(PX , PY , PM∨v)u− v‖
≤ ‖ψ(PX , PY , PM∨v)u− φε(PZ1 , . . . , PZk

, PM∨v)u‖
+ ‖φε(PZ1 , . . . , PZk

, PM∨v)u− v‖ < 4ε.

Let v =
∑k+1

i=0 νiei. Set

v′ =

∑k+1
i=0 νi(ei + βiwi)

‖
∑k+1

i=0 νi(ei + βiwi)‖
.

Then v′ ∈ Y , ‖v′‖ = 1 and PXv
′ = cv, where c = ‖

∑k+1
i=0 νi(ei + βiwi)‖−1.

Since 1 ≤ ‖
∑k+1

i=0 νi(ei + βiwi)‖ ≤ 1 + δ, we have 1 ≥ c > 1 − δ and

‖v′ − PXv′‖ = c‖
∑k+1

i=0 νiβiei‖ < δ. Thus 1/‖
∑k+1

i=0 νi(ei + βiwi)‖ > 1 − δ,
and

‖v′ − v‖ ≤ ‖v′ − PXv′‖+ ‖PXv′ − v‖ < 2δ.

It is clear from the construction that {u, u′} ⊥ {v, v′}.
Clearly, lims→∞ ‖PXPY PX‖s = 0. Moreover, as in the previous lemma,

we may require that s(k) = min{s(j) : 1 ≤ j ≤ k} be arbitrarily large.
Now we are ready to prove our main result: in an infinite-dimensional

Hilbert space the iterates of three orthoprojections do not have to converge
in norm.

Theorem 2.6. Let H be an infinite-dimensional Hilbert space. There
exist three orthogonal projections P1, P2, P3 ∈ B(H), a vector z0 ∈ H and a
sequence k1, k2, . . . ∈ {1, 2, 3} such that the sequence {zn} of iterates defined
by zn = Pknzn−1 (n ∈ N) does not converge in norm.

Proof. For n ∈ N let εn = 1/2n+4, and let γn = γεn be defined as in
Corollary 2.2.

Let u1 ∈ H with ‖u1‖ = 1. Set formally Y0 = ∨{u1} and X0 = {0}.
Let u′1 be any vector satisfying ‖u′1 − u1‖ < γ1 and u′1 ⊥ u′1 − u1. Using
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Lemma 2.5 (for R = {0} and M = ∨u1), we find X1, Y1 ⊂ H, v1 ∈ X1 and
ψ1 ∈ S3 such that ‖v1‖ = 1, v1 ⊥ u1 and

‖ψ1(PX1 , PY1 , Pu1∨v1)u1 − v1‖ < 4ε1.

Let t1 ∈ N satisfy ‖(PX1PY1PX1)t1‖ ≤ ε1.
Let v′1 ∈ Y1 satisfy ‖v′1‖ = 1, ‖v′1 − PX1v

′
1‖ ≤ ‖v′1 − v1‖ < γ2, where

PX1v
′
1 is a multiple of v1 and {u1, u′1} ⊥ {v1, v′1}.

Set u2 = v′1, u
′
2 = PX1u2 and continue the construction using Lemma 2.5.

If n≥ 2 and X1, . . . , Xn−1, Y1, . . . , Yn−1⊂H, u1, . . . , un−1, v1, . . . , vn−1,
u′1, . . . , u

′
n−1 and v′1, . . . , v

′
n−1 have already been constructed, then set un :=

v′n−1, u
′
n :=PXn−1un (which is a multiple of vn−1), Mn = Yn−1 and Rn =∨n−1

j=0 (Xj ∨ Yj) 	 ∨{un, u′n}. Construct Xn, Yn⊂R⊥n , ψn ∈S3 and vn, v
′
n⊥

Rn∨{un, u′n} as in Lemma 2.5 such that ‖v′n−PXnv
′
n‖≤‖vn−v′n‖<γn+1 and

‖ψn(PXn , PYn , PYn−1∨vn)un − vn‖<4εn.

Moreover, we require that ‖PXn − PYn‖<εn/|φεn−1 | and that any two con-
secutive occurrences of PYn−1∨vn in ψn(PXn , PYn , PYn−1∨vn) are separated by

(PXnPYnPXn)s with s so large that ε
s/tn−2

n−2 <εn/|φn|. This is possible accord-
ing to the remark after the proof of Lemma 2.5; if n=2 then this condition
is not relevant. Let tn∈N satisfy ‖(PXnPYnPXn)tn‖<εn. We now continue
the construction.

Let Ln = Xn ∨ Yn ∨ un and L̃n = Ln	{un, u′n, vn, v′n}. By the construc-
tion, L̃n ⊥

∨n−1
j=1 Lj , and if |n− j| ≥ 2, then Ln ⊥ Lj .

Let further X̃n = L̃n ∩Xn = Xn 	 ∨{u′n, vn}.
By the construction,

‖ψn(PXn , PYn , PYn−1∨vn)un − vn‖ < 4εn.

Set X̂n = Xn ∨ Xn−1 ∨ Xn−2 ∨ · · · , Ŷn = Yn ∨ Yn−2 ∨ Yn−4 ∨ · · · and
Ên = vn ∨ Yn−1 ∨ Yn−3 ∨ · · · .

For each x ∈ Xn we have PYnx = P
Ŷn
x and PYn−1∨vnx = P

Ên
x. Since

in the product ψn(PXn , PYn , PYn−1∨vn), both PYn and PYn−1∨vn always fol-
low PXn , we can replace PYn by P

Ŷn
, and PYn−1∨vn by P

Ên
without any

change. So we have

(5) ‖ψn(PXn , PŶn , PÊn
)un − vn‖ < 4εn.

Note that for n = 1 we have X̂1 = X1 and so we may replace PX1 by P
X̂1

in (5).
Let n ≥ 2. Note that in ψn two consecutive positions of P

Ên
are separated

by (PXnPŶnPXn)s where s satisfies ε
s/tn−2

n−2 < εn/|φn|. For x ∈ Xn we have

P
Ên
x = PYn−1∨vnx and P

X̂n
P
Ên
x = PXnPÊn

x+ x′ + x′′ for some x′ ∈ X̃n−1
and x′′ ∈ ∨u′n−1. Furthermore, P

Ŷn
x′ = 0. Moreover, for each y ∈ Ln we
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have PXny = PX̂n
y and PYny = PŶny. Hence

‖(P
X̂n
P
Ŷn
P
X̂n

)sP
Ên
x− (PXnPŶnPXn)sP

Ên
x‖

≤ ‖(P
X̂n
P
Ŷn
P
X̂n

)sx′′‖ = ‖(PXn−2PYn−2PXn−2)sx′′‖ < ε
s/tn−2

n−2 < εn/|φn|.
So

‖ψn(P
X̂n
, P

Ŷn
, P

Ên
)un − vn‖
≤ ‖ψn(P

X̂n
, P

Ŷn
, P

Ên
)un − ψn(PXn , PŶn , PÊn

)un‖
+ ‖ψn(PXn , PŶn , PÊn

)un − vn‖ < 5εn.

Let X =
∨∞
j=1Xj , Yodd =

∨∞
j=0 Y2j+1 and Yeven =

∨∞
j=0 Y2j . We show

that P1 = PX , P2 = PYeven , and P3 = PYodd have the desired properties.
Suppose that n is even. All iterations in ψn(P

X̂n
, P

Ŷn
, P

Ên
)un belong to∨n

j=1 Lj , so we may replace P
X̂n

by PX without any change. Thus

‖ψn(PX , PŶn , PÊn
)un − vn‖ < 5εn.

Similarly, we may replace P
Ŷn

by PYeven . Thus

‖ψn(PX , PYeven , PÊn
)un − vn‖ < 5εn.

Let Ẽ = Ên ∨ Xn+1 ∨ Yn+3 ∨ Yn+5 ∨ · · · . Then we have ‖P
Ẽ
− PYodd‖ =

‖PXn+1 − PYn+1‖ < εn+1/|ϕεn | and

‖ψn(PX , PYeven , PẼ)un − vn‖ < 5εn.

So

‖ψn(PX , PYeven , PYodd)un − vn‖
≤ ‖ψn(PX , PYeven , PẼ)un − vn‖+ ‖PXn+1 − PYn+1‖ · |φεn | < 6εn.

Similarly, for odd n we have

‖ψn(PX , PYodd , PYeven)un − vn‖ < 6εn.

Write An = ψn(PX , PYeven , PYodd) if n is even and An = ψn(PX , PYodd , PYeven)
if n is odd. So ‖Anun − vn‖ < 6εn and ‖An‖ ≤ 1 for all n. We have

‖AnAn−1 · · ·A1u1 − vn‖ ≤ ‖An · · ·A2(A1u1 − v1)‖
+ ‖An · · ·A2(v1 − u2)‖+ ‖An · · ·A2u2 − vn‖

≤ 6ε1 + γ2 + ‖An · · ·A2u2 − vn‖
≤ 7ε1 + ‖An · · ·A2u2 − vn‖

and by induction,

‖AnAn−1 · · ·A1u1 − vn‖ ≤ 7ε1 + 7ε2 + · · ·+ 7εn < 14ε1 < 1/2.

Since {vn} is an orthonormal sequence, the limit limn→∞An · · ·A1u1 does
not exist.
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3. Dimension dependent constant in an extension theorem. Let
L be a family of K closed subspaces of finite dimension or codimension
of a Hilbert space H. Let {zn} be a sequence of vectors defined as in (1).
It follows from [Pr] that the sequence converges in norm. In [KKM] the
following estimate of the rate of convergence was given, sometimes called
“condition (K)” (see, e.g., [DR1] and [DR2]).

Theorem 3.1. Let L be a finite family of closed subspaces of `2 of fi-
nite dimension or codimension. Let {zi} be a sequence of projections on the
spaces in L as defined in (1). Then for all j ≤ k,

|zj − zk|2 ≤ c(K, d)(|zj |2 − |zk|2),
where the constant c(K, d) > 0 depends on the number K of subspaces and
their maximal dimension or codimension d (for each subspace we choose the
one which is finite) only. Consequently, the sequence {zi} converges in norm.

The main tool in [KKM] for proving the above estimate is a Whitney-
type extension theorem involving derivatives. Given two points a and b in Rd
with |b−a| = 1, there is a differentiable function Φ such that Φ(b)−Φ(a) = 1,
and on K given affine spaces, the derivative of Φ is parallel to these spaces.
Moreover, the Lipschitz constant of Φ′ depends on K and d only.

Theorem 3.2. Let L1, . . . , LK be subspaces of Rd and L̃i their affine
translates. Let a, b ∈ Rd be two points with |b − a| = 1. Then there exists a
differentiable function Φ : Rd → R such that

(i) Φ(b)− Φ(a) = 1;

(ii) Φ′(L̃i) ⊂ Li for i = 1, . . . ,K;
(iii) the mapping Φ′ : Rd → Rd is Lipschitz with a constant c depending

on K and d only.

The question whether it is possible to choose c independently of the
dimension d was left open in [KKM]. According to [KR], if K = 2 this is
indeed the case.

In view of Theorem 2.6, for K ≥ 3 the Lipschitz constant c of Φ′ does
depend on the dimension d. If c depended on K only, then according to
Theorem 2.8 of [KKM] the rate of convergence as in Theorem 3.1 and hence
convergence in norm of {zn} would be available for any K closed subspaces
of any Hilbert space H. Theorem 2.6 proves that in an infinite-dimensional
Hilbert space H this is not always the case.
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