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Abstract. We give a corrected proof of Theorem 2.10 in our paper “Commutators
on (

∑
`q)p” [Studia Math. 206 (2011), 175–190] for the case 1 < q < p < ∞. The case

when 1 = q < p < ∞ remains open. As a consequence, the Main Theorem and Corollary
2.17 in that paper are only valid for 1 < p, q < ∞.

Throughout this note, “small perturbation” means using the image of the
subspace under an operator that is close to the identity. The notation is as
in [CJZh]. We thank Eugenio Spinu for spotting the error in the last line of
the proof of Theorem 2.10 in [CJZh], where it is claimed “Then it is easy to
see that

∑∞
n=0R

nTLn is strongly convergent if
∑

n εn <∞”.

Theorem 1. Let 1 < p < q < ∞. Let T : Zp,q → Zp,q be Zp,q-strictly
singular. Then for all ε > 0 there is a 1-complemented subspace Y of Zp,q

which is isometric to Zp,q and ‖T |Y ‖ < ε.

Lemma 2. Let S : `q → Zp,q (1 < p < q <∞). Then for all ε > 0 there
is an N ∈ N such that ‖P[N,∞)S‖ < ε.

Proof. Suppose not. Then there is an ε > 0 such that ‖P[N,∞)S‖ ≥ ε for
any N ∈ N. So by a standard perturbation argument, there is a normalized
block basis (xi) of `q whose image sequence (Txi) is equivalent to the unit
vector basis of `p. Since 1 < p < q < ∞, this contradicts the boundedness
of T .

Lemma 3. Let S : Zp,q → `q (1 < p < q <∞). Then for all ε > 0 there
is a subspace Y of Zp,q such that Y is isometric to `q, Y is 1-complemented
in Zp,q, and ‖S|Y ‖ < ε.
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Proof. Let (ei,j) be the natural unit vector basis of Zp,q, where (ei,j)j is
the unit vector basis of the ith `q. By passing to appropriate subsequences of
(ei,j) and perturbing S slightly, we may assume that the (Sei,j) are disjointly
supported in `q. Since 1 < p < q <∞, we can pick an N ∈ N so large that

N1/q−1/p < ε/‖S‖. Let xj = N−1/p
∑N

i=1 ei,j . Then (xj) is 1-equivalent to
the unit vector basis of `q. Let Y be the closed linear span of (xj). Then Y
is 1-complemented in Zp,q and ‖S|Y ‖ < ε.

Proof of Theorem 1. Fix ε > 0. Let (εi) be a sequence of positive reals de-

creasing to 0 fast so that
∑
εi < min{ε/4, 1/4}. We write Zp,q = (

∑
`
(n)
q )`p .

Let X1 = `
(1)
q . By Lemma 2, there is N1 ∈ N such that P[N1,∞)T |X1 < ε1.

By Lemma 3, there are N2 ∈ N and X2 ⊂ P[N1,N2)Zp,q such that X2 ≡ `q,
X2 is 1-complemented in Zp,q, and ‖P[1,N1)T |X2‖ < ε2/2. By using Lemma 2
again and increasing N2, we may also assume that ‖P[N2,∞)T |X2‖ < ε2/2.

So by induction we get an increasing sequence (Ni) of positive integers
and a sequence (Xi) of subspaces such that

• Xi ≡ `q;
• Xi is 1-complemented in Zp,q;
• Xi ⊂ P[Ni−1,Ni)Zp,q (where N0 = 1);
• ‖(I − P[Ni−1,Ni))T |Xi‖ < εi.

We claim that for all but finitely many i ∈ N, there is a subspace Yi
of Xi such that Yi ≡ `q, Yi is 1-complemented in Xi, and ‖T |Yi‖ < ε.
Suppose not. Then there is an infinite subset I ⊂ N such that for all i ∈ I
and for every 1-complemented subspace Yi of Xi that is isometric to `q we
have ‖T |Yi‖ ≥ ε. Therefore, for each i ∈ I there is a normalized block basis
(xi,j)j of Xi such that ‖Txi,j‖ ≥ ε. By passing to a subsequence of (xi,j)j
and doing a small perturbation, we may assume that (Txi,j)j is disjointly
supported in Zp,q. Since Zp,q has a lower q-estimate with constant 1, (Txi,j)j
is ‖T‖/ε-equivalent to (xi,j)j . For each i ∈ I, let Yi be the closed linear span
of (xi,j)j . Then

∑
i∈I Yi is isometric to Zp,q. Next we show that T |∑

i∈I Yi

is an isomorphism. To see this, let (yi)i∈I ∈
∑

i∈I Yi with
∑

i∈I ‖yi‖p = 1.
Then we have

‖T ((yi)i∈I)‖ ≥
∥∥∥∑
i∈I

P[Ni−1,Ni)Tyi

∥∥∥−∑
i∈I
‖(I − P[Ni−1,Ni))Tyi‖

≥
(∑

i∈I
(1− εi)p‖Tyi‖p

)1/p
−
∑
i∈I

εi‖yi‖

≥ 3ε/4−
∑
i∈I

εi > ε/2.

This contradicts the hypothesis that T is Zp,q-strictly singular.
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Having our claim, without loss of generality, we assume that for all
i ∈ N there is a subspace Yi of Xi such that Yi ≡ `q, Yi is 1-complemented
in Xi, and ‖T |Yi‖ < ε. Let Y =

∑
Yi. Then Y is isometric to Zp,q and

1-complemented in Zp,q. Let (yi) ∈ SY . We have

‖T ((yi))‖ ≤
∥∥∥∑P[Ni−1,Ni)Tyi

∥∥∥+
∑
‖(I − P[Ni−1,Ni))Tyi‖

≤
(∑

‖Tyi‖p
)1/p

+
∑

εi‖yi‖ < ε+
∑

εi < 5ε/4.

Since ε is arbitrary, we are done.

Lemma 4. Let 1 < p, q < ∞ and n ∈ N. Set Z := (
∑n

k=1Xn)p with
each Xn isometrically isomorphic to `q. Suppose that X is a subspace of Z.
Then for each ε > 0 there is a subspace Y of X such that Y is 1 + ε-
isomorphic to `q and Y is 1 + ε-complemented in Z.

Proof. By the principle of small perturbations we can assume that X
contains a sequence (xk) that is disjointly supported with respect to the
canonical basis (ei,j)

∞, n
i=1,j=1. By passing to a subsequence of (xk) and making

another small perturbation, we can assume for every j = 1, . . . , n that there
is a scalar aj such that for each k ∈ N we have ‖Pjxk‖ = aj , so that∑n

j=1 a
p
j = 1. One checks easily that (xk) is 1-equivalent to the unit vector

basis of `q. Indeed, if z =
∑

k bkxk, then

‖z‖p =
n∑

j=1

‖Pjz‖p =
n∑

j=1

∥∥∥∑
k

bkPjxk

∥∥∥p
=

n∑
j=1

(
aj

(∑
k

|bk|q
)1/q)p

=
( n∑
j=1

apj

)(∑
k

|bk|q
)p/q

.

To see that [xk] is norm one complemented in Z, assume without loss of
generality that no aj is zero and let x∗k,j be the unique norm one functional

in Z∗ = (
∑n

k=1X
∗
n)p′ for which 〈x∗k,j , Pjxk〉 = aj . So x∗k,j has the same

support as Pjxk and for each j, the sequence (x∗k,j)k is 1-equivalent to the

unit vector basis of `q′ . Define x∗k :=
∑n

j=1 a
p−1
j x∗k,j . Then the sequence (x∗k)

is 1-equivalent to the unit vector basis for `q′ and is biorthogonal to the
sequence (xk). This implies that Px :=

∑
k〈x∗k, x〉xk defines a norm one

projection from Z onto [xk].

Lemma 5. Zp,q is complementably homogeneous for 1 < p < q <∞.

Proof. Let X = (
∑
Xk) be a subspace of Zp,q isomorphic to Zp,q such

that each Xk is isomorphic to `q. Let (εi) be a sequence of positive reals
decreasing to 0 fast. Let Y1 be a subspace of X1 which is 1 + ε1-isomorphic
to `q. By Lemma 2 and a small perturbation, we may assume that there
is N1 ∈ N such that ‖P[N1,∞)|Y1‖ = 0. By Lemma 2, Lemma 3, stability
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of `q, and a small perturbation, we may assume that there is a subspace Y2
of X such that Y2 is 1 + ε2-isomorphic to `q and (I − P[N1,N2))|Y2 = 0 for
some N2 > N1. Inductively, we get a sequence (Yk) of subspaces of X and a
sequence (Nk) of increasing positive integers such that Yk is 1+εk-isomorphic
to `q and Yk ⊂ P[Nk−1,Nk)Zp,q. By Lemma 4 and passing to subspaces of
each Yk, we may assume that Yk is 1 + εk-complemented in P[Nk−1,Nk)Zp,q.
Let Y =

∑
Yk. Then Y is 1 + ε-isomorphic to Zp,q and 1 + ε-complemented

in Zp,q if
∑
εk < ε.

Theorem 6. Let 1 < q < p < ∞. Let T : Zp,q → Zp,q be Zp,q-strictly
singular. Then there is a 1-complemented subspace Y of Zp,q which is iso-
metric to Zp,q and ‖PY T‖ < ε, where PY is a norm 1 projection from Zp,q

onto Y .

Proof. This follows immediately by applying Theorem 1 for T ∗ and
Lemma 5.

Corrected proof of Theorem 2.10 in [CJZh] for 1 < q < p < ∞. By [D,
Theorem 8], it is enough to show that there is an `p-decomposition {Xi}
of Zp,q into uniformly isomorphic copies of Zp,q such that

(∗) lim
n→∞

∥∥∥(∑
k≥n

Pk

)
T
∥∥∥ = lim

n→∞

∥∥∥T(∑
k≥n

Pk

)∥∥∥ = 0,

where Pk is the natural projection from Zp,q onto Xk.

By the original proof of Theorem 2.10 in [CJZh], we can get a sequence
(Xn)∞n=1 of subspaces of (

∑∞
n=0 Zp,q)`p such that

(1) Xn is isometric to Zp,q and 1-complemented in Zp,q;
(2) ‖T |Xn‖ < εn;
(3) ‖

∑∞
n=1 xn‖ = (

∑∞
n=1 ‖xn‖p)1/p for all xn ∈ Xn;

(4) Zp,q = (
∑∞

n=1Xn)p ⊕X0 and X0 is isomorphic to Zp,q.

By Theorem 6 and passing to subspaces X ′n of each Xn (n ≥ 1) (absorbing
the complements of X ′n in Xn into X0), we may assume one additional
condition:

(5) ‖PnT‖ < εn (n ≥ 1), where Pn is the norm one projection from Zp,q

onto Xn.

Now equation (∗) clearly holds if limn→∞
∑

k≥n εk = 0.
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