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Remarks on the critical Besov space and its
embedding into weighted Besov–Orlicz spaces

by

Hidemitsu Wadade (Osaka)

Abstract. We present several continuous embeddings of the critical Besov space
B
n/p,ρ
p (Rn). We first establish a Gagliardo-Nirenberg type estimate
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for 1 < p ≤ q < ∞, 1 ≤ ν < ρ ≤ ∞ and the weight function wr(x) = 1/|x|r with
0 < r < n. Next, we prove the corresponding Trudinger type estimate, and obtain it in
terms of the embedding B

n/p,ρ
p (Rn) ↪→ B0,ν

Φ0,wr
(Rn), where the function Φ0 of the weighted

Besov–Orlicz space B0,ν
Φ0,wr

(Rn) is a Young function of the exponential type. Another point

of interest is to embed B
n/p,ρ
p (Rn) into the weighted Besov space B0,ρ

p,wn(Rn) with the

critical weight wn(x) = 1/|x|n; more precisely, we prove B
n/p,ρ
p (Rn) ↪→ B0,ρ

p,Ws
(Rn) with

the weight Ws(x) = 1
|x|n[log(e+1/|x|)]s for any s > 1.

1. Introduction and main results. The main purpose of this paper is
to investigate the properties of the critical Besov space in terms of continuous
embeddings into weighted Besov or Besov–Orlicz spaces. Firstly, we should
recall the Gagliardo–Nirenberg type inequalities on the fractional Sobolev
space with the critical differential order, Hn/p

p (Rn), where n ∈ N and 1 < p

<∞. The Sobolev embedding theorem states that Hn/p
p (Rn) can be embed-

ded into Lq(Rn) for all q with p ≤ q <∞, but not into L∞(Rn). Ozawa [Oz]
gave a precise estimate for this embedding:

(1.1) ‖u‖Lq ≤ Cn,pq1/p
′‖u‖p/qLp

‖(−∆)n/2pu‖1−p/qLp

holds for all u ∈ Hn/p
p (Rn) and p ≤ q < ∞, where p′ := p/(p− 1) denotes

the Hölder conjugate exponent of p. Furthermore, Cn,p indicates that the
constant depends only on n and p, a convention we shall adopt through-
out this paper. The inequality (1.1) was originally obtained by Ogawa [Og]
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and Ogawa–Ozawa [OgOz] in the case p = 2, i.e., for Hn/2
2 (Rn), and then

(1.1) was generalized further in several ways. We refer to Nagayasu–Wadade
[NW], who established a generalization of (1.1) with a weighted Lebesgue
norm of the following type:

(1.2) ‖u‖Lq,wr ≤ Cn,p
(

1
n− r

) 1
q
+ 1
p′

q
1
p′ ‖u‖

(n−r)p
nq

Lp
‖(−∆)

n
2pu‖

1− (n−r)p
nq

Lp

for all u ∈ Hn/p
p (Rn), 0 ≤ r < n and p̃ ≤ q < ∞, where p̃ ∈ (p,∞) only

depends on n and p, and the weight function wr is the homogeneous function
(1.3) wr(x) := 1/|x|r for x ∈ Rn \ {0}.
In [NW], the authors concentrated on the investigation of the growth order
in q as q → ∞, and they proved the inequality (1.2) for q ≥ p̃, where the
constant p̃ is chosen suitably.

Note that Lq,wr on the left-hand side of (1.2) represents the weighted
Lebesgue space, and in general, for a positive measurable function w, we
define the weighted Lebesgue space Lp,w(Rn) = Lp(Rn ; w(x)dx) endowed
with the norm

(1.4)
‖u‖Lp,w :=

( �

Rn
|u(x)|pw(x) dx

)1/p
for 1 ≤ p <∞,

‖u‖L∞,w := ‖u‖L∞ .
Recall that the particular weight wr in (1.3) belongs to the class of Mucken-
houpt weights, which was originally defined in Muckenhoupt [M]. Moreover,
the special case r = 0 in (1.2) coincides with (1.1) with the same growth
order q1/p

′
as q →∞.

For another way to generalize (1.1), we refer to Wadade [W]. In [W], the
author obtained the following Gagliardo–Nirenberg type inequality on the
critical Besov space:

(1.5) ‖u‖Lq ≤ Cn,pq1/ρ
′‖u‖p/qLp

‖u‖1−p/q
Ḃ
n/p,ρ
p

for all u ∈ (Lp ∩ Ḃn/p,ρ
p )(Rn), 1 ≤ p ≤ q < ∞ and 1 < ρ ≤ ∞. The

inequality (1.5) can also be regarded as a generalization of (1.1). Indeed, by
noting the embedding Ḣ

n/p
p (Rn) ↪→ Ḃ

n/p,p
p (Rn) if 2 ≤ p < ∞, and taking

p = ρ in (1.5), we have (1.1) immediately in the case 2 ≤ p <∞. We refer to
Bergh–Löfström [BL] and Triebel [T1, T2, T3] for the relationship between
Sobolev and Besov spaces, and their detailed properties as function spaces.
Additionally, an estimate similar to (1.5) was also given in [W]:

(1.6) ‖u‖
Ḃ0,ν
q
≤ Cnq1/ν−1/ρ‖u‖p/q

Ḃ0,ν
p
‖u‖1−p/q

Ḃ
n/p,ρ
p

for all u ∈ (Ḃ0,ν
p ∩ Ḃn/p,ρ

p )(Rn), 1 ≤ p ≤ q <∞ and 1 ≤ ν < ρ ≤ ∞.
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Keeping the above results in mind, we shall prove a Gagliardo–Nirenberg
type interpolation inequality from the critical Besov space into a weighted
Besov space, which is a generalization of the inequalities (1.2) and (1.6).
The definition of weighted Besov spaces will be given in (2.2) and (2.3)
in Section 2. We refer to Bui [B1, B2, B3] and Triebel [T3] for detailed
information about weighted Besov and weighted Triebel–Lizorkin spaces.
Our first theorem now reads:

Theorem 1.1. Let n ∈ N. Then there exists Cn > 0 such that

(1.7)
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for all u ∈ (Ḃ0,ρ1
p ∩ Ḃn/p,ρ2

p )(Rn), 1 < p ≤ q < ∞, 0 < r < n, 1 ≤ ν ≤
min{ρ1, ρ2} ≤ ∞, where the weight function wr is as in (1.3).

Remark. (i) The inequality (1.7) cannot hold in the limiting cases r = 0
and q =∞ in general. However, as expected from the powers in the constants
of the right-hand side, the special cases ν = ρ1 and ν = max{ρ1, ρ2} enable
us to take r = 0 and q = ∞, respectively. On the other hand, we cannot
put r = n all the time when the weight function becomes 1/|x|n, and this
limiting case will be the next target in our consideration.

(ii) The particular case with ν = ρ1 and r = 0 coincides with (1.6) where
the growth order as q →∞ becomes q1/ν−1/ρ2 . Furthermore, take ν = 1 and
2 ≤ p = ρ1 = ρ2 <∞ in (1.7), and note the well-known embeddings

(1.8)

{
‖u‖Lp,w ≤ ‖u‖Ḃ0,1

p,w
for all 1 ≤ p ≤ ∞,

‖u‖Ḃs,pp ≤ Cn,s,p ‖u‖Ḣs
p

for all s ∈ R and 2 ≤ p <∞.

Then the inequality (1.2) except for r = 0 follows from (1.7) and (1.8) with
the same growth orders as r ↑ n and q →∞.

Observe that in the limiting case r = n the inequality (1.7) fails because
the critical weight 1/|x|n is not integrable near the origin. Keeping this in
mind, the next goal is to establish the embedding of the critical Besov space
into a weighted Besov space, where the weight function is almost critical,
namely, we take the weight as 1

|x|n(log(1/|x|))s near the origin with s > 1. Our
second result now reads:

Theorem 1.2. Let n ∈ N, 1 < p <∞ and 1 ≤ ρ ≤ ∞.

(i) (Subcritical weight case) The following continuous embedding holds:

Br/p,ρ
p (Rn) ↪→ B0,ρ

p,wr(R
n), where wr(x) := 1/|x|r with 0 ≤ r < n.
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Furthermore, we have the estimate

‖u‖
B0,ρ
p,wr
≤ Cn

(
1

n− r

)1/p

‖u‖
B
r/p,ρ
p

.

(ii) (Critical weight case) The following continuous embedding holds:

Bn/p,ρ
p (Rn) ↪→ B0,ρ

p,Ws
(Rn), where Ws(x) :=

1
|x|n[log(e+ 1/|x|)]s

with s > 1.

Furthermore, we have the estimate

‖u‖
B0,ρ
p,Ws

≤ Cn,p,s‖u‖Bn/p,ρp
.

Remark. (i) There are more general results on such embeddings in the
case of Besov and Triebel–Lizorkin spaces including the Sobolev scale (cf.
Haroske–Skrzypczak [HS] and Kühn–Leopold–Sickel–Skrzypczak [KLSS1,
KLSS2]), but restricted to Muckenhoupt weights or so-called admissible
weights the former weights may have a local singularity, while the latter
are a class of smooth functions. We emphasize that these classes of weight
functions do not cover the limiting situation of Theorem 1.2(ii). Indeed, it
is well known that the weight Ws is not even a Muckenhoupt weight.

(ii) The assertion of Theorem 1.2(ii) might inspire us to consider the
continuous embedding from B

n/p,ρ
p (Rn) into B0,ρ

p,Ws
(Rn), where Ws is the

weight function of the double logarithmic type:

Ws(x) ' 1
|x|n

(
log 1

|x|
)[

log
(
log 1

|x|
)]s for |x| � 1 with s > 1.

However, we do not explore the case of multiple logarithmic weights in this
article; this will be studied in the forthcoming paper.

As another kind of a critical Sobolev embedding, we next consider a
Trudinger type inequality. As already stated, the Gagliardo–Nirenberg type
inequality (1.1) was obtained in [Oz] with the optimal growth order q1/p

′
as

q → ∞. In the same paper, the author also showed that (1.1) implies the
following Trudinger type embedding:

(1.9)


H
n/p
p (Rn) ↪→ LΦ1(Rn),

Φ1(t) := exp(tp
′
)−

k1−1∑
k=0

tp
′k

k!
, k1 := min{k ∈ N : p′k ≥ p},

where 1 < p < ∞ and LΦ1(Rn) denotes the usual Orlicz space with the
Young function Φ1. For the precise definition of the Orlicz space, see (2.5)
and (2.6) in Section 2, where the weighted Orlicz space LΦ,w(Rn) will be
introduced, and note that LΦ(Rn) = LΦ,1(Rn). We refer to Rao–Ren [RaRe]
for abundant information about Orlicz spaces defined on general measure
spaces.
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The same procedure which shows that the inequality (1.1) yields the em-
bedding (1.9) can also be applied to the inequalities (1.2) and (1.5). Indeed,
in Nagayasu–Wadade [NW] the authors derived from (1.2) the Trudinger
type embedding

(1.10)


H
n/p
p (Rn) ↪→ LΦ2,wr(Rn),

Φ2(t) := exp(tp
′
)−

k2−1∑
k=0

tp
′k

k!
, k2 := min{k ∈ N : p′k ≥ p̃},

where 1 < p < ∞, 0 ≤ r < n and p̃ depends only on n and p. Note that
the embedding (1.10) generalizes (1.9) since the special case r = 0 in (1.10)
corresponds to (1.9). Furthermore, the inequality (1.5) obtained in Wadade
[W] implies the embedding

(1.11)


(Lp ∩ Ḃn/p,ρ

p )(Rn) ↪→ LΦ3(Rn),

Φ3(t) := exp(tρ
′
)−

k3−1∑
k=0

tρ
′k

k!
, k3 := min{k ∈ N : ρ′k ≥ p},

for 1 ≤ p < ∞ and 1 < ρ ≤ ∞. Note that the embedding (1.11) is also a
generalization of (1.9). Indeed, we can obtain (1.9) in the case 2 ≤ p < ∞
by taking p = ρ in (1.11) and using the embedding Ḣn/p

p (Rn) ↪→ Ḃ
n/p,p
p (Rn)

for 2 ≤ p <∞.
As seen in the above observations, the Gagliardo–Nirenberg type inequal-

ity in the critical space provides the corresponding Trudinger type embed-
ding in general. Keeping this in mind, our final goal in the present paper is
to establish a Trudinger type estimate corresponding to the inequality (1.7)
in Theorem 1.1. However, the method to get embeddings (1.9), (1.10) and
(1.11) through the Gagliardo–Nirenberg type inequalities can no longer work
for (1.7) since the norm on the left-hand side of (1.7) is a weighted Besov
norm, while the inequalities (1.1), (1.2) and (1.5) have Lebesgue type norms
on the left-hand side which are all formed by direct integration of functions.
Therefore, we shall prove the expected Trudinger type estimate without
making use of (1.7) by calculating the corresponding Besov–Orlicz norm
directly. For simplicity, we restrict our considerations to the case ρ1 = ρ2

in (1.7), which then becomes

(1.12) ‖u‖
Ḃ0,ν
q,wr
≤ Cn,rq

1
ν
− 1
ρ ‖u‖

(n−r)p
nq

Ḃ0,ρ
p
‖u‖

1− (n−r)p
nq

Ḃ
n/p,ρ
p

for 1 < p ≤ q < ∞, 0 < r < n and 1 ≤ ν < ρ ≤ ∞. To construct the
Trudinger type estimate corresponding to (1.12), it is natural to introduce
weighted Besov–Orlicz spaces with an exponential type Young function (see
the definition (2.4) in Section 2). Thus our last theorem now reads:
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Theorem 1.3. Let n ∈ N, 1 < p <∞, 0 ≤ r < n, 1 ≤ ν < ρ ≤ ∞ with
(ν, ρ) 6= (1,∞) and 0 < δ ≤ µ− 1, where

µ :=

{ ρν

ρ− ν
if ρ <∞,

ν if ρ =∞.
Then the following continuous embedding holds:

B
n/p,ρ
p (Rn) ↪→ B0,ν

Φ0,wr
(Rn),

Φ0(t) := exp(tµ−δ)−
k0−1∑
k=0

t(µ−δ)k

k!
, k0 := min{k ∈ N : (µ− δ)k ≥ p}.

Furthermore, we have the estimate

‖u‖
B0,ν
Φ0,wr

≤ Cn,δ
(

1
n− r

)2/(µ−δ)
‖u‖

B
n/p,ρ
p

.

Remark. Since the growth order as q → ∞ in (1.12) is q1/ν−1/ρ, one
would expect that the condition δ > 0 can be removed. However, a technical
reason forces us to assume δ > 0 in the proof. Furthermore, the condition
δ ≤ µ−1, that is, µ−δ ≥ 1 guarantees that Φ0 is a Young function. Indeed, if
µ−δ < 1, then Φ0 is no longer a Young function, which implies the weighted
Besov–Orlicz space is not necessarily a normed space.

Let us describe the organization of this article. Section 2 is devoted to
defining weighted function spaces and preparing lemmas for the proof of the
main theorems; the theorems are proved in Section 3.

2. Preliminaries. In this section, we first give the definition of weighted
Besov spaces, and then prove several lemmas. Let ϕ be a non-negative func-
tion in the Schwartz class S(Rn) such that suppϕ = {1/2 ≤ |x| ≤ 2},
ϕ(x) > 0 for all x with 1/2 < |x| < 2 and

∑∞
j=−∞ ϕ(2−jx) = 1 if x 6= 0. It

is well known that such a function exists (see, for instance, Bergh–Löfström
[BL]). Moreover, we define S(Rn) functions ϕj for j ∈ Z and ψ as follows:

(2.1) ϕ̂j(x) = ϕ(2−jx) and ψ̂(x) = 1−
∞∑
j=1

ϕ̂j(x),

where f̂ denotes the Fourier transform of f , i.e., f̂(x) :=
	
Rn e

−2πix·ξf(ξ) dξ.
Then for a positive measurable function w, the inhomogeneous Besov space
Bs,q
p,w(Rn) and the homogeneous Besov space Ḃs,q

p,w(Rn) are respectively de-
fined by

(2.2)


Bs,q
p,w(Rn) := {u ∈ S ′(Rn) : ‖u‖Bs,qp,w <∞},

‖u‖Bs,qp,w := ‖ψ ∗ u‖Lp,w +
( ∞∑
j=1

(2sj‖ϕj ∗ u‖Lp,w)q
)1/q

,
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and

(2.3)


Ḃs,q
p,w(Rn) := {u ∈ (S ′/P)(Rn) : ‖u‖Ḃs,qp,w <∞},

‖u‖Ḃs,qp,w :=
( ∞∑
j=−∞

(2sj‖ϕj ∗ u‖Lp,w)q
)1/q

,

for s ∈ R and 1 ≤ p, q ≤ ∞. In the above definitions, S ′(Rn) and P(Rn)
represent the classes of tempered distributions and of polynomials in Rn,
respectively. In addition, we make the usual modification if q = ∞, and
Lp,w(Rn) denotes the weighted Lebesgue space as in (1.4).

Next, we introduce inhomogeneous weighted Besov–Orlicz spaces, which
are naturally defined by replacing weighted Lebesgue spaces with weighted
Orlicz spaces in the definition (2.2). Let w be a positive measurable func-
tion, and let Φ be a Young function, that is, Φ is a continuous increasing
convex function on [0,∞) satisfying Φ(0) = 0 and limt→∞ Φ(t) = ∞. Then
for s ∈ R and 1 ≤ q ≤ ∞, the inhomogeneous weighted Besov–Orlicz space
is defined by

(2.4)


Bs,q
Φ,w(Rn) := {u ∈ S ′(Rn) : ‖u‖Bs,qΦ,w <∞},

‖u‖Bs,qΦ,w := ‖ψ ∗ u‖LΦ,w +
( ∞∑
j=1

(2sj‖ϕj ∗ u‖LΦ,w)q
)1/q

,

where we make the usual modification if q =∞, and LΦ,w(Rn) denotes the
weighted Orlicz space, which is a class of measurable functions defined by

(2.5) LΦ,w(Rn) :=
{
f :

�

Rn
Φ(ε|f |)w dx <∞ for some ε > 0

}
equipped with the Luxemburg norm

(2.6) ‖f‖LΦ,w := inf
{
λ > 0 :

�

Rn
Φ(|f |/λ)w dx ≤ 1

}
.

Clearly, Bs,q
Φ,w(Rn) coincides with Bs,q

p,w(Rn) for Φ(t) = tp and 1 ≤ p <∞.
In this section, we shall show two key lemmas, inspired by Rakotondrat-

simba [R1, R2], who proved weighted Young inequalities for convolutions
with kernel functions behaving like the Riesz potential. However, for the
purpose of the precise investigation of constants, we need to reconstruct
this procedure with kernel functions belonging to the Schwartz class.

First, we recall the following n-dimensional Hardy type inequality:

Theorem A. (i) (n-dimensional Hardy type inequality) Let U1 and V1

be positive measurable weight functions in Rn, n ∈ N and 1 < p ≤ q < ∞.
Then the inequality( �

Rn

( �

{2|y|<|x|}

f(y) dy
)q
U1(x) dx

)1/q
≤ C1

( �

Rn
f(x)pV1(x) dx

)1/p



234 H. Wadade

holds for all f ∈ Lp,V1(Rn) with f ≥ 0 a.e. in Rn if and only if

A1 := sup
R>0

( �

{|x|>2R}

U1(x) dx
)1/q( �

{|x|<R}

V1(x)−(p′−1) dx
)1/p′

<∞.

Moreover, the constant C1 can be taken as

C1 = (p′)1/p
′
p1/qA1.

(ii) (n-dimensional dual-Hardy type inequality) Let U2 and V2 be posi-
tive weight functions in Rn, n ∈ N and 1 < p ≤ q <∞. Then the inequality( �

Rn

( �

{|y|>2|x|}

f(y) dy
)q
U2(x) dx

)1/q
≤ C2

( �

Rn
f(x)pV2(x) dx

)1/p

holds for all f ∈ Lp,V2(Rn) with f ≥ 0 a.e. in Rn if and only if

A2 := sup
R>0

( �

{|x|<R}

U2(x) dx
)1/q( �

{|x|>2R}

V2(x)−(p′−1) dx
)1/p′

<∞.

Moreover, the constant C2 can be taken as

C2 = (p′)1/p
′
p1/qA2.

Indeed, Theorem A can be proved immediately from the n-dimensional
Hardy and dual-Hardy inequalities shown by Drábek–Heinig–Kufner [DHK,
Theorem 2.1, p. 4] through scaling and changing variables.

We first prove a norm estimate with a subcritical homogeneous weight:

Lemma 2.1. (i) Let Ψ ∈ S(Rn) be any fixed kernel function with n ∈ N.
Then

‖Ψ ∗ f‖Lq,wr ≤ Cn
(

1
n− r

)1/q

‖f‖Lp for all f ∈ Lp(Rn),

1 < p ≤ q < ∞ and 0 ≤ r < n, where wr is the homogeneous weight as in
(1.3).

(ii) Let n ∈ N. Then

‖ϕj ∗ f‖Lq,wr ≤ Cn
(

1
n− r

)1/q

2(n
p
−n−r

q
)j‖f‖Lp for all f ∈ Lp(Rn),

1 < p ≤ q <∞, 0 ≤ r < n and j ∈ Z, where {ϕj} are the Schwartz functions
as in (2.1).

Proof. Note that (ii) is an immediate consequence of (i). Indeed, since
(ϕj ∗ f)(x/2j) = (ϕ0 ∗ [f(·/2j)])(x), by applying (i) with Ψ = ϕ0 we obtain

‖ϕj ∗ f‖Lq,wr = 2−
n−r
q
j‖ϕ0 ∗ [f(·/2j)]‖Lq,wr

≤ Cn2−
n−r
q
j
(

1
n− r

)1/q

‖f(·/2j)‖Lp = Cn

(
1

n− r

)1/q

2(n
p
−n−r

q
)j‖f‖Lp .
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We turn to the proof of (i). Without loss of generality, we may assume
f ≥ 0 a.e. in Rn, and that Ψ is positive, since otherwise we can replace Ψ
by |Ψ | + η with any fixed positive function η ∈ S(Rn). Note that Ψ might
no longer be smooth after such a replacement. However, the only property
we will need is its decay estimate, i.e., for any α ≥ 0, there exists a positive
constant Cn,α such that

(2.7) 0 < |Ψ(x)|+ η(x) ≤ Cn,α(1 + |x|)−α for all x ∈ Rn.

We first decompose the integral into three parts:

‖Ψ ∗ f‖qLq,wr ≤ 3q
[ �

Rn

( �

{|y|<|x|/2}

Ψ(x− y)f(y) dy
)q dx
|x|r

(2.8)

+
�

Rn

( �

{|x|/2≤|y|≤2|x|}

Ψ(x− y)f(y) dy
)q dx
|x|r

+
�

Rn

( �

{|y|>2|x|}

Ψ(x− y)f(y) dy
)q dx
|x|r

]
=: 3q(I1 + I2 + I3).

First, we estimate I1. Note that |y| < |x|/2 implies |x|/2 < |x− y|. Hence,

I1 ≤
�

Rn

( �

{|y|<|x|/2}

f(y) dy
)q
Ψ̃(x)q

dx

|x|r
, where Ψ̃(x) := sup

{|z|>|x|/2}
Ψ(z).

To apply Theorem A(i), we need to check the condition

(2.9)
( �

{2R<|x|}

Ψ̃(x)q
dx

|x|r

)1/q( �

{|x|<R}

dx
)1/p′

≤ A1 for all R > 0.

Indeed, once (2.9) has been verified, Theorem A(i) yields

I
1/q
1 ≤ (p′)1/p

′
p1/qA1‖f‖Lp ≤ e2/eA1‖f‖Lp .

Since Ψ decays rapidly as |x| → ∞, Ψ̃ also satisfies the same estimate as
in (2.7), namely, for any α ≥ 0, there exists a positive constant Cn,α such
that

(2.10) Ψ̃(x) ≤ Cn,α(1 + |x|)−α for all x ∈ Rn.

We now distinguish two cases:

Case 1: R ≥ 1. Then by making use of the decay estimate (2.10) with
α = 2n, we see that
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(2.11)
( �

{2R<|x|}

Ψ̃(x)q
dx

|x|r

)1/q( �

{|x|<R}

dx
)1/p′

≤ Cn
( �

{2R<|x|}

|x|−αq−r dx
)1/q( �

{|x|<R}

dx
)1/p′

≤ Cn
(

1
αq − (n− r)

)1/q

R
−α+n−r

q
+ n
p′ ≤ Cn,

where we have used the facts that R ≥ 1 and
αq − (n− r) ≥ α− (n− r) = n+ r > 0,(

1
αq − (n− r)

)1/q

≤
(

1
n+ r

)1/q

≤ 1,

−α+
n− r
q

+
n

p′
≤ −2n+ (n− r) + n = −r ≤ 0.

Case 2: 0 < R < 1. In this case,( �

{2R<|x|}

Ψ̃(x)q
dx

|x|r

)1/q

≤
( �

{2R<|x|<2}

Ψ̃(x)q
dx

|x|r

)1/q

+
( �

{|x|≥2}

Ψ̃(x)q
dx

|x|r

)1/q

=: J1 + J2.

First, by using (2.10) with α = 0, we obtain

J1 ≤ Cn
( �

{|x|<2}

dx

|x|r

)1/q

≤ Cn
(

1
n− r

)1/q

.

Moreover, by (2.10) with α = n+ 1,

J2 ≤ Cn
( �

{|x|≥2}

|x|−αq−r dx
)1/q

≤ Cn
(

1
αq − (n− r)

)1/q

≤ Cn,

where we have used the facts that
αq − (n− r) ≥ α− (n− r) = 1 + r > 0,(

1
αq − (n− r)

)1/q

≤
(

1
α− (n− r)

)1/q

=
(

1
1 + r

)1/q

≤ 1.

To sum up, we get
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(2.12)
( �

{2R<|x|}

Ψ̃(x)q
dx

|x|r

)1/q( �

{|x|<R}

dx
)1/p′

≤ Cn
(

1
n− r

)1/q

Rn/p
′ ≤ Cn

(
1

n− r

)1/q

since R < 1. Thus by (2.11), (2.12) and Theorem A(i), we obtain

(2.13) I
1/q
1 ≤ Cn

(
1

n− r

)1/q

‖f‖Lp .

Next, we estimate I3. Note that 2|x| < |y| implies |y|/2 < |x− y|. Thus

I3 ≤
�

Rn

( �

{|y|>2|x|}

Ψ̃(y)f(y) dy
)q dx
|x|r

.

To apply Theorem A(ii), we need to check the condition

(2.14)
( �

{|x|<R}

dx

|x|r

)1/q( �

{2R<|x|}

(Ψ̃(x)−p)−(p′−1) dx
)1/p′

≤ A2

for all R > 0.

Indeed, once (2.14) has been verified, Theorem A(ii) yields

I
1/q
3 ≤ (p′)1/p

′
p1/qA2

( �

Rn
(Ψ̃(x)f(x))pΨ̃(x)−p dx

)1/p
≤ e2/eA2‖f‖Lp .

Just as for I1, we distinguish two cases:

Case 1: R ≥ 1. Then by (2.10) with α = 2n,( �

{2R<|x|}

Ψ̃(x)p
′
dx
)1/p′

≤ Cn
( �

{2R<|x|}

|x|−αp′ dx
)1/p′

≤ Cn
(

1
αp′ − n

)1/p′

R−(α−n/p′) ≤ CnR−(α−n/p′),

where we have used the facts that

αp′−n ≥ α−n = n > 0,
(

1
αp′ − n

)1/p′

≤
(

1
α− n

)1/p′

=
(

1
n

)1/p′

≤ 1.

Thus we obtain

(2.15)
( �

{|x|<R}

dx

|x|r

)1/q( �

{2R<|x|}

Ψ̃(x)p
′
dx
)1/p′

≤ Cn
(

1
n− r

)1/q

R
−α+n−r

q
+ n
p′ ≤ Cn

(
1

n− r

)1/q

since R ≥ 1 and −α+ n−r
q + n

p′ ≤ −2n+ (n− r) + n = −r ≤ 0.
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Case 2: 0 < R < 1. In this case,( �

{2R<|x|}

Ψ̃(x)p
′
dx
)1/p′

≤
( �

{2R<|x|<2}

Ψ̃(x)p
′
dx
)1/p′

+
( �

{|x|≥2}

Ψ̃(x)p
′
dx
)1/p′

=: K1 +K2.

First, by (2.10) with α = 0, we obtain

K1 ≤ Cn
( �

{|x|<2}

dx
)1/p′

≤ Cn.

Moreover, by (2.10) with α = 2n,

K2 ≤ Cn
( �

{|x|≥2}

|x|−αp′ dx
)1/p′

≤ Cn
(

1
αp′ − n

)1/p′

2−(α−n/p′) ≤ Cn.

To sum up, we get

(2.16)
( �

{|x|<R}

dx

|x|r

)1/q( �

{2R<|x|}

Ψ̃(x)p
′
dx
)1/p′

≤ Cn
(

1
n− r

)1/q

R(n−r)/q≤ Cn
(

1
n− r

)1/q

since R < 1. Thus by (2.15), (2.16) and Theorem A(ii), we obtain

(2.17) I
1/q
3 ≤ Cn

(
1

n− r

)1/q

‖f‖Lp .

Finally, we estimate I2. Since |x|/2 ≤ |y| ≤ 2|x| and 2k ≤ |x| < 2k+1

imply 2k−1 ≤ |y| < 2k+2, we have

I2 =
∑
k∈Z

�

{2k≤|x|<2k+1}

( �

{|x|/2≤|y|≤2|x|}

Ψ(x− y)f(y) dy
)q dx
|x|r

(2.18)

≤
∑
k∈Z

2−kr
�

{2k≤|x|<2k+1}

(Ψ ∗ [fχ{2k−1≤|·|<2k+2}])(x)q dx.

Here, take t := nq/(n− r) ∈ [q,∞). Then (2.18), Hölder’s inequality and
Young’s inequality imply
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I2 ≤ Cn
∑
k∈Z

2−kr+kn(1−q/t)(2.19)

×
( �

{2k≤|x|<2k+1}

(Ψ ∗ [fχ{2k−1≤|·|<2k+2}])(x)t dx
)q/t

≤ Cn
∑
k∈Z
‖Ψ ∗ [fχ{2k−1≤|·|<2k+2}]‖

q
Lt

≤ Cn
∑
k∈Z
‖Ψ‖qLt̃‖fχ{2k−1≤|·|<2k+2}‖

q
Lp

≤ Cqn
∑
k∈Z
‖fχ{2k−1≤|·|<2k+2}‖

q
Lp
≤ Cqn‖f‖

q
Lp
,

where t̃ ∈ [1, p′) is the exponent satisfying 1/t + 1 = 1/t̃ + 1/p. Moreover,
the fact max1≤τ≤∞ ‖Ψ‖Lτ <∞ was used above. By (2.8), (2.13), (2.17) and
(2.19), we obtain the desired estimate.

The following lemma yields a norm inequality involving the critical
weight function Ws defined in the statement of Theorem 1.2(ii):

Lemma 2.2. (i) Let Ψ ∈ S(Rn) and 1 < p, s <∞. Then

‖Ψ ∗ f‖Lp,Ws,j ≤ Cn,p,s‖f‖Lp for all f ∈ Lp(Rn) and j ∈ N ∪ {0},

where the weight function Ws,j is defined by

Ws,j(x) :=
1

|x|n[log(e+ 2j/|x|)]s
for x ∈ Rn \ {0}.

(ii) Let n ∈ N and 1 < p, s <∞. Then

‖ϕj ∗ f‖Lp,Ws ≤ Cn,p,s 2
n
p
j‖f‖Lp for all f ∈ Lp(Rn) and j ∈ N ∪ {0},

where {ϕj} are the Schwartz functions as in (2.1), and the weight function
Ws is defined by

Ws(x) :=
1

|x|n[log(e+ 1/|x|)]s
for x ∈ Rn \ {0}.

Proof. Note that (ii) is an immediate consequence of (i). Indeed, by
noting (ϕj ∗ f)(x/2j) = (ϕ0 ∗ [f(·/2j)])(x) and applying (i) with Ψ = ϕ0, we
see

‖ϕj ∗ f‖Lp,Ws = ‖ϕ0 ∗ [f(·/2j)]‖Lp,Ws,j ≤ Cn,p,s‖f(·/2j)‖Lp

= Cn,p,s 2
n
p
j‖f‖Lp .

To prove (i), just as in the proof of Lemma 2.1, we may assume that
f ≥ 0 a.e. in Rn, Ψ is positive, and for any α ≥ 0, there exists Cn,α > 0 such
that

(2.20) 0 < Ψ(x) ≤ Cn,α(1 + |x|)−α for all x ∈ Rn.
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Let us decompose the integral into three parts:

‖Ψ ∗ f‖pLp,Ws,j ≤ 3p
[ �

Rn

( �

{|y|<|x|/2}

Ψ(x− y)f(y) dy
)p
Ws,j(x) dx(2.21)

+
�

Rn

( �

{|x|/2≤|y|≤2|x|}

Ψ(x− y)f(y) dy
)p
Ws,j(x) dx

+
�

Rn

( �

{|y|>2|x|}

Ψ(x− y)f(y) dy
)p
Ws,j(x) dx

]
=: 3p(L1 + L2 + L3).

First, we estimate L1. As |y| < |x|/2 implies |x|/2 < |x− y|, we have

L1 ≤
�

Rn

( �

{|y|<|x|/2}

f(y) dy
)p
Ψ̃(x)pWs,j(x) dx, where Ψ̃(x) := sup

{|z|>|x|/2}
Ψ(z).

To apply Theorem A(i), we need to check the condition( �

{2R<|x|}

Ψ̃(x)pWs,j(x) dx
)1/p( �

{|x|<R}

dx
)1/p′

≤ A1 for all R > 0.

By (2.20) with any α > 0,

(2.22)
( �

{2R<|x|}

Ψ̃(x)pWs,j(x) dx
)1/p

≤ Cn,α
( �

{2R<|x|}

|x|−αp−n dx

[log(e+ 2j/|x|)]s

)1/p

≤ Cn,α
( �

{2R<|x|}

|x|−αp−n dx
)1/p

≤ Cn,αR−α for all R > 0.

Thus by taking α = n/p′ in (2.22), we obtain( �

{2R<|x|}

Ψ̃(x)pWs,j(x) dx
)1/p( �

{|x|<R}

dx
)1/p′

≤ Cn,p for all R > 0,

and then Theorem A(i) yields

(2.23) L
1/p
1 ≤ Cn,p‖f‖Lp .

Next, we estimate L3. Since 2|x| < |y| implies |y|/2 < |x− y|, we have

L3 ≤
�

Rn

( �

{|y|>2|x|}

Ψ̃(y)f(y) dy
)p
Ws,j(x) dx.



Critical Besov space 241

To apply Theorem A(ii), we need to check the condition( �

{|x|<R}

Ws,j(x) dx
)1/p( �

{2R<|x|}

(Ψ̃(x)−p)−(p′−1) dx
)1/p′

≤ A2 for all R > 0.

We distinguish two cases:

Case 1: R > 2j−1. In this case,
�

{|x|<R}

Ws,j(x) dx =
�

{|x|<2j−1}

Ws,j(x) dx+
�

{2j−1≤|x|<R}

Ws,j(x) dx =: M1+M2.

By changing variables x = 2jy, it follows that

M1 ≤
�

{|x|<2j−1}

dx

|x|n[log(2j/|x|)]s
=

�

{|y|<1/2}

dy

|y|n[log(1/|y|)]s
(2.24)

= Cn

∞�

log 2

dτ

τ s
= Cn,s,

where the last integral in (2.24) is finite because of s > 1. Next,

M2 ≤
�

{2j−1≤|x|<R}

dx

|x|n
= Cn log(R/2j−1).

Moreover, by (2.20) with α = n/p′ + 1,( �

{2R<|x|}

Ψ̃(x)p
′
dx
)1/p′

≤ Cn,α
( �

{2R<|x|}

|x|−αp′ dx
)1/p′

= Cn,pR
−1.

To sum up, we obtain

(2.25)
( �

{|x|<R}

Ws,j(x) dx
)1/p( �

{2R<|x|}

Ψ̃(x)p
′
dx
)1/p′

≤ Cn,p,s[1 + log(R/2j−1)]1/pR−1

= Cn,p,s[1 + log(R/2j−1)]1/p(R/2j−1)−12−(j−1) ≤ Cn,p,s,

where we have used j ∈ N∪{0}, R/2j−1 > 1 and max1≤τ<∞(1+log τ)1/pτ−1

<∞.

Case 2: R ≤ 2j−1. In this case, by using (2.24) again, we have( �

{|x|<R}

Ws,j(x) dx
)1/p

≤
( �

{|x|<2j−1}

Ws,j(x) dx
)1/p

= M
1/p
1 ≤ Cn,s.
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Moreover, by (2.20) with α = n/p′ + 1,( �

{2R<|x|}

Ψ̃(x)p
′
dx
)1/p′

≤ Cn,α
( �

{2R<|x|}

(1 + |x|)−αp′ dx
)1/p′

≤ Cn,α
( �

Rn
(1 + |x|)−αp′ dx

)1/p′

= Cn,p.

Thus we obtain

(2.26)
( �

{|x|<R}

Ws,j(x) dx
)1/p( �

{2R<|x|}

Ψ̃(x)p
′
dx
)1/p′

≤ Cn,p,s.

Therefore, (2.25), (2.26) and Theorem A(ii) yield

(2.27) L
1/p
3 ≤ Cn,p,s‖f‖Lp .

Finally, we estimate L2. Since |x|/2 ≤ |y| ≤ 2|x| and 2k ≤ |x| < 2k+1

imply 2k−1 ≤ |y| < 2k+2, by Young’s inequality we have

L2 =
∑
k∈Z

�

{2k≤|x|<2k+1}

( �

{|x|/2≤|y|≤2|x|}

Ψ(x− y)f(y) dy
)p
Ws,j(x) dx(2.28)

≤
∑
k∈Z

�

{2k≤|x|<2k+1}

( �

{|x|/2≤|y|≤2|x|}

Ψ(x− y)f(y) dy
)p dx

|x|n

≤
∑
k∈Z

2−kn
�

{2k≤|x|<2k+1}

(Ψ ∗ [fχ{2k−1≤|·|<2k+2}])(x)p dx

≤ Cn
∑
k∈Z
‖Ψ ∗ [fχ{2k−1≤|·|<2k+2}]‖

p
L∞

≤ Cn
∑
k∈Z
‖Ψ‖pLp′‖fχ{2k−1≤|·|<2k+2}‖

p
Lp

≤ Cpn
∑
k∈Z
‖fχ{2k−1≤|·|<2k+2}‖

p
Lp
≤ Cpn‖f‖

p
Lp
,

where we have used max1≤τ≤∞ ‖Ψ‖Lτ <∞. Hence, by (2.21), (2.23), (2.27)
and (2.28), we obtain the desired estimate.

3. Proofs of theorems

Proof of Theorem 1.1. We consider only the case ν < min{ρ1, ρ2} ≤
max{ρ1, ρ2} <∞ since the limiting cases can be obtained quite similarly.

By using the partition of unity
∑

j∈Z ϕ̂j ≡ 1, we decompose

u =
Z−1∑
j=−∞

ϕj ∗ u+
∞∑
j=Z

ϕj ∗ u =: u1 + u2 for any fixed Z ∈ Z.
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We first estimate ‖u1‖Ḃ0,ν
q,wr

. Since supp ϕ̂j = {2j−1 ≤ |x| ≤ 2j+1}, we see
that ϕj ∗ ϕl ≡ 0 if |j − l| > 1. Therefore,

‖u1‖Ḃ0,ν
q,wr

=
( ∞∑
l=−∞

‖ϕl ∗ u1‖νLq,wr
)1/ν

=
( Z∑
l=−∞

‖ϕl ∗ u1‖νLq,wr
)1/ν

=
( Z∑
l=−∞

‖ϕ̃l ∗ ϕl ∗ u1‖νLq,wr
)1/ν

,

where ϕ̃l := ϕl−1 + ϕl + ϕl+1. By Lemma 2.1(ii) and Hölder’s inequality,

(3.1) ‖u1‖Ḃ0,ν
q,wr
≤ Cn

( 1
n− r

)1/q( Z∑
l=−∞

2(n
p
−n−r

q
)lν‖ϕl ∗ u1‖νLp

)1/ν

≤ Cn
(

1
n− r

)1/q( Z∑
l=−∞

2(n
p
−n−r

q
)· ρ1ν
ρ1−ν

l
) ρ1−ν

ρ1ν
( Z∑
l=−∞

‖ϕl ∗ u1‖ρ1Lp
)1/ρ1

≤ Cn
(

1
n− r

)1/q( Z∑
l=−∞

2(n
p
−n−r

q
)· ρ1ν
ρ1−ν

l
) ρ1−ν

ρ1ν ‖u1‖Ḃ0,ρ1
p

.

Moreover, by Young’s inequality,

‖u1‖Ḃ0,ρ1
p

=
( ∞∑
l=−∞

∥∥∥ϕl ∗ ( Z−1∑
j=−∞

ϕj ∗ u
)∥∥∥ρ1

Lp

)1/ρ1
(3.2)

≤
( ∞∑
l=−∞

( l+1∑
j=l−1

‖ϕl ∗ ϕj ∗ u‖Lp
)ρ1)1/ρ1

≤
( ∞∑
l=−∞

( l+1∑
j=l−1

‖ϕj‖L1‖ϕl ∗ u‖Lp
)ρ1)1/ρ1

= 3‖ϕ0‖L1

( ∞∑
l=−∞

‖ϕl ∗ u‖ρ1Lp
)1/ρ1

= 3‖ϕ0‖L1‖u‖Ḃ0,ρ1
p

,

where we have used the fact that ‖ϕj‖L1 = ‖ϕ0‖L1 for all j ∈ Z. Next, we
investigate the geometric series which appears in (3.1). Since t/(2t − 1) ≤
1/log 2 for all t > 0, we see that

(3.3)
( Z∑
l=−∞

2(n
p
−n−r

q
)· ρ1ν
ρ1−ν

l
) ρ1−ν

ρ1ν

= 2(n
p
−n−r

q
)(Z+1)

(
1

2(n
p
−n−r

q
)· ρ1ν
ρ1−ν − 1

) ρ1−ν
ρ1ν
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≤ Cn2(n
p
−n−r

q
)Z
(

1
(np −

n−r
q ) · ρ1ν

ρ1−ν

) ρ1−ν
ρ1ν

≤ Cn 2(n
p
−n−r

q
)Z
(

p · qp
n · qp − (n− r)

) ρ1−ν
ρ1ν

≤ Cn2(n
p
−n−r

q
)Z
p
ρ1−ν
ρ1ν

[
sup
t≥1

t

n t− (n− r)

] ρ1−ν
ρ1ν

≤ Cn2(n
p
−n−r

q
)Z
(
q

r

) ρ1−ν
ρ1ν

,

where we have used the fact that supt≥1 t/(nt− (n− r)) = 1/r. Summing
up, by (3.1)–(3.3), we get

(3.4) ‖u1‖Ḃ0,ν
q,wr
≤ Cn

(
1

n− r

)1/q(q
r

) 1
ν
− 1
ρ1

2(n
p
−n−r

q
)Z‖u‖

Ḃ
0,ρ1
p

for all Z ∈ Z.

Next,

‖u2‖Ḃ0,ν
q,wr

=
( ∞∑
l=−∞

‖ϕl ∗ u2‖νLq,wr
)1/ν

=
( ∞∑
l=Z−1

‖ϕl ∗ u2‖νLq,wr
)1/ν

=
( ∞∑
l=Z−1

‖ϕ̃l ∗ ϕl ∗ u2‖νLq,wr
)1/ν

.

By Lemma 2.1(ii) and Hölder’s inequality,

‖u2‖Ḃ0,ν
q,wr
≤ Cn

(
1

n− r

)1/q( ∞∑
l=Z−1

2(n
p
−n−r

q
)lν‖ϕl ∗ u2‖νLp

)1/ν
(3.5)

= Cn

(
1

n− r

)1/q( ∞∑
l=Z−1

2−
n−r
q
lν(2

n
p
l‖ϕk ∗ u2‖Lp)ν

)1/ν

≤ Cn
(

1
n− r

)1/q( ∞∑
l=Z−1

2−
n−r
q
· ρ2ν
ρ2−ν

l
) ρ2−ν

ρ2ν

×
( ∞∑
l=Z−1

(2
n
p
l‖ϕl ∗ u2‖Lp)ρ2

)1/ρ2

≤ Cn
(

1
n− r

)1/q( ∞∑
l=Z−1

2−
n−r
q
· ρ2ν
ρ2−ν

l
) ρ2−ν

ρ2ν ‖u2‖Ḃn/p,ρ2p
.

Quite similarly as in (3.2), we obtain ‖u2‖Ḃn/p,ρ2p
≤ 3‖ϕ0‖L1‖u‖Ḃn/p,ρ2p

. Since
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t/(2t − 1) ≤ 1/log 2 for all t > 0, the geometric series in (3.5) is estimated
as follows:( ∞∑
l=Z−1

2−
n−r
q
· ρ2ν
ρ2−ν

l
) ρ2−ν

ρ2ν

= 2−
n−r
q

(Z−1)
(

1

1− 2−
n−r
q
· ρ2ν
ρ2−ν

) ρ2−ν
ρ2ν

≤ Cn2−
n−r
q
Z
(

1

2
n−r
q
· ρ2ν
ρ2−ν − 1

) ρ2−ν
ρ2ν

≤ Cn2−
n−r
q
Z
(

q

n− r
· ρ2 − ν
ρ2ν

) ρ2−ν
ρ2ν

≤ Cn2−
n−r
q
Z
(

q

n− r

) ρ2−ν
ρ2ν

.

To sum up, we get

(3.6) ‖u2‖Ḃ0,ν
q,wr
≤ Cn2−

n−r
q
Z
(

1
n− r

) 1
q
+ 1
ν
− 1
ρ2

q
1
ν
− 1
ρ2 ‖u‖

Ḃ
n/p,ρ2
p

for all Z ∈ Z.

Combining (3.4) with (3.6), we have, for any Z ∈ Z,

‖u‖
Ḃ0,ν
q,wr
≤ Cn

(
1
r

) 1
ν
− 1
ρ1

(
1

n− r

) 1
q
+ 1
ν
− 1
ρ2

q
1
ν
− 1

max{ρ1,ρ2}(3.7)

× (2(n
p
−n−r

q
)Z‖u‖

Ḃ
0,ρ1
p

+ 2−
n−r
q
Z‖u‖

Ḃ
n/p,ρ2
p

).

Furthermore, as [t] ≤ t < [t] + 1 for all t ∈ R where [t] denotes the integer
part, it follows that

‖u‖
Ḃ0,ν
q,wr
≤ Cn

(
1
r

) 1
ν
− 1
ρ1

(
1

n− r

) 1
q
+ 1
ν
− 1
ρ2

q
1
ν
− 1

max{ρ1,ρ2}(3.8)

× (2(n
p
−n−r

q
)t‖u‖

Ḃ
0,ρ1
p

+ 2−
n−r
q
t‖u‖

Ḃ
n/p,ρ2
p

)

for all t ∈ R. In the end, we take t = t0 in (3.8) with

t0 :=
p

n log 2
log
(‖u‖

Ḃ
n/p,ρ2
p

‖u‖
Ḃ

0,ρ1
p

)
to obtain

2(n
p
−n−r

q
) t0‖u‖

Ḃ
0,ρ1
p

= 2−
n−r
q

t0‖u‖
Ḃ
n/p,ρ2
p

= ‖u‖
(n−r)p
nq

Ḃ
0,ρ1
p

‖u‖
1− (n−r)p

nq

Ḃ
n/p,ρ2
p

,

which finishes the proof.

Proof of Theorem 1.2. We deal only with the case ρ < ∞ since the
limiting case ρ = ∞ requires no modification. First, we prove (i). By the
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definition of the inhomogeneous weighted Besov space, we have

‖u‖
B0,ρ
p,wr

= ‖ψ ∗ u‖Lp,wr +
( ∞∑
j=1

‖ϕj ∗ u‖ρLp,wr
)1/ρ

.

By noting ψ =
∑0

j=−∞ ϕj , and applying Lemma 2.1(i) with p = q and
Ψ =

∑1
l=−∞ ϕl = ψ + ϕ1, we see that

‖ψ ∗ u‖Lp,wr =
∥∥∥( 1∑

l=−∞
ϕl

)
∗ ψ ∗ u

∥∥∥
Lp,wr

(3.9)

≤ Cn
(

1
n− r

)1/p

‖ψ ∗ u‖Lp .

Furthermore, by making use of Lemma 2.1(ii) with p = q, we obtain( ∞∑
j=1

‖ϕj ∗ u‖ρLp,wr
)1/ρ

=
( ∞∑
j=1

‖ϕ̃j ∗ ϕj ∗ u‖ρLp,wr
)1/ρ

(3.10)

≤ Cn
(

1
n− r

)1/p( ∞∑
j=1

(2
r
p
j‖ϕj ∗ u‖Lp)ρ

)1/ρ
.

Hence, combining (3.9) with (3.10), we get the desired estimate.
Next, we prove (ii). First, by Lemma 2.2(i) with j = 0 and Ψ=

∑1
l=−∞ ϕl,

(3.11) ‖ψ ∗ u‖Lp,Ws =
∥∥∥( 1∑

l=−∞
ϕl

)
∗ ψ ∗ u

∥∥∥
Lp,Ws

≤ Cn,p,s‖ψ ∗ u‖Lp .

Furthermore, by Lemma 2.2(ii),( ∞∑
j=1

‖ϕj ∗ u‖ρLp,Ws
)1/ρ

=
( ∞∑
j=1

‖ϕ̃j ∗ ϕj ∗ u‖ρLp,Ws
)1/ρ

(3.12)

≤ Cn,p,s
( ∞∑
j=1

(2
n
p
j‖ϕj ∗ u‖Lp)ρ

)1/ρ
.

Hence, combining (3.11) with (3.12), we get the desired estimate.

Proof of Theorem 1.3. We deal only with the case ρ < ∞ since the
limiting case ρ = ∞ is similar. We first compute the weighted Orlicz norm
‖ψ ∗ u‖LΦ0,wr

. Let ε > 0, to be determined later. By Lemma 2.1(i) with
Ψ =

∑1
l=−∞ ϕl = ψ + ϕ1,



Critical Besov space 247

�

Rn
Φ0(ε|ψ ∗ u|)wr dx =

∞∑
k=k0

ε(µ−δ)k

k!
‖ψ ∗ u‖(µ−δ)kL(µ−δ)k,wr

=
∞∑

k=k0

ε(µ−δ)k

k!

∥∥∥( 1∑
l=−∞

ϕl

)
∗ ψ ∗ u

∥∥∥(µ−δ)k

L(µ−δ)k,wr

≤ 1
n− r

∞∑
k=k0

(εCn‖ψ ∗ u‖Lp)(µ−δ)k

k!

≤ 1
n− r

∞∑
k=1

(εCn‖ψ ∗ u‖Lp)(µ−δ)k

k!

=
1

n− r
[exp((εCn‖ψ ∗ u‖Lp)µ−δ)− 1].

We now take ε = ε0 > 0 satisfying

1
n− r

[exp((ε0Cn‖ψ ∗ u‖Lp)µ−δ)− 1] = 1,

so that

ε0 =
[log(1 + n− r)]1/(µ−δ)

Cn‖ψ ∗ u‖Lp
.

Thus by the definition of the Luxemburg norm, we have

(3.13) ‖ψ ∗ u‖LΦ0,wr
≤ 1
ε0

=
Cn‖ψ ∗ u‖Lp

[log(1 + n− r)]1/(µ−δ)
.

Here, we use the following elementary inequality: for any a > 0,

(3.14)
t

log(1 + t)
≤ a

log(1 + a)
for all 0 < t ≤ a.

Hence, by using (3.13), (3.14) and µ− δ ≥ 1, we obtain

(3.15) ‖ψ ∗ u‖LΦ0,wr
≤ Cn

(
1

n− r

)1/(µ−δ)
‖ψ ∗ u‖Lp .

Next, we handle ‖ϕj ∗ u‖LΦ0,wr
for each fixed j ∈ Z in the same way as

when estimating of ‖ψ ∗ u‖LΦ0,wr
. Let ε > 0, to be chosen later. Then by

Lemma 2.1(ii),

�

Rn
Φ0(ε|ϕj ∗ u|)wr dx =

∞∑
k=k0

ε(µ−δ)k

k!
‖ϕj ∗ u‖(µ−δ)kL(µ−δ)k,wr

=
∞∑

k=k0

ε(µ−δ)k

k!
‖ϕ̃j ∗ ϕj ∗ u‖(µ−δ)kL(µ−δ)k,wr
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≤ 1
(n− r)2(n−r)j

∞∑
k=k0

(εCn2
n
p
j‖ϕj ∗ u‖Lp)(µ−δ)k

k!

≤ 1
(n− r)2(n−r)j

∞∑
k=1

(εCn2
n
p
j‖ϕj ∗ u‖Lp)(µ−δ)k

k!

=
1

(n− r)2(n−r)j [exp((εCn2
n
p
j‖ϕj ∗ u‖Lp)µ−δ)− 1].

In particular, we take ε = ε0 > 0 satisfying
1

(n− r)2(n−r)j [exp((ε0Cn2
n
p
j‖ϕj ∗ u‖Lp)µ−δ)− 1] = 1,

so that

ε0 =
[log(1 + (n− r)2(n−r)j)]1/(µ−δ)

Cn2
n
p
j‖ϕj ∗ u‖Lp

.

Thus by the definition of the Luxemburg norm, we have

(3.16) ‖ϕj ∗ u‖LΦ0,wr
≤ 1
ε0

=
Cn2

n
p
j‖ϕj ∗ u‖Lp

[log(1 + (n− r)2(n−r)j)]1/(µ−δ)

for all j ∈ Z.
Therefore, by (3.16) and Hölder’s inequality,

(3.17)
( ∞∑
j=1

‖ϕj ∗ u‖νLΦ0,wr

)1/ν

≤ Cn
[ ∞∑
j=1

[log(1 + (n− r)2(n−r)j)]−
ν
µ−δ (2

n
p
j‖ϕj ∗ u‖Lp)ν

]1/ν
≤ Cn

[ ∞∑
j=1

[log(1 + (n− r)2(n−r)j)]−
µ
µ−δ ]1/µ

[ ∞∑
j=1

(2
n
p
j‖ϕj ∗ u‖Lp)ρ

]1/ρ
.

In what follows, we investigate the non-negative term series on the right-
hand side of (3.17). For a technical reason, take t0 ∈ R defined by the
equation

log(n− r) + t0(n− r) log 2 =
t0(n− r) log 2

1 + µ/δ
,

so that

t0 =
µ+ δ

µ(log 2)(n− r)
log
(

1
n− r

)
.

We distinguish two cases:

Case 1: t0 ≥ 1. Noting that µ > 1, we decompose the sum into two
parts:
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[ ∞∑
j=1

[log(1 + (n− r)2(n−r)j)]−
µ
µ−δ
]1/µ

≤
[ [t0]∑
j=1

[log(1 + (n− r)2(n−r)j)]−
µ
µ−δ
]1/µ

+
[ ∞∑
j=[t0]+1

[log(1 + (n− r)2(n−r)j)]−
µ
µ−δ
]1/µ

=: N1 +N2.

We first estimate N1. By (3.14), we have

(3.18)
(n− r)2(n−r)j

log(1 + (n− r)2(n−r)j)
≤ (n− r)2(n−r)[t0]

log(1 + (n− r)2(n−r)[t0])
for all 1 ≤ j ≤ [t0].

Moreover, direct computation yields

(n− r)2(n−r)[t0] ≤ (n− r)2(n−r)t0 =
(

1
n− r

)δ/µ
,(3.19)

1
log(1 + (n− r)2(n−r)[t0])

≤ 1
log(1 + (n− r)2(n−r)(t0−1))

(3.20)

=
1

log(1 + 2−(n−r)(n− r)−δ/µ)
≤ 1/ log(1 + 2−nn−1),

where we have used the facts that [t0] ≤ t0 < [t0]+1 and δ/µ ≤ 1−1/µ < 1.
Hence, by (3.18)–(3.20),

(3.21) log(1 + (n− r)2(n−r)j) ≥ Cn(n− r)(µ+δ)/µ 2(n−r)j

for all 1 ≤ j ≤ [t0].

Therefore, by making use of (3.21) and t/(2t − 1) ≤ 1/log 2 for all t > 0,
and using the condition 0 < δ ≤ µ− 1 with µ > 1, we see that

N1 ≤ Cn(n− r)−
µ+δ

µ(µ−δ)
( ∞∑
j=1

2−
µ(n−r)
µ−δ j

)1/µ
(3.22)

≤ Cn(n− r)−
µ+δ

µ(µ−δ)
( ∞∑
j=1

2−(n−r)j
)1/µ

= Cn(n− r)−
µ+δ

µ(µ−δ)

(
1

2n−r − 1

)1/µ

≤ Cn(n− r)−
µ+δ

µ(µ−δ)−
1
µ = Cn(n− r)−

2
µ−δ .

We next estimate N2. Observe that the definition of t0 implies

(3.23) log(n− r) + t(n− r) log 2 ≥ t(n− r) log 2
1 + µ/δ

for all t ≥ t0.
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Since t0 < [t0] + 1, by using (3.23) and 0 < δ ≤ µ− 1, N2 can be estimated
as follows:

N2 ≤
[ ∞∑
j=[t0]+1

[log((n− r)2(n−r)j)]−
µ
µ−δ
]1/µ

(3.24)

≤
[ ∞∑
j=[t0]+1

[
j(n− r) log 2

1 + µ/δ

]− µ
µ−δ
]1/µ

≤ Cδ(n− r)−
1

µ−δ
( ∞∑
j=[t0]+1

j
− µ
µ−δ
)1/µ

≤ Cδ(n− r)
1

µ−δ
(∞�

1

t
− µ
µ−δ dt

)1/µ
≤ Cδ(n− r)−

1
µ−δ .

Thus combining (3.22) with (3.24), we obtain

(3.25)
[ ∞∑
j=1

[log(1 + (n− r)2(n−r)j)]−
µ
µ−δ
]1/µ

≤ Cn,δ(n− r)−
2

µ−δ .

Case 2: t0 < 1. In this case, the inequality (3.23) is available for all
t = j ∈ N, and then, in the quite same manner as for N2,

(3.26)
[ ∞∑
j=1

[log(1 + (n− r)2(n−r)j)]−
µ
µ−δ
]1/µ

≤ Cδ (n− r)−
1

µ−δ .

To sum up, by (3.15), (3.17), (3.25) and (3.26), we have

‖u‖
B0,ν
Φ0,wr

= ‖ψ ∗ u‖LΦ0,wr
+
( ∞∑
j=1

‖ϕj ∗ u‖νLΦ0,wr

)1/ν

≤ Cn,δ
(

1
n− r

) 2
µ−δ [
‖ψ ∗ u‖Lp +

( ∞∑
j=1

(2
n
p
j‖ϕj ∗ u‖Lp)ρ

)1/ρ]
= Cn,δ

(
1

n− r

) 2
µ−δ
‖u‖

B
n/p,ρ
p

,

which is the desired estimate.
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