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A product of three projections
by

Eva KoPECKA (Innsbruck) and VLADIMIR MULLER (Praha)

Abstract. Let X and Y be two closed subspaces of a Hilbert space. If we send a
point back and forth between them by orthogonal projections, the iterates converge to the
projection of the point onto the intersection of X and Y by a theorem of von Neumann.

Any sequence of orthoprojections of a point in a Hilbert space onto a finite family
of closed subspaces converges weakly, according to Amemiya and Ando. The problem
of norm convergence was open for a long time. Recently Adam Paszkiewicz constructed
five subspaces of an infinite-dimensional Hilbert space and a sequence of projections on
them which does not converge in norm. We construct three such subspaces, resolving the
problem fully. As a corollary we observe that the Lipschitz constant of a certain Whitney-
type extension does in general depend on the dimension of the underlying space.

1. Introduction. Let K be a fixed natural number and let .Z =
{L1,...,Lg} be a family of K closed subspaces of a Hilbert space H. Let
20 € H and ky,ko,... € {1,..., K} be arbitrary. Consider the sequence of
vectors {z,} defined by

(1) Zn = Pk’nznfla

where P, denotes the orthogonal projection of H onto Lj. The sequence
{zn} converges weakly by a theorem of Amemiya and Ando [AA]. If each
projection appears in the sequence {Pj, } infinitely many times, then this
limit is equal to the projection of zy onto the intersection of all spaces in .Z.

If K = 2 then the sequence {z,} converges even in norm according to a
classical result of von Neumann [N].

If K > 3 then additional assumptions are needed to ensure the norm-
convergence. That {z,} converges if H is finite-dimensional was originally
proved by Prager [Pr]; this also follows, of course, from [AA].

If H is infinite-dimensional, but the sequence {k,} is periodic, the se-
quence {z,} converges in norm according to Halperin [Ha]. The result was
generalized to quasiperiodic sequences by Sakai [S]. Recall that the sequence
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{ky,} is quasiperiodic if there exists r € N such that {kp,, km+1,- -+, Emtr} =
{1,..., K} for each m € N.

The case of H infinite-dimensional, K > 3 and {k,} arbitrary was open
for a long time. In 2012 Paszkiewicz [P1] constructed an ingenious example
of five subspaces of an infinite-dimensional Hilbert space and of a sequence
{zn} of the form which does not converge in norm. An important input
towards the construction comes from Hundal’s example ([H], see also [K]
and [MR]) of two closed convex subsets of an infinite-dimensional Hilbert
space and a sequence of alternating projections onto them which does not
converge in norm.

The basic idea of Paszkiewicz was the observation that it is possible to
move a unit vector x1 with an arbitrary precision to another unit vector
xo orthogonal to x; by iterating just three projections. This construction is
then used to move the initial vector z1 to zo L x1, then to x3 L {z1, 22} with
better and better precision along quarter circles connecting the orthogonal
sequence {x1, T2, ...}. Such an iteration certainly does not converge in norm.

There is a technical difficulty in gluing these “90-degree” steps together
in such a way that the next step does not interfere with the preceding ones.
In Paszkiewicz’s example of five projections this was done by gluing the
odd and even steps together. The cases of three or four projections were
left open. The goal of this paper is to show that it is possible to glue the
Paszkiewicz “90-degree” steps constructions together to obtain three Hilbert
space projections with non-convergent iterations. The construction of three
projections with this property is not straightforward. In fact, there is a paper
[P2] claiming the same result, which is apparently not correct: nj is chosen
on page 6 of [P2] based on M which depends on m(k, s), which in its turn
already depends on 7.

NoOTATION. Let H be a Hilbert space, and B(H) the space of bounded
linear operators from H to H. For M, N C H we denote by \/ M the closed
linear hull of M, and by M V N the closed linear hull of M UN. Similarly we
use Vo and x Vy for z,y € H. If M is a subspace and N C M then M & N
stands for M N Nt. By Py we denote the orthogonal projection onto the
closed linear hull of N.

For m € N let S, be the free semigroup with generators gi,...,gm
satisfying the relations gjz. =g, =1,....m). If o = g;. -+~ g;; € S, (for
some r € N and i; € {1,...,m} with 4,44 # i; for all j) and Ay,..., A4, €
B(H) are projections, then we write ¢(A1,...,A4y,) = A;,.--- A, € B(H).
Denote by |¢| = 7 the “length” of .

2. Construction of the example. In this section, let H be an infinite-
dimensional Hilbert space. The example is “glued” together from finite-
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dimensional blocks. In each of these blocks three subspaces and a finite
product of projections are constructed so that the product maps a given
unit vector uw with an arbitrary precision to a unit vector v orthogonal
to u.

This idea was already used by Hundal [H] to construct a cone and a
half-space in H which intersect at the origin, but the corresponding sequence
of alternating nearest point mappings (although weakly convergent to the
origin) does not converge pointwise in norm. All of Hundal’s blocks are
3-dimensional; here the dimension of the blocks increases exponentially.

Let u and v be two orthonormal vectors. It is very easy to get from u
approximately to v be means of finitely many projections onto the lines h;
dissecting the right angle between u and v into small enough angles.

For £ > 0 let k(e) be the smallest positive integer k such that (cos ﬁ)k >
1 — e. That is, if v and v are two orthonormal vectors, and we project
u consecutively onto the lines dividing the right angle between u and v
into k angles of size 7/(2k), then we land at v with error at most ¢ (see
Fig. 1.

Fig. 1. Approximating v by projections of u

Projecting onto a line can be arbitrarily approximated by iterating pro-
jections between two subspaces intersecting at this line. In Hundal’s example
(see [K]) one of the spaces is always the plane £ = u V v and the other is
a 2-dimensional space V; intersecting I at h;. These 2-dimensional planes
support a part of the surface of a cone. Paszkiewicz’s ingeniously simple
idea was to replace the n pieces of 2-dimensional planes V; by an increasing
family of n finite-dimensional spaces Z; C --- C Z,. He then replaced the
projections onto these spaces by projections onto the largest space X = Z,
and its suitable small variation Y. Lo and behold, instead of projecting
onto several spaces, Paszkiewicz is projecting just onto three of them: E,
X, and Y. In what follows, we significantly refine this construction in order
to be able at the end to glue together the “90-degree” steps to end up with
just three subspaces instead of Paszkiewicz’s five.
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The first statement of the next lemma is taken from [P1]; we supply a
slightly different proof.

LEMMA 2.1. Lete > 0. Then there exists ¢c € Sy(z)41 with the following
properties:
(i) If uw € H with ||u|| = 1, then there exist v L u with ||v|| = 1 and
subspaces Zy C +-- C ZI/<:(5) with dim Z} = j + 1 for all j such that
v E Z,Q(E) and

|’¢E(PZi7"'7PZ’

k(g)’P“V”)u — v < 2e.
(ii) If M, R C H are finite-dimensional subspaces and u € M N R* with
|lu|| = 1, then there exist v L M V R with ||v|]| = 1 and subspaces
ZiC-- C Zl::(s) with dim Z}; = j + 1 for all j such that v € Z,’g(s),

ZI/C(E) 1 R, and
Hd)E(PZ{u cee 7PZ]’C(6>7PMV1))U - UH < 2e.

Proof. Write k := k(¢).

To prove (i), choose orthonormal vectors zg, 21, ..., 2x-1,v € H orthog-
onal to u. Let E =uV v.

Let £ =7/(2k). For j =0,...,k, let hj = ucos j€+vsin j§ be the points
on the quarter circle connecting hg = u to hi = v. We inductively construct

a rapidly decreasing sequence of nonnegative numbers g > a3 > -+ >
ag—1 > o = 0 in the following way. Choose ap € (0,1) arbitrarily. Let
1 < j < k—1 and suppose that «ay, ..., a;_; and subspaces Z] C --- C Z]’-_1

have already been constructed. Set
zZj = \/{ho + ao20, b1 +a1z1, . b1+ ajorzio1, byt

Since E'N Z] = Vhj, we have (PZ]/_/PEPZJ/_/)% — P,z for each x € H as
r — o0, by [N]. As both spaces are finite-dimensional, there exists r(j) € N
such that

(P2 PePgi)™) = Py || < e/k.
Let a; > 0 be so small that
(2) (P PPz — Pyl < e/k,

where
Z} = \/{ho + apzo, h1 + @121, .. ., h]’fl +aj-1%5-1, hj + Oéij}.

Suppose that Z] C --- C Z;_, have already been constructed. Set formally
ap = 0 and Z,Ic = Z;CI = \/{ho + apzo,h1 + o121, ... he1 + Qp_128_1, hk}
Find r(k) € N such that is true also for j = k. Then v = hy, € Z}.. Let

$=(Pg,. .., Py, Pp) = (Pg PuPg )" ™ - (P PpPg )",
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We have
|6=(Pygy, ., Py, Pe)u— v
< |[(Pgy PaPy)"™ - ((Pg PpPg )" = Py, Jul|
+|[(Pgy PaPgy )™ - (PzyPePg)™® — Pu,) Pyl + - -
+[|((Pg; PePz )™ = Puy)Pay_, -+ Payul| + || Pay, -+ Pryu — o

<€+ —|—€+1 T k<25
— 44— — (cos — .
~ k k 2k

(ii) Let Mo = M Nut. Let Hy = (RV Mg)*. Then u € H.

Clearly, the construction of (i) can be done in Hy, so we can find v €
(M Vv R)* with |Jv|| = 1 and subspaces Z| C --- C Z,’C(E) C Ho C R* with
dim Z; = j + 1 for all j such that v € Z,’f(e) and

H(bE(PZ{w . -aPZ,’Capqu)'UJ_ UH < 2e.

All iterations in ng(PZi, e ,PZI/C,PU\/U)U belong to Hy C My, so we may
replace Py, by Parvy to get

||¢(PZi7"'7PZ,/€’PMV’U)U_U|| = Hqs(PZ{?'"?PZ,/€7PU\/U)U_U|| < 2¢. m

The following two corollaries will come in handy when we will be joining
the “90-degree” blocks into one single example.

COROLLARY 2.2. Let € > 0 and let ¢ € Sp)41 be the element con-
structed in Lemma 2.1 Then there exists v. € (0,min{1,e}) (depending
only on €) with the following property: if M, R C H are finite-dimensional
subspaces, w € M N R with |lul| = 1, and w € R+ with ||w|| = 1 and
|{u,w)| < e, then there exist v L MV RV w with ||v|]| = 1 and subspaces
Zy C - C Zyey C (RVw)* with dim Zj = j+1 for all j such that v € Zy.
and

||¢5(PZ1, . ,sz(g),PMw)u — UH < 3e.

Proof. Suppose that w € R, ||w|| = 1 and |(u,w)| is small enough
(how small will be clear from the proof). Let k = k(¢) and v, Z1, ..., Z] be
as in Lemma [2.1{(ii) with v, 21,...,2, L w. We replace the subspaces Z},
7 =1,...,k, by the subspaces

J
Z; = \/{hl + a;z; — cos(i&) (u, w)w},
=0
which are orthogonal to w. If |(u,w)| is small enough, then || Pz, — Py | <
e/|¢e| for all j, hence

¢<(Pz1s - - Pzys Pyve) = (P, - Pz, Pavo)|| < €
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and by the triangle inequality

|¢<(Pzy, - - - Pz, Parvo)u — |
S H¢€(PZ17 e ,PZk,PMVU)u — ¢€(Pzi, N 7PZ,'€7PM\/U)UH
+ ||¢E(PZ1""7PZ;€7PM\/U)U_U|| < 3e.

The exact conditions on |(u,w)| depend on €, k, a1, ..., ar_1, where all the
parameters are determined by €. m

COROLLARY 2.3. Lete > 0 and let k = k(e). Then ¢ € Sky1 and v > 0
constructed in Corollary 2.2] have the following property: if R, M C H are
finite-dimensional subspaces, w € M NR*, |[ul| =1, v’ € R*, |lu — /|| < e
and v’ L u' —wu, then there exist v L RV MV u' with ||v|| =1 and subspaces
Z1 C - C Zp C (RV(u—t))t with dim Z; = j+1 for all j such thatv € Zy,
lpe(Pz,,-- - Pz, Prve)u — 0| < 3¢ and v’ = Pxu, where X = Zj, V u/'.

Proof. If ' = u then the statement follows from Corollary 2.1. If v/ # u
we set w = (u/ — u)/||u' — ul|. Then [Jw|| =1, and

(u,w) = (u — v, w) = |Ju— || <.

If vand Zy,...,Z; C (RV (u—u'))* are constructed as in the proof of
Corollary then

||¢E(PZ17'"7PZk7PMVv)U_UH < 3e.
Let X = Z; V. Since X L (u/ —u), we have Pxu =1u'. m

Paszkiewicz replaced projections onto an increasing family of n finite-
dimensional spaces by projections onto just two spaces: onto the largest
space in the family and onto a suitable small variation of it. Again, we
modify the proof of his result, so that we can refine it in Lemma

LEMMA 2.4. Let Z1 C --- C Z, C X C H be subspaces with dim Z; =
j+1lforj=1,....,kanddimX =k+2. Lete,6 > 0 and a > 0. Then there
exist a subspace Y C H and numbers a < s(k) < s(k—1) <--- < s(1) such
that X NY = {0}, ||Px — Py|| < ¢ and for each j € {1,...,k},

|(Px Py Px)*9) — Py || <e.

Proof. Let eq,...,exr1 be an orthonormal basis in X such that eg,e; €
Z1, ej € Zj © Zj,1 (2 <7< ]C), and ey € X © Zg. Let wy, ..., wg1 be
orthonormal vectors orthogonal to X. We construct Y as the linear span of
the vectors e; + Sjw;, j € {0,...,k + 1}, where Sxy1 > -+ > 1 = o > 0
are chosen below.

Note that if Y is constructed in this way, for m € Nand j € {0,...,k+1}
we have

o
(3) (PxPyPx)"ej = )



A product of three projections 181

Now choose first ;11 > 0 such that || Pe
s(k) > a such that 1/(1+Bk+1) ) <e.
Inductively choose numbers

ﬁk, S(k — 1)75]9717 S(k — 2), e ,S(l),ﬁl, ﬁo = ﬂl

- P, | < d. Choose

k41 k+1+5k+1wk+1|

such that

Brt1 > B > -+ > 1= Po >0,
a<s(k)<s(k—1)<---<s(1),

(1+ﬁ12+1)8(j) < e and ‘G-F;JZ)S(])_l‘ <e forj=k,...,1
Ifz= Zf”LDl a;e; € X, then by ,
k+1
4)  |(PxPyPx)*Wz — Py a|? = ZO (1+62 s() Zazel
j , a 1 2 k+l
:;ai<1—(1+62> 2];1a 1+ﬂ225
k+1
<&’y af = ||z
i=0

For any z € H we have
(Px Py Px)*Y)z — Py 2 = (Px Py Px)*Y)(Pxz) — Pz,(Px2),

since Z; C X. Hence by . for j € {1,...,k},
|(Px Py Px)*9 — Py | <.
It is easy to see that ||Px — Py || = [|Pe,yy, — Peyi 1481wy | < 0. m

The next lemma combines all the technical tools needed for the construc-
tion of the example we have developed so far.

LEMMA 2.5. Lete,d > 0. Let R, M C H be finite-dimensional subspaces,
and let v € M N R with ||u|| = 1 and v’ € R+ with ||u — /|| < 7. and
u' L w' —wu. Then there exist v L RV MV u' with ||v|| = 1, finite-dimensional
subspaces X,Y C R+ with X NY = {0} and ¢ € S3 such that Pxu = 1/,
HPX — PyH <6 and

||¢(PX7 PY) PMV’U)U - UH < 4e.

Moreover, there exists v' € Y with ||v'|| = 1 such that Pxv' = cv for some
c>0, ||v —v] <26 and {u,u'} L {v,v'}.

Proof. Letv, Zi,...,Z and X be as in Corollary 2.3] Let e, . .., ep41 be
an orthonormal basis in X such that eg,e1 € Z1,¢j € Z;06Z;_1 (2 < j < k),
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exr1 € X © Zg. Let wo,..., w1 be orthonormal vectors orthogonal to
X VRV M. As in the proof of the previous lemma, let Y = \/{e; + Sjw; :
0 <i<k+1}, where 6/(k+2) > Bgy1 > -+ > P2 > P1 = [p > 0 are
positive numbers which decrease so rapidly that

HP€1€+1_P€ ”<5
and so that there exist exponents s(k) < s(k—1) < --- < s(1) such that
I(Px Py Px)*Y) = Pz || < ¢/|é]
for j € {1,...,k}. Then ||Px — Py < 4. Set
¥(Px, Py, Parve) = ¢=((Px Py Px)*W, .. (PxPyPx )™, Pyy).
Then
1Y (Px, Py, Parvo)u — v

S ”1/1(PX,PY,PM\/U)U - ¢€(PZ17"‘ 7PZk7PM\/U)uH
+ ||¢E(lea"'7PZk7PM\/v)u_'UH < 4e.

k+1HBr+1WE 41

Let v = Zfiol v;e;. Set
o — S vies + Biwi)
1320 vilei + Biwi)|
Then v/ € Y, ||| = 1 and Pxv' = cv, where ¢ = || M0 vi(e; + Biws)|| 1.
Since 1 < ||Zf:+01 vi(ei + Biw;)|| < 1+ 0, we have 1 > ¢ > 1 —§ and

[v' — Pxv'|| = ¢ S5y viiesl| < 8. Thus 1/[| S5 vies + Biw)|| > 1 -9,
and

o) — || < |[v" — Pxv'|| + || Pxv" —v| < 24.
It is clear from the construction that {u,u'} L {v,v'}. =

Clearly, lims_, || Px Py Px||®* = 0. Moreover, as in the previous lemma,
we may require that s(k) = min{s(j) : 1 < j < k} be arbitrarily large.

Now we are ready to prove our main result: in an infinite-dimensional
Hilbert space the iterates of three orthoprojections do not have to converge
in norm.

THEOREM 2.6. Let H be an infinite-dimensional Hilbert space. There
exist three orthogonal projections Py, Po, Py € B(H), a vector zo € H and a
sequence ki, ke, ... € {1,2,3} such that the sequence {z,} of iterates defined
by zn = Px, 2n—1 (n € N) does not converge in norm.

Proof. For n € N let e, = 1/2"*, and let 7, = 7., be defined as in

Corollary [2.2]
Let u; € H with ||ui]] = 1. Set formally Yy = V{u;} and Xy = {0}.
Let u) be any vector satisfying ||u} — ui|| < 71 and u} L u} — u;. Using



A product of three projections 183

Lemma (for R = {0} and M = Vuy), we find X;,Y; C H, v; € X; and
Y1 € Sz such that |ju1]] =1, v1 L u; and

||1/}1(PX17PY1’Pu1Vv1)U1 — Ul” < 4eq.

Let t; € N satisfy ||(Px, Py, Px,)"|| < 1.

Let v} € Y; satisfy [[v}]| = 1, |[v] — Px,vi]| < |[v] — vi| < 72, where
Px, v} is a multiple of v; and {uy,u}} L {v1,v]}.

Set ug = v}, uhy = Px,ug and continue the construction using Lemma .

Ifn>2and Xy,...,Xn1,Y1,..., Y0 1 CH, uy,...,Up_1, V1,...,Up_1,
uy,...,ul,_y and v],...,v,_; have already been constructed, then set u, :=
v} _q, ul = Px, ,up (which is a multiple of v,_1), M, =Y,_; and R, =
\/?:_Ol(Xj V'Y;) © V{un,ul}. Construct X, Y, C R, ¥, €Ss and vy, v), L
Ry V{un,u},} as in Lemmal2.5|such that [|v], — Px, v} || <|[vn =} || <¥n+1 and

Hwn(PXyﬂ PYna PYn_l\/vn)un - Un” <dey.

Moreover, we require that ||Px, — Py, || <en/|¢, .| and that any two con-
secutive occurrences of Py, vy, in ¥n(Px,, Py, , Py, _ v, ) are separated by

(Px, Py, Px,)® with s so large that sz/f 5% <en/|¢n|. This is possible accord-
ing to the remark after the proof of Lemma [2.5} if n=2 then this condition
is not relevant. Let t, €N satisfy ||(Px, Py, Px, )| <&,. We now continue
the construction.

Let L, = X, VY, Vu, and L, = L, © {tun,ul,, vy, vl }. By the construc-
tion, L, L \/;l:_l1 Lj, and if |n — j| > 2, then L, 1 Lj.

Let further X, = L, N X,, = X,, © V{u/,,v,}.

By the construction,
[ (Px,s Py Py yvon )Jtn — vn|| < 4en.

Set X = XV Xy VXpaVe, Yy = Y, VY, o VY, g Voo and
E,=v,VY, VY, 3V---.

For each = € X,, we have Py, x = P}A,na: and Py, vy, = PEnaz. Since
in the product ¢, (Px,, Py, , Py, ,vv,), both Py, and Py, v, always fol-
low Px,, we can replace Py, by Pp , and Py, _ vy, by Py without any
change. So we have

(5) 9 (Px, Py, Pg Jtn — vnl| < dep.

Note that for n = 1 we have )?1 = X1 and so we may replace Px, by Pfﬁ
in .
Let n > 2. Note that in v, two consecutive positions of PEn are separated

S/tn72
n—2

by (Px, Py Px,)® where s satisfies ¢ < &n/|pn|. For x € X,, we have
Py x =Py,  v,v and Py Pp x = Px, Py x+ 1’ + 1" for some 2’ € X, q

and 2" € Vu;, ;. Furthermore, Py x' = 0. Moreover, for each y € L,, we
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have Px,y = Ps y and Py, y = Py y. Hence

I (P)?n Pf’n PXH)SPEna; — (Px, P};n PXn)SPEna:H

< ||(PXnP§7nP)?n)sx//” = ||(PX7L—2PYTL—2PXTL—2)SJ:/,H < 58/—1‘/3_2 < 5n/’¢n|

n

So

Hwn(PX’nv Pffna Pﬁn)un - Un”
< Hwn(P)?nv Py, PEn)un — Un(Px,, Py, PEn)unH
+ ||¢n(PXn7Pf/n>P§n)un — vn|| < Ben.
Let X = \/Joil Xj, Yodd = \/;‘;0 Y2j+1 and Y:gven = \/;’io ng. We ShOW
that Py = Px, P» = Py,,, and P35 = Py_,, have the desired properties.
Suppose that n is even. All iterations in ¥, (P)A(n, Py, PEn)un belong to
\/;L:1 L;, so we may replace P)A(n by Px without any change. Thus
|t (Px, Py, PEn)u” — vpl| < Ben.
Similarly, we may replace P?n by Py,..,- Thus
[90n(Px s Pyovens PEn)un — vp|| < 5ep.
Let E = En V Xpnt1 VY3V Y5V, Then we have HPE — Py,
1Px,r = Pyl < ens1/lee, | and
190 (Px s Pyuyens PE)Un — vpl| < ey

dd” =

So

”an(PX’ P}/ezvel17 PYodd)un - Un”
< Hwn(PX7PYeven7PE)un - UTZH + HPXn+1 - PYn+1” : ’¢€n‘ < bep,.
Similarly, for odd n we have
ll9n (Px, Py, Py, )tin — vn|| < Gep.

Write A, = ¥ (Px, Py..on, Pv.y,) if nis even and A, = ¢ (Px, Py, .., Pviven)
if n is odd. So ||Apu, — vy|| < 6e, and ||A,]| < 1 for all n. We have

[AnAp—1 -+ Arur — vpf| < [[An - -+ A2(Arug — v1)]
+ [ An - Ag(v1 — u2) || + [|[An - - - Aoug — v
< 6e1 472 + [|[An -+ - Agug — vy ||
< Tep+ ||Ap -+ - Agug — vy |
and by induction,
HAnAn—l . ~A1U1 — ’UnH <Tey+ T+ -4+ Tg, < ldey < 1/2.

Since {v,} is an orthonormal sequence, the limit lim, o Ay, - -+ Aju; does
not exist. m
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3. Dimension dependent constant in an extension theorem. Let
Z be a family of K closed subspaces of finite dimension or codimension
of a Hilbert space H. Let {z,} be a sequence of vectors defined as in (]
It follows from [Pr] that the sequence converges in norm. In [KKM]| the
following estimate of the rate of convergence was given, sometimes called
“condition (K)” (see, e.g., [DR1] and [DR2]).

THEOREM 3.1. Let £ be a finite family of closed subspaces of ly of fi-
nite dimension or codimension. Let {z;} be a sequence of projections on the
spaces in L as defined in . Then for all j <k,

|25 — z]* < (K, d)(|125)° — |2]?),

where the constant ¢(K,d) > 0 depends on the number K of subspaces and
their mazimal dimension or codimension d (for each subspace we choose the
one which is finite) only. Consequently, the sequence {z;} converges in norm.

The main tool in [KKM] for proving the above estimate is a Whitney-
type extension theorem involving derivatives. Given two points a and b in R?
with |[b—a| = 1, there is a differentiable function ¢ such that (b)—®(a) = 1,
and on K given affine spaces, the derivative of @ is parallel to these spaces.
Moreover, the Lipschitz constant of ¢’ depends on K and d only.

THEOREM 3.2. Let Li,...,Lg be subspaces of RY and L; their affine
translates. Let a,b € RY be two points with |b — a| = 1. Then there exists a
differentiable function @ : R* — R such that

(i) &(b) —P(a) = 1;
(ii) ?'(L;) C L; fori=1,...,K;
(iii) the mapping &' : RY — R? is Lipschitz with a constant ¢ depending

on K and d only.

The question whether it is possible to choose ¢ independently of the
dimension d was left open in [KKM]|. According to [KR], if K = 2 this is
indeed the case.

In view of Theorem for K > 3 the Lipschitz constant ¢ of ¢’ does
depend on the dimension d. If ¢ depended on K only, then according to
Theorem 2.8 of [KKM] the rate of convergence as in Theorem [3.1| and hence
convergence in norm of {z,} would be available for any K closed subspaces
of any Hilbert space H. Theorem [2.6| proves that in an infinite-dimensional
Hilbert space H this is not always the case.
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