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Abstract. We investigate the relationships between strongly extreme, complex ex-
treme, and complex locally uniformly rotund points of the unit ball of a symmetric func-
tion space or a symmetric sequence space E, and of the unit ball of the space E(M, τ)
of τ -measurable operators associated to a semifinite von Neumann algebra (M, τ) or of
the unit ball in the unitary matrix space CE . We prove that strongly extreme, complex
extreme, and complex locally uniformly rotund points x of the unit ball of the sym-
metric space E(M, τ) inherit these properties from their singular value function µ(x)
in the unit ball of E with additional necessary requirements on x in the case of com-
plex extreme points. We also obtain the full converse statements for the von Neumann
algebra M with a faithful, normal, σ-finite trace τ as well as for the unitary matrix
space CE . Consequently, corresponding results on the global properties such as mid-
point local uniform rotundity, complex rotundity and complex local uniform rotundity
follow.

Let E be a symmetric sequence space, and let CE be the unitary matrix
space of compact operators acting on Hilbert space, associated with E. One
of the points of interest in the theory of unitary matrix spaces is to inves-
tigate what properties of the symmetric sequence space E are inherited by
the unitary matrix space CE [22]. It was shown by Arazy in [2] that E is
isometrically embedded in CE , and that the isometry V can be chosen with
respect to any compact operator x in such a way that V (s(x)) = x, where
s(x) = {sn(x)}∞n=1 is the sequence of singular numbers of x. Therefore many
geometrical properties of x ∈ CE are also satisfied by s(x) ∈ E. In the same
paper Arazy showed that x ∈ CE is an extreme (resp. smooth, exposed)
point of the unit ball in CE if and only if s(x) is an extreme (resp. smooth,
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exposed) point of the unit ball in E. Lifting the uniform rotundity from E
to CE was considered by Tomczak-Jaegermann in [36].

Later on, more general spaces have been considered, namely the sym-
metric spaces E(M, τ) of τ -measurable operators associated to a symmetric
Banach function space E and a semifinite von Neumann algebra (M, τ).
The space E(M, τ) consists of all τ -measurable operators x for which the
singular value function µ(x) belongs to E, and it is equipped with the norm
‖x‖E(M,τ) = ‖µ(x)‖E . With the development of the theory of symmet-
ric spaces of measurable operators, it was also natural to expect the non-
commutative space E(M, τ) to reflect the properties of the corresponding
symmetric function space E. Until now it has been shown that many geo-
metric properties, like rotundity [5], (local) uniform rotundity [6], (uniform)
Kadec–Klee property [15, 16], Banach–Saks property [17] and several oth-
ers lift from E to E(M, τ). In particular, Chilin, Krygin and Sukochev [5]
characterized the extreme points of the unit ball in E(M, τ) in terms of
the singular value function µ(x) in the unit ball of E. Later on in [6] they
showed that local uniform rotundity and uniform rotundity are inherited by
E(M, τ) from E.

The aim of this paper is to investigate complex extreme points (C-ex-
treme points), complex locally uniformly extreme points (C-LUR points),
strongly extreme points (MLUR points) of the unit ball of E(M, τ) and
the associated properties of complex rotundity (C-rotundity), complex local
uniform rotundity (C-LUR), and midpoint local uniform rotundity (MLUR)
of E(M, τ).

The concepts of C-extreme points and C-rotund spaces have been intro-
duced by Thorp and Whitley in [35] in connection with the strong maxi-
mum modulus theorem for vector-valued analytic functions. Its liaison to
holomorphic spaces has been further confirmed by Globevnik’s work in [21]
who investigated complex uniformly rotund spaces and showed among other
things that peak points of the ball algebra over a Banach space X are
complex extreme points of its unit ball BX . Along the same lines are for in-
stance the recent results in [1]. The complex geometric properties also found
other applications, for instance in studying the (local) geometry of Banach
spaces [10]. Moreover, as has recently been observed [23], C-extreme points
and C-rotundity of a complex Banach lattice E are equivalent to upper
monotone points and strict monotonicity of its real part Er, respectively.
That observation can be very useful in studying complex properties in Ba-
nach lattices and we will apply it later in this paper.

In 2000, Wang and Teng [37] defined C-LUR points and C-LUR spaces
and obtained criteria for this property in the class of Musielak–Orlicz spaces
of vector-valued functions.
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The MLUR property in real Banach spaces, its role and relations to other
geometric properties are thoroughly discussed in [29].

Observe that complex uniform rotundity in noncommutative spaces has
been investigated in [9, 38], where in particular it was shown that the trace
class S1 = CL1 is complex uniformly rotund [9], and that E(M, τ) is com-
plex uniformly convexifiable if and only if E has some finite concavity [38].

In Section 1 we provide the terminology and some facts, especially in
noncommutative spaces, to be used later.

In Section 2 we prove that if x is order continuous and E is a fully
symmetric function space then x is a MLUR point of the unit ball in E(M, τ)
whenever µ(x) is a MLUR point of the unit ball in E. Furthermore, under
the assumption that E is a symmetric function space and the von Neumann
algebra M has a σ-finite trace we show that if x is a MLUR point then so
is µ(x). Consequently, the MLUR property of a fully symmetric space E lifts
to E(M, τ), and vice versa, E inherits this property from E(M, τ) under
the additional assumption that the trace τ on M is σ-finite.

Section 3 is devoted to C-extreme points and C-rotundity. We provide a
characterization of C-extreme points of the unit ball in E(M, τ), where E
is a symmetric function space, analogous to that of extreme points obtained
by Chilin, Krygin and Sukochev in [5, 18]. As a consequence we also find
that C-rotundity is inherited by E(M, τ) from E, and we have the opposite
implication under the same σ-finiteness assumption on the trace τ as for the
MLUR property.

In Section 4 we prove analogous results for C-LUR points and the C-
LUR property. We show that if x is order continuous and E is a strongly
symmetric function space, and if µ(x) is a C-LUR point of the unit ball
in E, then x is a C-LUR point of the unit ball in E(M, τ). Therefore if
E is order continuous then the C-LUR property lifts from E to E(M, τ).
The opposite implication holds for a symmetric function space E and a von
Neumann algebra M with a σ-finite trace τ .

Finally in the last section we discuss the definitions of C-MLUR points
and C-MLUR spaces that are analogous to those for MLUR points and
MLUR spaces in [20] for real Banach spaces. We present several equivalent
conditions, and in particular we show that in any complex Banach space
these notions are equivalent to C-LUR points and C-LUR spaces, respec-
tively. Therefore C-MLUR and C-LUR are not distinguishable, unlike their
real counterparts MLUR and LUR.

1. Preliminaries. As usual, we denote by C, R, and N the sets of com-
plex, real, and natural numbers, respectively. Given z ∈ C, we denote by z,
Re z and Im z the conjugate of z and the real and imaginary parts of z,
respectively.
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Let I = N or I = [0, α), 0 < α ≤ ∞, be equipped with the counting
measure or the Lebesgue measure, respectively. We denote by L0 = L0(I) the
set of all complex-valued measurable functions on I. We say that (E, ‖ · ‖E)
is a Banach lattice if E = E(I) ⊂ L0(I) is a Banach space with respect
to the norm ‖ · ‖E such that whenever 0 ≤ f ≤ g, f ∈ L0(I) and g ∈ E,
then f ∈ E and ‖f‖E ≤ ‖g‖E . When I = N, E is called a Banach sequence
lattice, and when I = [0, α), it is often called a Banach function lattice.

For a Banach lattice E over the field of complex numbers we define its
real part as

Er = {f ∈ E : Im(f) = 0},
with the norm induced from E. Denote by E+ the cone of positive elements
in E, and by SE+ and BE+ the unit sphere and the unit ball of positive
elements of E, respectively. Recall that a Banach lattice E satisfies the
Fatou property whenever for any fn ∈ E and f ∈ L0, if fn ↑ f a.e. and
supn ‖fn‖E <∞ then f ∈ E and ‖fn‖E ↑ ‖f‖E . An element f ∈ E is called
order continuous if for every 0 ≤ fn ≤ |f | such that fn ↓ 0 a.e. we have
‖fn‖E ↓ 0. We say that E is order continuous if every element in E is order
continuous.

Given f ∈ L0[0, α), 0 < α ≤ ∞, the distribution function df of the
function f is given by

df (λ) = m{t > 0 : |f(t)| > λ}, λ ≥ 0,

and its decreasing rearrangement µt(f) is defined as

µt(f) = inf{s > 0 : df (s) ≤ t}, t ≥ 0.

We denote by µ(f) the function t 7→ µt(f), t ≥ 0, and set µ∞(f) =
limt→∞ µt(f). The symbol E0 will stand for the space of all elements f
of E for which µ∞(f) = 0.

We say that (E, ‖ · ‖E) is a symmetric (function) space on [0, α) if E
is a Banach function lattice on [0, α) and ‖f‖E = ‖µ(f)‖E for all f ∈ E.
Analogously, when E is a Banach sequence lattice, E is called a symmetric
(sequence) space whenever ‖µ(x)‖E = ‖x‖E , where µ(x) is the decreasing
rearrangement of the sequence x ∈ E.

We say that f is submajorized by g, and write f ≺ g, whenever
s�

0

µt(f) dt ≤
s�

0

µt(g) dt for every s > 0.

A symmetric space E is strongly symmetric if for f, g ∈ E, if f ≺ g then
‖f‖E ≤ ‖g‖E . If a symmetric space E satisfies the Fatou property or E
is order continuous, then E is fully symmetric, that is, if f ∈ L0, g ∈ E
and f ≺ g then f ∈ E and ‖f‖E ≤ ‖g‖E . For this and all other facts and
definitions concerning Banach lattices we refer to monographs [3, 18, 27].
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Let H be a complex Hilbert space and B(H) the space of bounded
linear operators from H to H. Moreover, we denote by L(H) the space of
all linear operators x : D(x)→ H, where D(x) ⊂ H is the domain of x. Let
M ⊂ B(H) be a semifinite von Neumann algebra with a faithful, normal,
semifinite trace τ , and let P(M) be the lattice of all projections in M. If
x ∈M then ‖x‖M denotes the operator norm in B(H). A nonzero projection
p ∈ P(M) is called minimal if q ∈ P(M) and q ≤ p imply that q = p or
q = 0. The projections p and q are said to be equivalent (relative to the von
Neumann algebra M), denoted by p ∼ q, if there exists a partial isometry
v ∈ M such that p = v∗v and q = vv∗. The von Neumann algebra M
is called nonatomic if M contains no minimal projections [34]. A densely
defined closed operator x, affiliated with M, is called τ -measurable if for
each ε > 0 there exists p ∈ P(M) such that p(H) ⊂ D(x) and τ(p⊥) < ε,
where p⊥ = 1 − p and 1 is the unit element in M. The set S(M, τ) of
all τ -measurable operators is a ∗-algebra with respect to the strong sum,
the strong product, and the adjoint operator. It is well known that in the
commutative case the space S([0, α),m) of measurable operators may be
identified with

{f ∈ L0[0, α) : m([0, α) \A) <∞ and fχA ∈ L∞[0, α) for some A},
where α = τ(1). For x ∈ S(M, τ), we denote by n(x) the null projection
onto Kerx. Then s(x) = 1 − n(x) is called the support projection, that is,
a projection onto Ker⊥ x. Furthermore, if x = u|x| is a polar decomposition
of x, then s(x) = u∗u and s(x∗) = uu∗. For every subset X ⊂ S(M, τ)
we shall denote the set of all self-adjoint (respectively, positive) elements
of X by Xh (respectively, X+). By a positive operator x we mean a self-
adjoint operator such that 〈xξ, ξ〉 ≥ 0 for all ξ ∈ D(x). Hence Sh(M, τ) is
equipped with the partial order ≥, generated by the proper cone S+(M, τ).
If {xn} ⊂ Sh(M, τ) is decreasing and x = infn xn exists, then we write
xn ↓n x. For an operator x ∈ S(M, τ), the function µt(x) defined by

µt(x) = inf{s ≥ 0 : τ(e|x|(s,∞)) ≤ t}, t ≥ 0,

where e|x|(s,∞) is the spectral projection of |x| = (x∗x)1/2 corresponding
to the interval (s,∞), is called the decreasing rearrangement of x or the
generalized singular value function of x. The function τ(e|x|(s,∞)) is called
the spectral distribution of x. We shall use the notation µ(x) for the func-
tion µt(x), t ∈ R+. Observe that in the commutative case, measurable oper-
ators are identified with some measurable functions f , and then µ(f) is the
usual decreasing rearrangement of f . Notice that µt(x) = 0 for t ∈ [α,∞),
if α <∞. Put µ∞(x) = limt→∞ µt(x) for x ∈ S(M, τ). Then the set

S0(M, τ) = {x ∈ S(M, τ) : µ∞(x) = 0}
is a ∗-subalgebra in S(M, τ).
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Let x, y ∈ S(M, τ). We say that x is submajorized by y, and write x ≺ y,
whenever µ(x) ≺ µ(y). It is well known that µ(x + y) ≺ µ(x) + µ(y) and
µ(x)− µ(y) ≺ µ(x− y), for all x, y ∈ S(M, τ).

Recall the following properties of the singular value function. Although
the first two properties are certainly well known we sketch their proofs for
the sake of completeness.

Proposition 1.1.

(1) For x ∈ S(M, τ), µ(|x|+ µ∞(x)n(x)) = µ(x).
(2) If x ∈ S(M, τ) and |x| ≥ µ∞(x)s(x) then µ(|x| − µ∞(x)s(x)) =

µ(x)− µ∞(x).
(3) [5, Proposition 2.2] If x, y ∈ S+(M, τ), y 6= 0 and x ≥ µ∞(x)1,

then there exists s > 0 such that µs(x) < µs(x+ y).
(4) [33, Proposition 3] If x, y ∈ S(M, τ), y = y∗, x ≥ 0, then µt(x) ≤

µt(x+ iy) for all t > 0.
(5) [5, Proposition 3.5] If x, y ∈ S(M, τ), y = y∗, x ≥ µ∞(x)1 and

µ(x+ iy) = µ(x), then y = 0.

Proof. (1) For x ∈ S(M, τ), consider the real-valued function f(t) =
t+µ∞(x)χ{0}(t), t≥ 0. Then, by functional calculus, f(|x|) = |x|+µ∞(x)n(x)
≥ 0 and for λ > 0,

e|x|+µ∞(x)n(x)(λ,∞) = e|x|(f−1(λ,∞)) =
{
e|x|(λ,∞) if λ≥ µ∞(x),
e|x|((λ,∞)∪{0}) if λ<µ∞(x).

Since µ∞(x) = inf{λ : τ(e|x|(λ,∞)) < ∞}, we have τ(e|x|(λ,∞)) = ∞ for
all λ < µ∞(x). Hence also τ(e|x|+µ∞(x)n(x)(λ,∞)) =∞ for λ < µ∞(x), and
so µt(|x|+ µ∞(x)n(x)) = µt(x) for t > 0.

(2) Let x ∈ S(M, τ) and |x| ≥ µ∞(x)s(x). Consider the function f(t) =
t− µ∞(x)χ(0,∞). Then f(|x|) = |x| − µ∞(x)s(x) ≥ 0 and for all λ > 0,

e|x|−µ∞(x)s(x)(λ,∞) = ef(|x|)(λ,∞) = e|x|(f−1(λ,∞)) = e|x|(λ+ µ∞(x),∞).

Thus
∥∥|x| − µ∞(x)s(x)

∥∥ = |x| − µ∞(x)s(x), and so

µt(|x| − µ∞(x)s(x)) = inf{λ ≥ 0 : τ(e|x|−µ∞(x)s(x)(λ,∞)) ≤ t}
= inf{λ ≥ 0 : τ(e|x|(λ+ µ∞(x),∞)) ≤ t}, t > 0.

Therefore for all t > 0, µt(|x| − µ∞(x)s(x)) = µt(x)− µ∞(x).

Let (E, ‖ · ‖E) be a symmetric space on [0, α), α = τ(1). Denote by
E(M, τ) the set of all x ∈ S(M, τ) such that µ(x) ∈ E. It has recently been
shown [25] in full generality that ‖µ(x)‖E defines a norm on the symmetric
space E(M, τ) of measurable operators. In addition, if (E, ‖·‖E) is a Banach
space then E(M, τ) equipped with the norm ‖x‖E(M,τ) = ‖µ(x)‖E is also a
Banach space.
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The measure topology in S(M, τ) is determined by a fundamental system
{U(ε, δ)} of neighborhoods of zero, where

U(ε, δ) = {x ∈ S(M, τ) : ‖xp‖M ≤ ε, τ(p⊥) ≤ δ for some p ∈ P(M)}.

The notation xn
τ→ x will be used to indicate the convergence of the sequence

xn to x in the measure topology generated by the trace τ . It is well known
[19, Lemma 3.4] that xn

τ→ x if and only if µt(xn − x)→ 0 a.e.
A linear subspace X in S(M, τ) provided with a Banach norm ‖ · ‖X is

called a symmetric space on (M, τ) if it follows from x ∈ X, y ∈ S(M, τ),
and µt(y) ≤ µt(x) for every t > 0 that y ∈ X and ‖y‖X ≤ ‖x‖X . A sym-
metric space X is called strongly symmetric if for x, y ∈ X, y ≺ x implies
‖y‖X ≤ ‖x‖X . If from y ∈ S(M, τ), x ∈ X and y ≺ x it follows that y ∈ X
and ‖y‖X ≤ ‖x‖X then X is called fully symmetric.

An operator x ∈ E(M, τ) is said to be order continuous in E(M, τ) if for
all sequences {xn} ⊂ S(M, τ), whenever |x| ≥ xn ↓ 0 then ‖xn‖E(M,τ)→ 0.
We will denote by E(M, τ)oc the set of all order continuous elements
in E(M, τ). If E(M, τ)oc = E(M, τ) then we say that E(M, τ) is an or-
der continuous space. It is worth mentioning that E(M, τ)oc is a ∗-ideal
of E(M, τ) which is norm closed and is contained in S0(M, τ). Further-
more, if x is order continuous then ‖xpn‖E(M,τ) → 0 for every sequence
{pn} ⊂ P(M) satisfying pn ↓n 0. For more details we refer the reader to [18].

It is well known that if E is a strongly [fully] symmetric space, then
E(M, τ) is a strongly [fully] symmetric space on (M, τ). Moreover, if E sat-
isfies the Fatou property (or is order continuous), then so is E(M, τ). In par-
ticular, if E is a symmetric space on [0, α) which is order continuous or sat-
isfies the Fatou property, then it is fully symmetric, and therefore E(M, τ)
is fully symmetric. Also note that every order continuous symmetric space
on (M, τ) is embedded in S0(M, τ) [7]. If M is a nonatomic von Neumann
algebra then for any symmetric space E(M, τ) we have L1(M, τ) ∩M ⊂
E(M, τ) ⊂ L1(M, τ) +M.

For the theory of operator algebras we refer to [24, 34], for noncommu-
tative Banach function spaces to [30, 18, 13, 12, 11], and for unitary matrix
spaces to [22].

Let E ⊂ c0 be a symmetric sequence space, and CE be the unitary matrix
space of compact operators on the Hilbert space H associated with E. Recall
that CE is a subspace of the Banach space of compact operators K(H) ⊂
B(H) for which the sequence s(x) = {sn(x)}∞n=1 of singular numbers is in E,
and it is equipped with the norm ‖x‖CE

= ‖s(x)‖E . Let G be the set of all
real functions f ∈ L1(0,∞) + L∞(0,∞) such that

π(f) =
{ n�

n−1

µt(f) dt
}∞
n=1
∈ E,
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and set ‖f‖G = ‖π(f)‖E . If E is order continuous then (G, ‖ · ‖G) is an
order continuous symmetric function space on [0,∞) [7, Proposition 6.1]. It
is well known that S(B(H), tr) = B(H), where tr is the canonical trace on
B(H), and the convergence xn

tr−→ x is equivalent to the norm convergence
‖x − xn‖B(H) → 0, for x, xn ∈ B(H). Since E ⊂ c0, we have E 6= `∞.
Then the symmetric space G(B(H), tr) of measurable operators is a proper
two-sided ∗-ideal in B(H) and therefore it is contained in K(H). Thus for
any x ∈ G(B(H), tr) the singular value function µ(x) is of the form µt(x) =∑∞

n=1 sn(x)χ[n−1,n)(t), t ≥ 0. Therefore the spaces CE and G(B(H), tr)
coincide as sets and they have identical norms.

Given any linear operator x : H → H and a subspace H0 ⊂ H, we denote
by x|H0 the restriction of x to H0. For a von Neumann algebra M⊂ B(H)
and a projection p ∈ P(M) define

Mp = {xp : x ∈M},

where xp = px|p(H). It is well known that Mp is a von Neumann algebra
contained in B(p(H)), with the unit element p. We define τp :M+

p → [0,∞]
by setting

τp(xp) = τ(pxp),

where x ∈ M+. Thus for any y ∈ M+
p , τp(y) = τp(xp) = τ(pxp), where

y = px|p(H) = xp for some x ∈M+. It is well known that τp is a semifinite,
normal, faithful trace on M+

p , and it is finite if and only if τ(p) < ∞.
Furthermore, if M is nonatomic, then Mp is also nonatomic. Let

pS(M, τ)p = {pxp : x ∈ S(M, τ)}.

Then pS(M, τ)p is a ∗-subalgebra of S(M, τ) with the unit element p. It
is also well known [18, Chapter 3, Section 7] that if x ∈ S(M, τ) then
xp ∈ S(Mp, τp), and the map Φp : x 7→ xp, x ∈ pS(M, τ)p, is a unital ∗-
isomorphism from pS(M, τ)p onto S(Mp, τp). Moreover for any x ∈ S(M, τ)
we have e|xp|(s,∞) = e|pxp|(s,∞), s ≥ 0, and consequently µτp(xp) =
µ(pxp), where µτp(xp) is the singular value function of xp computed with
respect to the reduced von Neumann algebra Mp and the trace τp.

The following two results will be very useful to show that certain prop-
erties of x in E(M, τ) are inherited by µ(x).

Proposition 1.2 ([18, 13]). Suppose that M is a nonatomic von Neu-
mann algebra with a faithful, normal, σ-finite trace τ . Let x ∈ L1(M, τ)+M
and x ∈ S+

0 (M, τ). Then there exist a nonatomic commutative von Neu-
mann subalgebra N ⊂ M ⊂ B(H) and a ∗-isomorphism V from the ∗-
algebra S([0, τ(1)),m) into the ∗-algebra S(N , τ) such that

V (µ(x)) = x and µ(V (f)) = µ(f) for all f ∈ S([0, τ(1)),m).
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Consequently, the Banach function lattice E = E[0, τ(1)) is isometrically
embedded into E(M, τ).

Proposition 1.3. Suppose that M is a nonatomic von Neumann al-
gebra with a faithful, normal, σ-finite trace τ . Let x ∈ S+

0 (M, τ) and p ∈
P(M) be such that τ(p) = ∞ and xp = px = x. Then there exists a ∗-iso-
morphism W from the ∗-algebra S([0,∞),m) into the ∗-algebra pS(M, τ)p
such that

W (µ(x)) = x and µ(W (f)) = µ(f) for all f ∈ S([0,∞),m).

Proof. Let x ∈ S+
0 (M, τ) and xp = px = x. Then xp ∈ S+

0 (Mp, τp). In
fact by the remarks before, xp ∈ S+(Mp, τp) and µτp(xp) = µ(pxp) = µ(x).
Hence µτp∞(xp) = µ∞(x) = 0. Applying now Proposition 1.2 to the element
xp ∈ S+

0 (Mp, τp) and in view of τp(1p) = τ(p) = ∞, there exists a ∗-
isomorphism V from S([0,∞),m) into S(Mp, τ) such that V (µτp(xp)) = xp
and µτp(V (f)) = µ(f) for all f ∈ S([0,∞),m). The function Ψp(yp) =
Φ−1
p (yp) = pyp for yp ∈ S(Mp, τp) is a ∗-isomorphism from S(Mp, τp) onto

pS(M, τ)p.
Let W = Ψp ◦ V ; then W is a ∗-isomorphism from S([0,∞),m) into

pS(M, τ)p. Since pxp = x, µ(x) = µτp(xp), we have

W (µ(x)) = Ψp(V (µ(x))) = Ψp(V (µτp(xp))) = Ψp(xp) = pxp = x.

Note that for any y ∈ S(Mp, τp), py = y and y = yp|p(H) = (yp)p.
Finally, since V (f) ∈ S(Mp, τp),

µ(W (f)) = µ(Ψp(V (f))) = µ(Ψp((V (f)p)p)) = µ(pV (f)p)
= µ(p|V (f)|p) = µ(p|V (f)|pp) = µτp((|V (f)|p)p)
= µτp(|V (f)|) = µτp(V (f)) = µ(f),

which finishes the proof.

Let (X, ‖ · ‖) be a Banach space over the field of complex numbers. We
denote by BX and SX the unit ball and the unit sphere in X, respectively.
We now define several geometric properties of X which will be studied in
this paper.

We say that x ∈ SX is a strongly extreme point of the unit ball BX , or
MLUR point of BX [29], if for any {yn}, {zn} ⊂ BX , ‖2x − yn − zn‖ → 0
implies that ‖yn−zn‖ → 0. Equivalently, x ∈ SX is a strongly extreme point
if for any {yn} ⊂ X, ‖x± yn‖ → 1 implies ‖yn‖ → 0. A Banach space X is
called midpoint locally uniformly rotund (MLUR) if every element of SX is
a strongly extreme point.

A point x of SX is said to be a complex extreme point (C-extreme point)
of the unit ball BX [35] if for every λ ∈ C with |λ| ≤ 1 and y in X,
whenever x + λy ∈ BX then y = 0. Equivalently, x is a complex extreme
point for BX if whenever x ± y, x ± iy ∈ BX , y ∈ BX , then y = 0. The
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space X is said to be complex rotund (C-rotund) if every element of SX is
a C-extreme point. We denote by C-ext(BX) the set of all complex extreme
points of BX .

A point x ∈ SX is a point of complex local uniform rotundity (C-LUR
point) [37] if for every ε > 0 there exists δ(x, ε) > 0 such that

sup
λ=±1,±i

‖x+ λy‖ ≥ 1 + δ(x, ε)

for every y ∈ X satisfying ‖y‖ ≥ ε. Equivalently, x is a C-LUR point if from
‖x + λyn‖ → 1, {yn} ⊂ X, λ = ±1,±i it follows that ‖yn‖ → 0. If every
point of SX is a C-LUR point, then X is called a complex locally uniformly
rotund (C-LUR) space.

It is clear that real geometric properties such as uniform rotundity, local
uniform rotundity and rotundity imply their complex analogues, that is,
complex uniform rotundity, complex local uniform rotundity and complex
rotundity, respectively.

There also exist the notions of complex strongly extreme points (C-
MLUR points) and C-MLUR spaces. They are defined analogously to MLUR
points and MLUR spaces following the idea in [20]. However, as we will
show in the last section, the notions of C-LUR points and C-MLUR points
coincide in any complex Banach space, and consequently the C-LUR and
C-MLUR properties are equivalent. We wish to point out that there exist
C-LUR spaces that are not complex uniformly rotund, and complex rotund
spaces that are not C-LUR. We will briefly discuss some examples in the
last section.

It is well known that monotone properties of Banach lattices are closely
related to their complex rotundity properties [23, 28]. The interplay between
those properties is an important factor in investigating complex properties
of Banach lattices. Let us recall some monotonicity notions employed further
in this paper.

A point f in a Banach lattice (E, ‖ · ‖E) is called upper monotone,
or UM , if for any g ∈ E the condition g ≥ f and g 6= f implies that
‖g‖E > ‖f‖E .

An element 0 ≤ f ∈ SE is called upper locally uniformly monotone, or
ULUM , if for any sequence {fn} such that f ≤ fn, if ‖fn‖E → 1 then
‖fn − f‖E → 0.

The following results relating monotonicity and complex rotundity prop-
erties for the Banach lattice E appear very useful in our investigations.

Theorem 1.4 ([23]).

(1) An element f of a complex Banach lattice E is a C-extreme point if
and only if |f | is an UM point in its real part Er.
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(2) If f is a C-LUR point of a complex Banach lattice E, then |f | is an
ULUM point in its real part Er.

We finish this section with an elementary result on Banach spaces.

Lemma 1.5. Let (X, ‖ · ‖) be a normed space. If {yn} ⊂ X, ‖x‖ = 1 and
limn ‖x± yn‖ ≤ 1, then limn ‖x± yn‖ = 1.

Proof. Since ‖x‖ = 1 and limn ‖x± yn‖ ≤ 1, from the inequality

2 = 2‖x‖ ≤ ‖x+ yn‖+ ‖x− yn‖

it follows that limn ‖x ± yn‖ = 1. Note that 1 − ‖x − yn‖/2 ≤ ‖x + yn‖/2
and therefore

1− lim
n
‖x− yn‖/2 ≤ lim

n
(1− ‖x− yn‖/2) ≤ lim

n
‖x+ yn‖/2.

Since limn ‖x± yn‖ = 1, we get 1 ≤ limn ‖x+ yn‖ ≤ limn ‖x+ yn‖ = 1, and
so limn ‖x+ yn‖ = 1. Similarly one can show that limn ‖x− yn‖ = 1.

Convention. Throughout the paper, E will stand for a symmetric func-
tion space on [0, α), where α = τ(1). Also the semifinite von Neumann
algebra M is always fixed and has a faithful, normal, semifinite trace τ .

2. Strongly extreme points and midpoint local uniform ro-
tundity. In this section we will discuss strongly extreme points and
midpoint local uniform rotundity of E(M, τ). We will first show that if
µ(x) is an order continuous, strongly extreme point of the unit ball in E,
then x is a strongly extreme point of the unit ball in E(M, τ). We shall
need the following two lemmas. To ensure that E is an interpolation space
between L1 and L∞ we need to assume that E is a fully symmetric
space [3, 27].

Lemma 2.1. Suppose that E is fully symmetric and µ(x) is a MLUR
point of BE. Then for any {yn}, {zn} ⊂ BE(M,τ), if ‖2x− yn − zn‖ → 0
then ‖µ(x)− µ(yn)‖ → 0 and ‖µ(x)− µ(zn)‖ → 0.

Proof. Suppose that ‖2x − yn − zn‖E(M,τ) → 0, {yn}, {zn} ⊂ BE(M,τ).
Note that µ(2x) ≺ µ(2x − yn − zn) + µ(yn) + µ(zn). By [3, Chapter 3,
Theorems 2.10 and 2.12] and [27, Chapter 2, Theorem 4.3], for any n ∈ N,
there exists a substochastic linear operator Tn : E → E such that

Tnµ(2x− yn − zn) + Tnµ(yn) + Tnµ(zn) = µ(2x).

Therefore

‖µ(2x)−Tnµ(yn)−Tnµ(zn)‖E = ‖Tnµ(2x−yn−zn)‖E ≤ ‖2x−yn−zn‖E(M,τ),
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which implies that ‖2µ(x) − Tnµ(yn) − Tnµ(zn)‖E → 0. Applying the fact
that µ(x) is a MLUR point of BE , we get

‖µ(x)− Tnµ(yn)‖E → 0 and ‖µ(x)− Tnµ(zn)‖E → 0.

It remains to show that ‖Tnµ(yn) − µ(yn)‖E → 0 and ‖Tnµ(zn) − µ(zn)‖E
→ 0. Define fn = Tnµ(yn)/2− µ(yn)/2. For every n ∈ N,

‖µ(x)− fn‖E = ‖µ(x)− Tnµ(yn)/2 + µ(yn)/2‖E
≤ ‖µ(x)− Tnµ(yn)‖E + ‖Tnµ(yn)‖E/2 + ‖µ(yn)‖E/2
≤ ‖µ(x)− Tnµ(yn)‖E + 1,

and in view of µ(x)− 1
2µ(y) ≺ µ

(
x− 1

2y
)
,

‖µ(x) + fn‖E = ‖µ(x) + Tnµ(yn)/2− µ(yn)/2‖E
≤ ‖µ(x)− µ(yn/2)‖E + ‖Tnµ(yn)‖E/2
≤ ‖x− yn/2‖E(M,τ) + ‖yn‖E(M,τ)/2

≤ ‖x− yn/2− zn/2‖E(M,τ) + ‖yn‖E(M,τ)/2 + ‖zn‖E(M,τ)/2

≤ ‖x− yn/2− zn/2‖E(M,τ) + 1.

Consequently,
lim
n
‖µ(x)± fn‖E ≤ 1.

Now by Lemma 1.5 we have limn ‖µ(x) ± fn‖E = 1. As µ(x) is a MLUR
point, we deduce that ‖fn‖E = 1

2‖Tnµ(yn) − µ(yn)‖E → 0. Similarly, one
can show that ‖Tnµ(zn)− µ(zn)‖E → 0.

Let N = {Nf : L2(0, 1) → L2(0, 1) : f ∈ L∞(0, 1)} be a commutative
von Neumann algebra with the trace η(Nf ) =

	1
0 f dm, where m is the

Lebesgue measure on [0, 1]. Let A = N ⊗M be the tensor product of the
von Neumann algebras N and M, and κ = η ⊗ τ be the tensor product of
the traces η and τ , that is, κ(Nf ⊗x) = η(Nf )τ(x), [24, 34]. It is well known
that A has no atoms.

Let 1 be the identity operator in L2(0, 1) and set C1 = {λ1 : λ ∈ C}.
Let x ∈ S(M, τ) and consider a linear subspace D in L2(0, 1)⊗H generated
by the vectors of the form ζ ⊗ ξ, where ζ ∈ L2(0, 1) and ξ ∈ D(x) ⊂ H. For
every ξ =

∑n
i=1 ζi ⊗ ξi ∈ D define (1 ⊗ x)(ξ) =

∑n
i=1 ζi ⊗ xξi. The linear

operator 1 ⊗ x : D → L2(0, 1) ⊗ H with domain D is preclosed and its
closure 1⊗ x is contained in S(C1⊗M, κ) [18, 31, 32].

The map π : x 7→ 1 ⊗ x, x ∈ M, is a unital trace-preserving ∗-
isomorphism from M onto the von Neumann subalgebra C1 ⊗ M. Con-
sequently, π extends uniquely to a ∗-isomorphism π̃ from S(M, τ) onto
S(C1⊗M, κ). In fact one can show that π̃(x) = 1⊗ x.

Moreover π̃ preserves the singular value function in the sense that µ̃(π̃(x))
= µ(x), where µ̃(π̃(x)) is the singular value function of π̃(x) computed with
respect to the von Neumann algebra C1⊗M and the trace κ.
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Thus
E(C1⊗M, κ) = {y ∈ S(C1⊗M, κ) : µ̃(y) ∈ E}

= {π̃(x) : x ∈ S(M, τ) and µ(x) ∈ E},
where

‖π̃(x)‖E(C1⊗M,κ) = ‖µ̃(π̃(x))‖E = ‖µ(x)‖E = ‖x‖E(M,τ).

Hence π̃ is a ∗-isomorphism which is also an isometry from E(M, τ) onto
E(C1⊗M, κ). We refer the reader to [18] for the details.

With this preparation we can prove the next result for any von Neumann
algebra. For nonatomic von Neumann algebras it was shown implicitly in
the proof of Theorem 2.1 in [6].

Lemma 2.2. For any x, xn ∈ E0(M, τ), n ∈ N, we have xn
τ→ x when-

ever ‖µ(x)− µ(xn)‖E → 0 and ‖µ(x)− µ((x+ xn)/2)‖E → 0.

Proof. Suppose that xn ∈ E0(M, τ), n ∈ N, ‖µ(x) − µ(xn)‖E → 0 and
‖µ(x)− µ((x+ xn)/2)‖E → 0. In view of the assumptions and the remarks
preceding the lemma,

‖µ̃(1⊗ x)− µ̃(1⊗ xn)‖E → 0
and

‖µ̃(1⊗x)−µ̃((1⊗x+1⊗xn)/2)‖E = ‖µ̃(1⊗x)−µ̃(1⊗((x+xn)/2))‖E → 0.

Since C1⊗M is nonatomic it follows that 1⊗ x− 1⊗ xn
κ→ 0. The latter

is equivalent to the fact that for a.e. t > 0, µ̃t(1 ⊗ x − 1 ⊗ xn) → 0. Thus
for a.e. t > 0,

µt(x− xn) = µ̃t(1⊗ (x− xn)) = µ̃t(1⊗ x− 1⊗ xn)→ 0

and so x− xn
τ→ 0.

Before we state the first main theorem of this section we need a few facts
about order continuous elements of E(M, τ). The next proposition relates
the order continuity of an operator x to the order continuity of its singular
value function.

Proposition 2.3. An operator x ∈ E(M, τ) is order continuous if and
only if µ(x) is order continuous in E. Therefore E(M, τ)oc = Eoc(M, τ).

Proof. Suppose that µ(x) is order continuous in E and 0 ↓n xn ≤ |x|.
Then µ∞(x) = 0 and by [14, Lemma 3.5], µt(xn) ↓n 0 for all t > 0. There-
fore ‖xn‖E(M,τ) = ‖µ(xn)‖E → 0 and x is an order continuous element of
E(M, τ).

Let now x be an order continuous element of E(M, τ). Hence µ∞(x) = 0
and for p = s(x) ∨ s(x∗) the trace τp on Mp is σ-finite. It is easy to show
that xp is an order continuous element of E(Mp, τp). Indeed, let {yn} ⊂
E(Mp, τp) be such that 0 ↓n yn ≤ |xp| = |x|p. Then for all n ∈ N, yn = (xn)p
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for some positive xn ∈ E(M, τ). Moreover, from 0 ↓n (xn)p ≤ |x|p it follows
that 0 ↓n pxnp ≤ p|x|p ≤ |x|. As x is order continuous, ‖yn‖E(Mp,τp) =
‖pxnp‖E(M,τ) → 0, proving that xp is order continuous. Moreover µτp(xp) =
µ(pxp) = µ(x), where µτp is the singular value function computed with
respect to the trace τp and the von Neumann algebra Mp. Therefore we
can assume that the trace τ is σ-finite. Consider a ∗-isomorphism π̃ from
E(M, τ) onto E(C1⊗M, κ), where C1⊗M is a nonatomic von Neumann
algebra. It is not difficult to see that x is order continuous in E(M, τ) if
and only if π̃(x) is order continuous in E(C1⊗M, κ). Since for the singular
value function µ̃(π̃(x)) of π̃(x) computed with respect to the von Neumann
algebra C1⊗M and the trace κ, we have µ̃(π̃(x)) = µ(x), it can be assumed
that the von Neumann algebra M is nonatomic.

Suppose that a.e. 0 ↓n fn ≤ µ(x). By Proposition 1.2, there exists a
∗-isomorphism V from S([0, τ(1)),m) into S(M, τ) such that V (µ(x)) = |x|
and µ(V (f)) = µ(f) for all f ∈ S([0, τ(1)),m). Therefore 0 ↓n V (fn) ≤
V (µ(x))= |x| and since x is order continuous, ‖fn‖E =‖V (fn)‖E(M,τ) → 0.

The following convergence result is known under the stronger assumption
that the whole space E is order continuous [6, Proposition 1.1].

Proposition 2.4. Let E be strongly symmetric. For an order continuous
element x ∈ E(M, τ) and {xn} ⊂ E(M, τ), the following conditions are
equivalent:

(i) ‖x− xn‖E(M,τ) → 0,
(ii) ‖µ(x)− µ(xn)‖E → 0 and xn

τ→ x.

Proof. Since µ(x) − µ(xn) ≺ µ(x − xn), n ∈ N, and the embedding of
E(M, τ) in S(M, τ) is continuous, (i) implies (ii).

Suppose now that (ii) holds. Note that it is enough to show that there
exists a subsequence that satisfies (i), since this implies that every subse-
quence has a subsequence which satisfies (i). If xn − x

τ→ 0, then by [18,
Chapter II, Lemma 5.15], passing to a subsequence of {xn}, there exists
a sequence {pj} ⊂ P(M) satisfying pj ↑ 1, τ(p⊥j ) → 0 as j → ∞ and
‖(x− xn)pj‖M → 0 as n→∞ for all j ∈ N.

For all projections p in E(M, τ) and all n, j ∈ N we have

(2.1) ‖(x− xn)p‖E(M,τ) ≤ ‖(x− xn)pjp‖E(M,τ) + ‖(x− xn)p⊥j p‖E(M,τ)

≤ ‖(x− xn)pj‖M‖p‖E(M,τ) + ‖µ(x)χ[0,τ(p⊥j )) + µ(xn)χ[0,τ(p⊥j ))‖E
≤ ‖(x− xn)pj‖M‖p‖E(M,τ) + ‖µ(xn)χ[0,τ(p⊥j )) − µ(x)χ[0,τ(p⊥j ))‖E

+ 2‖µ(x)χ[0,τ(p⊥j ))‖E
≤ ‖(x−xn)pj‖M‖p‖E(M,τ) + ‖µ(xn)−µ(x)‖E +2‖µ(x)χ[0,τ(p⊥j ))‖E .
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Consider first the case when xn ∈ S0(M, τ) for all n ∈ N. Since x is
order continuous, also x ∈ S0(M, τ). Set q(x) = s(x) ∨ s(x∗) and q(xn) =
s(xn) ∨ s(x∗n), n ∈ N, and define p = ∨∞n=1q(xn) ∨ q(x). Then the trace
τp is σ-finite on the von Neumann algebra Mp. Moreover, for all n ∈ N,
‖xp− (xn)p‖E(Mp,τp) = ‖p(x− xn)p‖E(M,τ) = ‖x− xn‖E(M,τ), µτp((xn)p) =
µ(xn), µτp(xp) = µ(x) and µτp(xp − (xn)p) = µ(x − xn), where µτp is the
singular value function computed with respect to the trace τp and Mp.
Therefore we can assume that the trace τ is σ-finite. Consider the nonatomic
von Neumann algebra C1⊗M and the ∗-isomorphism π̃ : x 7→ 1⊗ x from
S(M, τ) onto S(C1⊗M, κ). Since π̃ preserves the singular value function,
it can also be assumed that the von Neumann algebra M is nonatomic.

Let {ek} ⊂ P(M) be such that ek ↑k 1 and τ(ek) < ∞ for all k ∈ N.
By Proposition 1.2, for each n ∈ N there exists a ∗-isomorphism Vn from
S([0, τ(1)),m) into S(M, τ) such that Vn(µ(xn)) = |xn| and µ(Vn(f)) =
µ(f) for all f ∈ S([0, τ(1)),m). Let qnk = Vn(χ[0,τ(ek))), n, k ∈ N. Clearly,
each qnk is a projection with τ(qnk) = τ(ek) < ∞, and therefore qnk ∈
E(M, τ). Since |xnq⊥nk| =

∣∣|xn|q⊥nk∣∣ and q⊥nk = 1 − qnk = Vn(χ[0,τ(1))) −
Vn(χ[0,τ(ek))) = Vn(χ[τ(ek),τ(1))), for all n, k ∈ N we have

(2.2) ‖xnq⊥nk‖E(M,τ) =
∥∥|xn|q⊥nk∥∥E(M,τ)

= ‖Vn(µ(xn))Vn(χ[τ(ek),τ(1)))‖E(M,τ) = ‖µ(xn)χ[τ(ek),τ(1))‖E
≤ ‖µ(xn)χ[τ(ek),τ(1)) − µ(x)χ[τ(ek),τ(1))‖E‖µ(x)χ[τ(ek),τ(1))‖E
≤ ‖µ(xn)− µ(x)‖E + ‖µ(x)χ[τ(ek),τ(1))‖E .

Let ε > 0. Since x and µ(x) are order continuous by Proposition 2.3,
‖xe⊥k ‖E(M,τ) → 0, ‖µ(x)χ[τ(ek),τ(1))‖E → 0 and ‖µ(x)χ[0,τ(p⊥j ))‖E → 0 as

k, j → ∞. Therefore there exist k0, j0 ∈ N such that ‖xe⊥k0‖E(M,τ) ≤ ε/5,
‖µ(x)χ[τ(ek0

),τ(1))‖E ≤ ε/5 and ‖µ(x)χ[0,τ(p⊥j0
))‖E ≤ ε/20. Observe that

‖qnk‖E(M,τ) = ‖Vn(χ[0,τ(ek)))‖E(M,τ) = ‖χ[0,τ(ek))‖E = ‖ek‖E(M,τ) and 1 =
qnk+q⊥nk = qnk+q⊥nk(ek+e⊥k ) = qnk+q⊥nkek+q⊥nke

⊥
k , n, k ∈ N. This, combined

with inequalities (2.1) and (2.2), implies that for all n ∈ N,

‖x−xn‖E(M,τ) ≤ ‖(x− xn)qnk0‖E(M,τ) + ‖(x− xn)q⊥nk0ek0‖E(M,τ)

+ ‖xq⊥nk0e
⊥
k0‖E(M,τ) + ‖xnq⊥nk0e

⊥
k0‖E(M,τ)

≤ ‖(x− xn)qnk0‖E(M,τ) + ‖(x− xn)ek0‖E(M,τ)

+ ‖xe⊥k0‖E(M,τ) + ‖xnq⊥nk0‖E(M,τ)

≤ 2‖(x−xn)pj0‖M‖ek0‖E(M,τ) + 3‖µ(xn)−µ(x)‖E +3ε/5.

Since ‖(x − xn)pj0‖M → 0 and ‖µ(xn) − µ(x)‖E → 0 as n → ∞, there
exists N ∈ N such that for all n ≥ N , ‖(x− xn)pj0‖M ≤ ε/(10‖ek0‖E(M,τ))
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and ‖µ(xn) − µ(x)‖E ≤ ε/15. Consequently, ‖x − xn‖E(M,τ) ≤ ε for all
n ≥ N .

Suppose now that for some n ∈ N, µ∞(xn) > 0. Then µ(xn) > cχ[0,τ(1))

for some constant c > 0 and therefore µ(1) = χ[0,τ(1)) ∈ E, which implies
that 1 ∈ E(M, τ). By (2.1), it follows that

‖x− xn‖E(M,τ) ≤ ‖(x− xn)pj‖M‖1‖E(M,τ) + ‖µ(xn)− µ(x)‖E
+ 2‖µ(x)χ[0,τ(p⊥j ))‖E

for all n, j ∈ N. Therefore similarly to the previous case, one can show that
‖x− xn‖E(M,τ) → 0 as n→∞, and the claim follows.

Theorem 2.5. Let E be fully symmetric and x be an order continuous
element of E(M, τ). If the singular value function µ(x) is a MLUR point of
BE0 then x is a MLUR point of BE0(M,τ).

Proof. Let µ(x) ∈ SE0 be a MLUR point of BE0 , and suppose that we
have ‖2x− yn − zn‖E(M,τ) → 0, {yn}, {zn} ⊂ BE0(M,τ). By Lemma 2.1,

‖µ(x)− µ(yn)‖E → 0 and ‖µ(x)− µ(zn)‖E → 0.
Also

‖2x− (yn + x)/2− (zn + x)/2‖E(M,τ) = ‖x− yn/2− zn/2‖E(M,τ) → 0,

with (yn + x)/2, (zn + x)/2 in the unit ball of E0(M, τ). Again, referring to
Lemma 2.1 we get

‖µ(x)− µ((yn + x)/2)‖E → 0 and ‖µ(x)− µ((zn + x)/2)‖E → 0.

Now, Lemma 2.2 yields yn
τ−→ x and zn

τ−→ x. Thus ‖x− yn‖E(M,τ) → 0 and
‖x−zn‖E(M,τ) → 0 by Proposition 2.4, and x is a MLUR point ofBE0(M,τ).

Next, we want to establish that if x ∈ SE(M,τ) is strongly extreme,
then µ(x) is a strongly extreme point of BE . We will need the following
elementary lemma.

Lemma 2.6. Let x ∈ S(M, τ). If n(x) ∼ n(x∗), then there exists an
isometry w such that x = w|x|.

Proof. Suppose that n(x) ∼ n(x∗), that is, n(x) = v∗v and n(x∗) = vv∗,
where v is a partial isometry. Let x = u|x| be a polar decomposition of x,
that is, u is a partial isometry with Keru = Kerx. Set w = u + v. We
claim that w is an isometry, that is, w∗w = 1. To see this, note first that
since Keru∗ = Kerx∗, u∗vv∗ = u∗n(x∗) = 0. Thus |v∗u|2 = u∗vv∗u = 0 and
v∗u = 0. Hence

w∗w = (u∗ + v∗)(u+ v) = u∗u+ u∗v + v∗u+ v∗v

= u∗u+ (v∗u)∗ + v∗u+ v∗v = s(x) + n(x) = 1,

proving that w is an isometry.
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Since v∗v is a projection on Ker⊥ v and 0 = (|x|n(x))∗ = n(x)|x| =
v∗v|x|, it follows that Range |x| ⊂ Ker v. Consequently, v|x| = 0. Therefore

w|x| = (u+ v)|x| = u|x|+ v|x| = u|x| = x,

and the proof is complete.

Theorem 2.7. Suppose that the trace τ onM is σ-finite. If x is a MLUR
point of BE(M,τ) then µ(x) is a MLUR point of BE and either

(i) µ∞(x) = 0, or
(ii) n(x)Mn(x∗) = 0 and |x| ≥ µ∞(x)s(x).

Proof. Recall that there exists a ∗-isomorphism π̃ : x 7→ 1 ⊗ x from
S(M, τ) onto S(C1⊗M, κ), which is also an isometry from E(M, τ) onto
E(C1 ⊗M, κ). Hence x is a MLUR point in E(M, τ) if and only if 1 ⊗ x
is a MLUR point in E(C1⊗M, κ). Since also µ̃(1⊗ x) = µ(x), where µ̃ is
the singular value function computed with respect to the trace κ and the
nonatomic von Neumann algebra C1⊗M, without loss of generality we can
assume that the von Neumann algebra M is nonatomic.

Suppose that x is a MLUR point of the unit ball in E(M, τ). Since every
strongly extreme point is extreme, conditions (i) and (ii) are satisfied by the
well known criterion on extreme points in BE(M,τ) [5]. It remains to show
that µ(x) is a MLUR point of BE .

Assume first that τ(s(x)) = ∞. By Proposition 1.1(2) and by (ii), we
have µ(|x|−µ∞(x)s(x)) = µ(x)−µ∞(x). Consequently, µ∞(|x|−µ∞(x)s(x))
= 0 and |x| − µ∞(x)s(x) ∈ S+

0 (M, τ). Also, in view of s(x)|x| = |x|s(x) we
have

s(x)(|x| − µ∞(x)s(x)) = (|x| − µ∞(x)s(x))s(x) = |x| − µ∞(x)s(x).

Hence Proposition 1.3 applied to the element |x|−µ∞(x)s(x) with p = s(x)
yields a ∗-isomorphism W from S([0,∞),m) into s(x)S(M, τ)s(x) such that

W (µ(|x| − µ∞(x)s(x))) = |x| − µ∞(x)s(x) and µ(W (f)) = µ(f)

for all f ∈ S([0,∞),m). As W (1) = s(x), where 1 = χ[0,∞), it follows that

|x| − µ∞(x)s(x) = W (µ(|x| − µ∞(x)s(x))) = W (µ(x)− µ∞(x))
= W (µ(x))− µ∞(x)W (1) = W (µ(x))− µ∞(x)s(x),

and consequently W (µ(x)) = |x|.
Let ‖µ(x) + λfn‖E → 1 for λ = ±1, where fn ∈ BE , n ∈ N. Clearly,

lim
n

∥∥|x|+ λW (fn)
∥∥
E(M,τ)

= lim
n
‖W (µ(x)) + λW (fn)‖E(M,τ)

= lim
n
‖µ(x) + λfn‖E = 1.
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Let x = u|x| be a polar decomposition of x. Since for λ = ±1,

lim
n
‖x+ λuW (fn)‖E(M,τ) = lim

n
‖u|x|+ λuW (fn)‖E(M,τ)

≤ lim
n

∥∥|x|+ λW (fn)
∥∥
E(M,τ)

= 1

and ‖x‖E(M,τ) = 1, by Lemma 1.5 we have

lim
n
‖x+ λuW (fn)‖E(M,τ) = 1, λ = ±1.

Using the assumption that x is a strongly extreme point, we get the
convergence ‖uW (fn)‖E(M,τ) → 0. Recall that u∗u = s(x). Hence, also
‖s(x)W (fn)‖E(M,τ) → 0. But the image of the isomorphism W is contained
in s(x)S(M, τ)s(x), where the unit element is s(x). Therefore s(x)W (fn) =
W (fn) and consequently

‖fn‖E = ‖µ(fn)‖E = ‖µ(W (fn))‖E = ‖W (fn)‖E(M,τ) → 0.

This concludes the proof in the case when τ(s(x)) =∞.
Suppose now that τ(s(x)) <∞. Thus µ∞(x) = 0. Let x = u|x| be a polar

decomposition of x. Since s(x) = u∗u and s(x∗) = uu∗, we have s(x) ∼ s(x∗)
and τ(s(x∗)) = τ(s(x)) < ∞. Hence s(x) and s(x∗) are finite, equivalent
projections in M and by [34, Chapter 5, Proposition 1.38], n(x) ∼ n(x∗).
Therefore by Lemma 2.6 there exists an isometry w such that x = w|x|.

Let ‖µ(x) + λfn‖E → 1 for λ = ±1, where fn ∈ BE , n ∈ N. Proposi-
tion 1.2, applied to the operator |x|, implies the existence of a ∗-isomorphism
V from S([0, α),m) into S(M, τ) such that V (µ(x)) = |x| and µ(V (f)) =
µ(f) for all f ∈ S([0, α),m). Note that

lim
n

∥∥|x| ± V (fn)
∥∥
E(M,τ)

= lim
n
‖V (µ(x))± V (fn)‖E(M,τ)

= lim
n
‖µ(x)± fn‖E = 1.

Since w is an isometry, for λ = ±1 we have

lim
n
‖x+ λwV (fn)‖E(M,τ) = lim

n

∥∥w|x|+ λwV (fn)
∥∥
E(M,τ)

= lim
n

∥∥|x|+ λV (fn)
∥∥
E(M,τ)

= 1.

Now as x is a MLUR point of BE(M,τ), we get ‖wV (fn)‖E(M,τ) → 0. Hence

lim
n
‖fn‖E = lim

n
‖V (fn)‖E(M,τ) = lim

n
‖wV (fn)‖E(M,τ) = 0,

which proves that µ(x) is a MLUR point of BE , and ends the proof.

The next corollary combines the results of Theorems 2.5 and 2.7. It
follows immediately from the well known fact that any MLUR space E is
order continuous [29].
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Corollary 2.8. Let E be a fully symmetric function space on [0, α),
α = τ(1), andM be a von Neumann algebra with a faithful, normal, σ-finite
trace τ .

(1) Let x be an order continuous element of E(M, τ). Then µ(x) is a
MLUR point of BE0 if and only if x is a MLUR point of BE0(M,τ).

(2) E is a MLUR space if and only if E(M, τ) is a MLUR space.

Before proving the next theorem, we shall need a version of Lemma 2.1
for a symmetric sequence space E and the unitary matrix space CE . The
proof of the atomic variant of Lemma 2.1 can be conducted in the same way
as for symmetric function spaces, replacing singular value functions with
sequences of singular numbers.

Theorem 2.9. Let E ⊂ c0 be a fully symmetric sequence space. Then
CE is a MLUR space if and only if E is a MLUR space.

Proof. Since E is isometrically embedded in CE [2, Proposition 1.1], if
CE is a MLUR space then so is E. As explained in the preliminary section,
CE = G(B(H), tr) and ‖x‖CE

= ‖x‖G(B(H),tr) for any compact operator x.
Therefore proceeding as in the proof of Theorem 2.5, we can show that
if E is a MLUR space then so is CE . Indeed, let s(x) = {sn(x)}∞n=1 be
a MLUR point of BE , and suppose that ‖2x − yn − zn‖CE

→ 0, where
{yn}, {zn} ⊂ BCE

. By Lemma 2.1 for the symmetric sequence space E,

‖s(x)− s(yn)‖E → 0, ‖s(x)− s((yn + x)/2)‖E → 0,
‖s(x)− s(zn)‖E → 0, ‖s(x)− s((zn + x)/2)‖E → 0.

Then, since µ(x) =
∑∞

i=1 si(x)χ[i−1,i) and µ(yn) =
∑∞

i=1 si(yn)χ[i−1,i) for all
n ∈ N, we have

‖µ(x)− µ(yn)‖G =
∥∥∥ ∞∑
i=1

(si(x)− si(yn))χ[i−1,i)

∥∥∥
G

= ‖s(x)− s(yn)‖E → 0.

Similarly, one can show that ‖µ(x)−µ((yn +x)/2)‖G → 0, ‖µ(x)−µ(zn)‖G
→ 0 and ‖µ(x) − µ((zn + x)/2)‖G → 0. Now, by Lemma 2.2 it follows
that yn

tr−→ x and zn
tr−→ x. Consequently, by Proposition 2.4 applied to the

symmetric space G(B(H), tr) it follows that

‖x−yn‖CE
= ‖x−yn‖G(B(H),tr)→ 0 and ‖x−zn‖CE

= ‖x−zn‖G(B(H),tr)→ 0,

proving that x is a MLUR point of BCE
. Therefore if E is a MLUR space

then so is CE .

3. Complex extreme points and complex rotundity. The main
result of this section, Theorem 3.11, gives a criterion for an operator x to
be a complex extreme point of BE(M,τ). This criterion is analogous to the
characterization of extreme points obtained in [5, 18]. We will need several
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auxiliary results. The first two lemmas describe elementary characteristics
of extreme points.

Lemma 3.1. Let x, y ∈ BE(M,τ) and suppose that µt(x) ≤ µt(y) for all
t ∈ [0,∞). If there exists t0 > 0 such that µt0(x) < µt0(y) then µ(x) is not
a C-extreme point of BE.

Proof. By the assumption µ(x), µ(y) ∈ BE and for all t > 0, µt(x) ≤
µt(y). Suppose that µ(x) is C-extreme. Then by Theorem 1.4(1), µ(x) is
an UM point in its real part Er. If µt0(x) < µt0(y) for some t0 > 0, then
by the right continuity of the singular value function, there exists a set A
of positive measure such that µt(x) < µt(y) for every t ∈ A. By the upper
monotonicity of µ(x) we get

1 = ‖µ(x)‖E < ‖µ(y)‖E ,
contradicting the fact that µ(y) ∈ BE .

Lemma 3.2. Let x ∈ S(M, τ) be a self-adjoint operator. Then x ∈ C-
ext(BEh(M,τ)) if and only if x ∈ C-ext(BE(M,τ)).

Proof. It is enough to show one implication. Suppose that x ∈ SE(M,τ),
x = x∗ and x ∈ C-ext(()BEh(M,τ)). Let x + λy ∈ BE(M,τ), λ = ±1,±i,
where y ∈ BE(M,τ). Setting y1 = (y∗ + y)/2 and y2 = (y − y∗)/(2i), we
get y = y1 + iy2, where both y1 and y2 are self-adjoint. Note that for all
λ = ±1,±i,

‖x+ λy1‖E(M,τ) = ‖x+ λ(y + y∗)/2‖E(M,τ)

≤ ‖x+ λy‖E(M,τ)/2 + ‖x+ λy∗‖E(M,τ)/2

= ‖x+ λy‖E(M,τ)/2 + ‖x+ λy‖E(M,τ)/2 ≤ 1,

and

‖x+ λy2‖E(M,τ) = ‖x+ λ(y − y∗)/(2i)‖E(M,τ)

≤ ‖x− λiy‖E(M,τ)/2 + ‖x+ λiy∗‖E(M,τ)/2

= ‖x− λiy‖E(M,τ)/2 + ‖x− λiy‖E(M,τ)/2 ≤ 1.

As x is a C-extreme point, it follows that y1 = y2 = 0 and so y = 0.

Lemma 3.3. For any x ∈ S(M, τ), n(x)S(M, τ)n(x∗) = 0 whenever
n(x)Mn(x∗) = 0.

Proof. Suppose that n(x)Mn(x∗) = 0 and let y ∈ S(M, τ). Recall that
if a is a closed linear operator with the domain D(a) = H, then by the Closed
Graph Theorem, a ∈ B(H). Furthermore, if a is a bounded linear operator
affiliated with M, that is, ba = ab for all b ∈ M′, then a ∈ (M′)′ = M.
Since e|y|[0, n](H) ⊂ D(|y|) = D(y), we have ye|y|[0, n] ∈ B(H) and by the
τ -measurability of y, ye|y|[0, n] is affiliated with M. Hence for all n ∈ N,
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ye|y|[0, n] ∈ M and by assumption n(x)ye|y|[0, n]n(x∗) = 0. We will now
show that

n(x)ye|y|[0, n]n(x∗) τ−→ n(x)yn(x∗) as n→∞.
By the τ -measurability of |y| there exists n1 ∈ N for which τ(e|y|(n1,∞))
<∞. Since

e|y|(n1,∞)− e|y|(n,∞) ↑ e|y|(n1,∞),

by the normality of trace τ it follows that

τ(e|y|(n1,∞)− e|y|(n,∞))→ τ(e|y|(n1,∞)),

where for n ≥ n1,

τ(e|y|(n1,∞)− e|y|(n,∞)) = τ(e|y|(n1,∞))− τ(e|y|(n,∞)).

Thus τ(e|y|(n,∞))→ 0 as n→∞. Consequently, for all t ∈ R+,

µt(n(x)ye|y|[0, n]n(x∗)− n(x)yn(x∗)) = µt(n(x)ye|y|(n,∞)n(x∗))

≤ µt(ye|y|(n,∞)) = µt(y)χ[0,τ(e|y|(n,∞)))(t)→ 0.

It follows that n(x)ye|y|[0, n]n(x∗) τ−→ n(x)yn(x∗) [19, Lemma 3.4], and since
n(x)ye|y|[0, n]n(x∗) = 0 for all n ∈ N, the claim follows.

Lemma 3.4. Let x ∈ S(M, τ). Then |x| ≥ µ∞(x)s(x) if and only if
|x∗| ≥ µ∞(x)s(x∗).

Proof. Suppose that |x| ≥ µ∞(x)s(x). Let x = u|x| be a polar decom-
position of x. Then u|x|u∗ = |x∗| and |x∗| ≥ µ∞(x)us(x)u∗. Indeed,

〈|x∗|ξ, ξ〉 = 〈u|x|u∗ξ, ξ〉 = 〈|x|u∗ξ, u∗ξ〉 ≥ µ∞(x)〈s(x)u∗ξ, u∗ξ〉
= µ∞(x)〈us(x)u∗ξ, ξ〉

for any ξ in the domain of |x∗|. Applying now the well known equalities
s(x) = u∗u and s(x∗) = uu∗, we get us(x)u∗ = uu∗uu∗ = s(x∗), and so
|x∗| ≥ µ∞(x)s(x∗).

Conversely, if |x∗| ≥ µ∞(x)s(x∗), then by the above argument |x| =
|(x∗)∗| ≥ µ∞(x)s(x).

We shall need the following results, in particular Corollary 3.6, to prove
that x is a complex extreme point whenever µ(x) is.

Lemma 3.5. Let x ∈ S(M, τ) and x ≥ µ∞(x)1. If µ(x) ∈ C-ext(BE)
then x ∈ C-ext(BE(M,τ)).

Proof. Suppose that µ(x) ∈ C-ext(BE) and x ± y, x ± iy belong to
BE(M,τ) for some y ∈ BE(M,τ). In view of Lemma 3.2, we can assume that
y is a self-adjoint operator. Now by Proposition 1.1(4), for all t > 0,

µt(x) ≤ µt(x+ iy).
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Since µ(x) ∈ C-ext(BE) and µ(x+ iy) ∈ BE , by Lemma 3.1 it follows that
for all t > 0,

µt(x) = µt(x+ iy).

Then Proposition 1.1(5) implies that y = 0, and the claim follows.

Corollary 3.6. If µ(x) ∈ C-ext(BE) and |x| ≥ µ∞(x)s(x), then
|x|+ µ∞(x)n(x) ∈ C-ext(BE(M,τ)). Consequently, if µ(x) ∈ C-ext(BE) and
µ∞(x) = 0, then |x| ∈ C-ext(BE(M,τ)).

Proof. This follows immediately from Lemma 3.5, since |x| ≥ µ∞(x)s(x)
implies that |x|+µ∞(x)n(x) ≥ µ∞(x)1, and by Proposition 1.1(1), we have
µ(|x|+ µ∞(x)n(x)) = µ(x).

We are now ready for our first main claim in this section.

Theorem 3.7. An element x ∈ SE(M,τ) is a C-extreme point of BE(M,τ)

whenever µ(x) is a C-extreme point of BE and one of the following condi-
tions holds:

(i) µ∞(x) = 0,
(ii) n(x)Mn(x∗) = 0 and |x| ≥ µ∞(x)s(x).

Proof. Suppose that µ(x) is a C-extreme point and x± y, x± iy belong
to BE(M,τ) for some y ∈ BE(M,τ). Let x = u|x| and x∗ = u∗|x∗| be polar
decompositions of x and x∗, respectively. Since Keru = Kerx and Keru∗ =
Kerx∗, we have un(x) = u∗n(x∗) = 0. Hence x = u(|x| + µ∞(x)n(x))
and x∗ = u∗(|x∗| + µ∞(x)n(x∗)). Thus |x| + µ∞(x)n(x) = u∗x and |x∗| +
µ∞(x)n(x∗) = ux∗, and so

|x|+ µ∞(x)n(x) + λu∗y, |x∗|+ µ∞(x)n(x∗) + λuy∗ ∈ BE(M,τ)

for all λ = ±1,±i.
In view of the assumption (i) or (ii) and Lemma 3.4, |x| ≥ µ∞(x)s(x) and

|x∗| ≥ µ∞(x)s(x∗). Since µ(x) = µ(x∗) is a C-extreme point, Corollary 3.6
implies that |x| + µ∞(x)n(x) and |x∗| + µ∞(x)n(x∗) are complex extreme
points of BE(M,τ). Therefore u∗y = uy∗ = 0. Hence s(x∗)y = uu∗y = 0
and ys(x) = yu∗u = 0, since (yu∗u)∗ = u∗uy∗ = 0. It follows that y =
(s(x∗) + n(x∗))y(s(x) + n(x)) = n(x∗)yn(x).

If (ii) is satisfied, then by Lemma 3.3, n(x∗)S(M, τ)n(x) = 0 and con-
sequently y = n(x∗)yn(x) = 0.

Consider now the case when (i) holds true, that is, µ∞(x) = 0. Then

|x+ λy|2 = |x+ λn(x∗)yn(x)|2 = (x+ λn(x∗)yn(x))∗(x+ λn(x∗)yn(x))

= (x∗ + λn(x)y∗n(x∗))(x+ λn(x∗)yn(x))

= x∗x+ λx∗n(x∗)yn(x) + λn(x)y∗n(x∗)x+ n(x)y∗n(x∗)n(x∗)yn(x)

= |x|2 + |n(x∗)yn(x)|2.
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Also

(|x|+ |y|)2 = (|x|+ |n(x∗)yn(x)|)2

= |x|2 + |x| |n(x∗)yn(x)|+ |n(x∗)yn(x)||x|+ |n(x∗)yn(x)|2.

Let n(x∗)yn(x) = v|n(x∗)yn(x)| be a polar decomposition of n(x∗)yn(x).
Then |n(x∗)yn(x)| = v∗n(x∗)yn(x) = n(x)y∗n(x∗)v, and so |x| |n(x∗)yn(x)|
= u∗xn(x)y∗n(x∗)v = 0. Also |n(x∗)yn(x)| |x| = 0. Hence

|x+ λy| = |x|+ |y| for λ = ±1,±i,

and so |x| + |y| ∈ BE(M,τ). Since µ(|x| + |y|) ≥ µ(x), Lemma 3.1 implies
that µ(|x|+ |y|) = µ(x). By Proposition 1.1(3), if |y| 6= 0 then µs(|x|+ |y|) >
µs(|x|) for some s > 0. Thus |y| = 0, and consequently y = 0. This concludes
the proof in the case when µ∞(x) = 0.

To show the converse statement we will need the next two lemmas.

Lemma 3.8. If x is a C-extreme point of BE(M,τ) then |x| ≥ µ∞(x)s(x).

Proof. Suppose that µ∞(x) > 0. Let x = u|x| be a polar decomposition
of x. Fix 0 < ε < 1 and consider the operators

a± = |x| ± ε|x|e|x|[0, β], b± = |x| ± iε|x|e|x|[0, β],

where β = 1
1+εµ∞(x). Clearly,

a− = |x|e|x|(β,∞) + (1− ε)|x|e|x|[0, β],

a+ = |x|e|x|(β,∞) + (1 + ε)|x|e|x|[0, β].

Hence 0 ≤ a− ≤ |x|, and so µ(a−) ≤ µ(x). Consider now the real-valued
function f(t) = (1 + ε)tχ[0,β] + tχ(β,∞), t ≥ 0. We have a+ = f(|x|), and it
follows that

ea+(λ,∞) = e|x|(f−1(λ,∞)) =

 e|x|
(

1
1 + ε

λ,∞
)

if λ < µ∞(x),

e|x|(λ,∞) if λ ≥ µ∞(x),

for all λ ≥ 0. Since µ∞(x) = inf{s ≥ 0 : τ(e|x|(s,∞)) < ∞}, we have
τ(ea+(λ,∞)) =∞ for all λ < µ∞(x). Thus for any t > 0,

µt(a+) = inf{λ : τ(ea+(λ,∞)) ≤ t} = inf{λ ≥ µ∞(x) : τ(e|x|(λ,∞)) ≤ t}
= µt(x),

which yields µ(a+) = µ(x). Now observe that

|b−|2 = |b+|2 = b∗−b− = b∗+b+ = |x|2 + ε2|x|2e|x|[0, β]

≤ |x|2 + ε2|x|2e|x|[0, β] + 2ε|x|2e|x|[0, β] = (|x|+ ε|x|e|x|[0, β])2 = a2
+.
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Hence

µ2(b−) = µ2(b+) = µ(|b+|2) = µ(|b−|2) ≤ µ2(a+) = µ2(x)

and µ(b+) = µ(b−) ≤ µ(x).
Thus |x|+λε|x|e|x|[0, β] ∈ BE(M,τ), and so x+λεu|x|e|x|[0, β] ∈ BE(M,τ)

for all λ = ±1,±i. As x is a C-extreme point, u|x|e|x|[0, β] = 0. But u∗u|x| =
|x| and therefore

|x|e|x|[0, β] = |x|e|x|
[
0,

1
1 + ε

µ∞(x)
]

= 0 for every 0 < ε < 1.

Since ε can be arbitrarily small, it follows that |x|e|x|[0, µ∞(x)) = 0. Hence
0 =

	µ∞(x)
0 λ de|x|(λ), which implies that e|x|(0, µ∞(x)) = 0. Therefore s(x) =

e|x|(0,∞) = e|x|[µ∞(x),∞), and finally

|x| =
�

[µ∞(x),∞)

λ de|x|(λ) ≥ µ∞(x)e|x|[µ∞(x),∞) = µ∞(x)s(x).

Lemma 3.9. If x is a C-extreme point of BE(M,τ) then n(x)Mn(x∗) = 0
or µ∞(x) = 0.

Proof. Assume for a contradiction that n(x)Mn(x∗) 6= 0 and µ∞(x) > 0,
while x is a complex extreme point. By [34, Chapter 5, Lemma 1.7] there
exist nonzero projections p, q ∈ P(M) such that p ≤ n(x), q ≤ n(x∗) and
p ∼ q, that is, there exists a partial isometry v such that p = v∗v and
q = vv∗.

Let x = u|x| be a polar decomposition of x. Set w = u+v. We claim that
w is a partial isometry and x = w|x|. Indeed, since Keru∗ = Kerx∗ we have
u∗n(x∗) = 0 and u∗q = 0. Now 0 = u∗qu = u∗vv∗u = (v∗u)∗(v∗u) = |v∗u|2.
Therefore v∗u = 0 and u∗v = 0. Hence

|w|2 = |u+ v|2 = (u∗ + v∗)(u+ v) = u∗u+ u∗v + v∗u+ v∗v

= u∗u+ v∗v = s(x) + p,

and thus w is a partial isometry, since w∗w is a projection. Now, since
0 = (|x|n(x)p)∗ = (|x|p)∗ = p|x| = v∗v|x| and v∗v is a projection onto
Ker⊥ v, it follows that Range |x| ⊂ Ker v, and therefore v|x| = 0. Hence
x1 = u|x| = u|x|+ v|x| = w|x|.

Note that
∣∣|x| + λµ∞(x)n(x)

∣∣ = |x| + µ∞(x)n(x) for all λ = ±1,±i,
since |x|n(x) = n(x)|x| = 0. Furthermore, by Proposition 1.1(1), we have
µ(|x| + µ∞(x)n(x)) = µ(x). Hence |x| + λµ∞(x)n(x) ∈ BE(M,τ) for all
λ = ±1,±i. Moreover,

µ(x+ λµ∞(x)wn(x)) = µ(w|x|+ λµ∞(x)wn(x))
≤ µ(|x|+ λµ∞(x)n(x)) = µ(x),
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which implies that x+ λµ∞(x)wn(x) ∈ BE(M,τ) for all λ = ±1,±i. The as-
sumption that x is a C-extreme point yields µ∞(x)wn(x) = 0. But µ∞(x)> 0
and therefore wn(x) = 0. Since x = u|x|, we know that Keru = Kerx, and
so un(x) = 0. Hence 0 = wn(x) = (u+ v)n(x) = vn(x). But then

p = pn(x) = v∗vn(x) = 0,

which contradicts the fact that p 6= 0.

Theorem 3.10. Suppose that the trace τ on M is σ-finite. If x is a
complex extreme point of BE(M,τ) then µ(x) is a complex extreme point of
BE and either

(i) µ∞(x) = 0, or
(ii) n(x)Mn(x∗) = 0 and |x| ≥ µ∞(x)s(x).

Proof. Suppose that x is a C-extreme point of the unit ball in E(M, τ).
Since π̃ : x 7→ 1 ⊗ x is a ∗-isometry from E(M, τ) onto E(C1 ⊗M, κ),
clearly 1 ⊗ x is a C-extreme point in E(C1 ⊗M, κ), where C1 ⊗M is a
nonatomic von Neumann algebra. Moreover, π̃ preserves the singular value
function, and therefore we can assume that the von Neumann algebraM is
nonatomic.

Consider first the case τ(s(x)) = ∞. By Lemma 3.8, |x| ≥ µ∞(x)s(x).
Also µ(|x| − µ∞(x)s(x)) = µ(x)− µ∞(x) by Proposition 1.1(2), and conse-
quently µ∞(|x| − µ∞(x)s(x)) = 0. Clearly,

s(x)(|x| − µ∞(x)s(x)) = (|x| − µ∞(x)s(x))s(x) = |x| − µ∞(x)s(x).

Proposition 1.3 applied to the operator |x| −µ∞(x)s(x) and p = s(x) yields
a ∗-isomorphism W from S([0,∞),m) into s(x)S(M, τ)s(x) such that

W (µ(|x| − µ∞(x)s(x))) = |x| − µ∞(x)s(x) and µ(W (f)) = µ(f)

for all f ∈ S([0,∞),m). Since W (1) = s(x),

|x| − µ∞(x)s(x) = W (µ(|x| − µ∞(x)s(x))) = W (µ(x)− µ∞(x))
= W (µ(x))− µ∞(x)W (1) = W (µ(x))− µ∞(x)s(x),

and consequently W (µ(x)) = |x|.
Let now µ(x) + λf ∈ BE for all λ = ±1,±i, where f ∈ BE . Since W

is an isometry,
∥∥|x|+ λW (f)

∥∥
E(M,τ)

= ‖W (µ(x)) + λW (f)‖E(M,τ) ≤ 1 for
λ = ±1,±i. Let x = u|x| be a polar decomposition of x. Clearly,

x+ λuW (f) = u|x|+ λuW (f) ∈ BE(M,τ), λ = ±1,±i.
Since x is a C-extreme point, uW (f) = 0. Recall that u∗u = s(x). Hence
s(x)W (f) = 0. Note also that W (f) ∈ s(x)S(M, τ)s(x). Therefore W (f) =
s(x)W (f) = 0, and consequently f = 0.

Consider now the case when τ(s(x)) < ∞, and hence µ∞(x) = 0.
By Proposition 1.2 applied to |x|, there exists a ∗-isomorphism V from
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S([0, α),m) into S(M, τ) such that V (µ(x)) = |x| and µ(V (f)) = µ(f) for
all f ∈ S([0, α),m). Furthermore, since s(x) ∼ s(x∗), we have τ(s(x∗)) =
τ(s(x)) < ∞ and it follows from [34, Chapter 5, Proposition 1.38] that
n(x) ∼ n(x∗). Hence by Lemma 2.6, there exists an isometry w such that
x = w|x|.

Let µ(x) + λf ∈ BE , λ = ±1,±i and f ∈ BE . Then

‖x+ λwV (f)‖E(M,τ) =
∥∥w|x|+ λwV (f)

∥∥
E(M,τ)

=
∥∥|x|+ λV (f)

∥∥
E(M,τ)

= ‖V (µ(x)) + λV (f)‖E(M,τ) = ‖µ(x) + λf‖E ≤ 1.

Now by the assumption that x is a C-extreme point, wV (f) = 0. Since both
w and V are injective, f = 0.

We finish this section with a complete characterization of C-extreme
points in BE(M,τ). The first result is an immediate consequence of Theo-
rems 3.7 and 3.10.

Theorem 3.11. Let E be a symmetric space on [0, α), α = τ(1), and
M be a semifinite von Neumann algebra with a faithful, normal, σ-finite
trace τ . An operator x is a complex extreme point of BE(M,τ) if and only if
µ(x) is a complex extreme point of BE and one of the following, not mutually
exclusive, conditions holds:

(i) µ∞(x) = 0,
(ii) n(x)Mn(x∗) = 0 and |x| ≥ µ∞(x)s(x).

Since µ∞(x) = 0 for every x ∈ E0, we immediately obtain the following
corollary.

Corollary 3.12. Let E be a symmetric space on [0, α), α = τ(1) and
M be a semifinite von Neumann algebra with a faithful, normal, σ-finite
trace τ . Then E0 is complex rotund if and only if E0(M, τ) is complex
rotund.

Theorem 3.13. Let E ⊂ c0 be a symmetric sequence space. Then CE is
complex rotund if and only if E is complex rotund.

Proof. Since E is isometrically embedded in CE [2], the claim that E
is a complex rotund space if CE has this property is immediate. As CE =
G(B(H), tr) and ‖x‖CE

= ‖x‖G(B(H),tr) for any compact operator x, the
proof of the converse implication is analogous to the proof of Theorem 3.7.

4. Complex local uniform rotund points and complex local uni-
form rotundity. In this section we study the relations between the com-
plex local uniform rotundity of the symmetric function space E and the com-
plex local uniform rotundity of the corresponding symmetric space E(M, τ)
of measurable operators.
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Theorem 4.1. Let E be strongly symmetric and x be an order continu-
ous element of E(M, τ). If µ(x) is a C-LUR point of BE0 then x is a C-LUR
point of BE0(M,τ).

Proof. Let x ∈ SE0(M,τ) and suppose that µ(x) is a C-LUR point of BE0 .

Case 1. Let x ≥ 0 and {yn} ⊂ BEh(M,τ), {yn} ⊂ E0(M, τ), be such
that ‖x+ iyn‖E(M,τ) → 1. By Proposition 1.1(4), µt(x+ iyn) ≥ µt(x) for all
t > 0. Since µ(x) is an ULUM point in E0 by Theorem 1.4(2), we have

(4.1) ‖µ(x)− µ(x+ iyn)‖E → 0.

Also µt(x+iyn/2) ≥ µt(x) for all t > 0 and ‖x+iyn/2‖E(M,τ) → 1. The latter
follows from the inequality 1 ≤ ‖x + iyn/2‖E(M,τ) ≤ ‖x + iyn‖E(M,τ)/2 +
‖x‖E(M,τ)/2 → 1 as n → ∞. Again, using the fact that µ(x) is an ULUM
point we conclude that

(4.2) ‖µ(x)− µ(x+ iyn/2)‖E → 0.

Denote an = x + iyn. From (4.2) it follows that ‖µ(x) − µ((x + an)/2)‖E
→ 0, and from (4.1) that ‖µ(x) − µ(an)‖E → 0. Applying now Lem-
ma 2.2 we get an

τ→ x. Finally, Proposition 2.4 implies that ‖yn‖E(M,τ) =
‖x− an‖E(M,τ) → 0.

Case 2. Let ‖x + λyn‖E(M,τ) → 1 for λ = ±1,±i, where x ≥ 0 and
{yn} ⊂ BE0(M,τ). Recall that for any n ∈ N, Re yn = (yn + y∗n)/2, Im yn =
(yn− y∗n)/(2i) are self-adjoint operators and yn = Re yn + i Im yn. Note that
by Proposition 1.1(4), µ(x+ i(yn + y∗n)/2) ≥ µ(x), and thus

1 ≤ ‖x+ iRe yn‖E(M,τ) ≤ 1
2‖x+ iyn‖E(M,τ) + 1

2‖x+ iy∗n‖E(M,τ)

= 1
2‖x+ iyn‖E(M,τ) + 1

2‖x− iyn‖E(M,τ).

Thus ‖x+iRe yn‖E(M,τ) → 1, and by Case 1, ‖Re yn‖E(M,τ) → 0. Similarly,
the inequality

1 ≤ ‖x+ i Im yn‖E(M,τ) ≤ 1
2‖x+ yn‖E(M,τ) + 1

2‖x− y
∗
n‖E(M,τ)

= 1
2‖x+ yn‖E(M,τ) + 1

2‖x− yn‖E(M,τ)

implies that ‖x+ i Im yn‖E(M,τ) → 1, and consequently ‖Im yn‖E(M,τ) → 0.
Therefore ‖yn‖E(M,τ) → 0.

Case 3. Suppose now that x is an arbitrary element of SE0(M,τ), {yn} ⊂
BE0(M,τ) and ‖x + λyn‖E(M,τ) → 1 for all λ = ±1,±i. Let x = u|x| be
a polar decomposition of x. Then for all λ = ±1,±i,

∥∥|x|+λu∗yn
∥∥
E(M,τ)

=

‖u∗x+λu∗yn‖E(M,τ)≤‖x+λyn‖E(M,τ), and so limn

∥∥|x|+λu∗yn
∥∥
E(M,τ)

≤ 1.
By Lemma 1.5, it follows that

lim
n

∥∥|x|+ λu∗yn
∥∥
E(M,τ)

= 1.
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Similarly, using the polar decomposition x∗ = u∗|x∗| of x∗, one can show
that

lim
n

∥∥|x∗|+ λuy∗n
∥∥
E(M,τ)

= 1.

Since µ(|x|) = µ(|x∗|) is a C-LUR point, by Case 2 we conclude that

‖u∗yn‖E(M,τ) → 0 and ‖uy∗n‖E(M,τ) = ‖ynu∗‖E(M,τ) → 0.

Hence, in view of s(x) = u∗u and s(x∗) = uu∗ we have

‖s(x∗)yn‖E(M,τ) → 0 and ‖yns(x)‖E(M,τ) → 0.

It is also easy to check that

|x+ λn(x∗)ynn(x)| =
∥∥|x|+ λ|n(x∗)yn(x)|

∥∥.
Combining the above and the equality 1 = n(x∗) + s(x∗) = n(x) + s(x), we
get∥∥|x|+ λ|n(x∗)ynn(x)|

∥∥
E(M,τ)

= ‖x+ λn(x∗)ynn(x)‖E(M,τ)

≤ ‖x+ λyn‖E(M,τ) + ‖s(x∗)yns(x)‖E(M,τ)

+ ‖s(x∗)ynn(x)‖E(M,τ)

+ ‖n(x∗)yns(x)‖E(M,τ) → 1.

Again, Lemma 1.5 yields limn

∥∥|x|+λ|n(x∗)ynn(x)|
∥∥
E(M,τ)

= 1, and by the
first case, ‖n(x∗)ynn(x)‖E(M,τ) → 0. Hence

‖yn‖E(M,τ)

≤ ‖n(x∗)ynn(x)‖E(M,τ) + 2‖s(x∗)yn‖E(M,τ) + ‖yns(x)‖E(M,τ) → 0,

and the proof is complete.

Theorem 4.2. Suppose that the trace τ on M is σ-finite. If x is a
C-LUR point of BE(M,τ) then µ(x) is a C-LUR point of BE and either

(i) µ∞(x) = 0, or
(ii) n(x)Mn(x∗) = 0 and |x| ≥ µ∞(x)s(x).

Proof. Since every C-LUR point is a C-extreme point, by Theorem 3.10,
(i) or (ii) is satisfied. The fact that µ(x) is a C-LUR point whenever x
is C-LUR can be proved analogously to the corresponding statement about
strongly extreme points in Theorem 2.7, replacing λ=±1 with λ=±1,±i.

Corollary 4.3. Let E be an order continuous symmetric space on
[0, α), α = τ(1), and M be a von Neumann algebra with a faithful, nor-
mal, σ-finite trace τ . Then E is a C-LUR space if and only if E(M, τ) is a
C-LUR space.

Remark 4.4. Note that if E is order continuous then E ⊂ E0, and the
norm on E is strongly symmetric.
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Theorem 4.5. Let E ⊂ c0 be an order continuous symmetric sequence
space. Then CE is a C-LUR space if and only if E is a C-LUR space.

Proof. Since E is isometrically embedded in CE , it follows that if CE
is a C-LUR space then so is E. Now CE = G(B(H), tr) and ‖x‖CE

=
‖x‖G(B(H),tr) for any compact operator x. Hence the proof of the converse
implication is analogous to the proof of Theorem 4.1.

5. C-LUR and C-MLUR properties. Let us discuss here the notions
of complex strongly extreme points and complex midpoint locally uniformly
rotund spaces. One can define a modulus of complex strong extremality
analogously to the modulus of strong extremality in the real case, introduced
by C. Finet in [20]. Let (X, ‖ ·‖) be a Banach space over the field of complex
numbers. For x ∈ SX and ε > 0, the modulus of complex strong extremality
at x is the number

∆(x, ε) = inf{1− |λ| : ∃y, ‖y‖ > ε, ‖λx± y‖ ≤ 1 and ‖λix± y‖ ≤ 1}.
The element x ∈ SX is said to be a C-MLUR point of BX , or a complex
strongly extreme point of BX , if ∆(x, ε) > 0 for any ε > 0. A Banach space
X is said to be complex midpoint locally uniformly rotund, or a C-MLUR
space, if every element of SX is a C-MLUR point.

We will demonstrate that the notions of C-LUR and C-MLUR points,
and hence the notions of C-LUR and C-MLUR spaces, are equivalent in any
complex Banach space. Consequently, in complex Banach spaces these com-
plex properties are not distinguishable, unlike the corresponding properties
LUR and MLUR [29]. We need the following lemma.

Lemma 5.1. An element x ∈ SX is a C-MLUR point if and only for any
{xn} ⊂ X, ‖x+ λxn‖ → 1 for all λ = ±1,±i implies that ‖xn‖ → 0.

Proof. Suppose that x is a C-MLUR point, that is, ∆(x, ε) > 0 for all
ε > 0. Let ‖x± xn‖ → 1 and ‖x± ixn‖ → 1, where {xn} ⊂ X. Set

cn = max
λ∈{±1,±i}

‖x+ λxn‖.

Clearly, cn → 1. If cn ≤ 1 for some n, then ‖x+λxn‖ ≤ 1 for all λ = ±1,±i,
and consequently xn = 0. Indeed, suppose that xn 6= 0. Then there exists
an ε > 0 such that ‖xn‖ > ε, ‖x ± xn‖ ≤ 1 and ‖ix ± xn‖ ≤ 1. But then
∆(x, ε) = 0, a contradiction. Therefore we can assume that cn > 1 for all
n ∈ N. Clearly, for all n ∈ N,

‖c−1
n x± c−1

n xn‖ ≤ 1 and ‖ic−1
n x± c−1

n xn‖ ≤ 1.

Denote λn = c−1
n , n ∈ N. Then for each n, the element an = c−1

n xn satisfies
‖λnx ± an‖ ≤ 1 and ‖iλnx ± an‖ ≤ 1. Hence ‖an‖ → 0 and consequently
‖xn‖ → 0: if not, then there exists an ε > 0 and a subsequence ank

such
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that ‖ank
‖ > ε, and since λn → 1,

∆(x, ε) = inf{1− |λ| : ∃y, ‖y‖ > ε, ‖λx± y‖ ≤ 1 and ‖λix± y‖ ≤ 1} = 0.

To prove the converse implication, assume that ∆(x, ε) = 0 for some ε > 0.
Then there exists a sequence {λn} ⊂ C satisfying |λn| ↑ 1 and for all
n ∈ N, there is an xn ∈ BX with ‖xn‖ ≥ ε such that ‖λnx ± xn‖ ≤ 1
and ‖iλnx± xn‖ ≤ 1. Therefore, for all n ∈ N we have

‖x± λ−1
n xn‖ ≤ |λn|−1 and ‖x± iλ−1

n xn‖ ≤ |λn|−1,

and since |λn| → 1, limn ‖x ± λ−1
n xn‖ ≤ 1 and limn ‖x ± iλ−1

n xn‖ ≤ 1. As
‖x‖ = 1, Lemma 1.5 yields limn ‖x±λ−1

n xn‖ = 1 and limn ‖x±iλ−1
n xn‖ = 1.

Hence there exists a subsequence {λ−1
nk
xnk
} with limk ‖λ−1

nk
xnk
‖ 6= 0 such

that limk ‖x± λ−1
nk
xnk
‖ = 1 and limk ‖x± iλ−1

nk
xnk
‖ = 1.

Now we can state the equivalence of C-LUR and C-MLUR properties.

Proposition 5.2. Let x ∈ SX . The following conditions are equivalent:

(i) x is a C-LUR point of BX .
(ii) For all ε > 0 there exists δ(ε) > 0 such that for all y ∈ X,

sup
λ=±1,±i

‖x+ λy‖ < 1 + δ implies ‖y‖ < ε.

(iii) For all {yn} ⊂ X, supλ=±1,±i ‖x+ λyn‖ → 1 implies ‖yn‖ → 0.
(iv) For all {yn} ⊂ X, ‖x ± yn‖ → 1 and ‖x ± iyn‖ → 1 implies

‖yn‖ → 0.
(v) x is a C-MLUR point of BX .

Proof. It is clear that (ii) implies (i), (iii) implies (iv) and conditions
(ii) and (iii) are equivalent. By Lemma 5.1, conditions (iv) and (v) are also
equivalent. It remains to show (i)⇒(ii) and (iv)⇒(iii).

Let ε > 0 and suppose that (i) holds. Hence for ε/2 > 0, there exists
δ(ε) > 0 such that for any y ∈ X, sup|λ|≤1 ‖x + λy‖ < 1 + δ(ε) implies
that ‖y‖ < ε/2. Assume now that supλ=±1,±i ‖x + λy‖ < 1 + δ. Then for
−1 ≤ c ≤ 1 and λ = ±1,±i we have

‖x+ cλy‖ ≤ ((1 + c)/2)‖x+ λy‖+ ((1− c)/2)‖x− λy‖ < 1 + δ.

Hence for all c ∈ R with |c| ≤ 1, ‖x + cy‖ < 1 + δ and ‖x + ciy‖ < 1 + δ.
Let λ = a+ bi ∈ C, with |λ| ≤ 1. Since |a|, |b| ≤ 1 it follows that

‖x+ λy/2‖ = ‖x+ ay/2 + biy/2‖ ≤ ‖x+ ay‖/2 + ‖x+ biy‖/2 < 1 + δ.

Consequently, sup|λ|≤1 ‖x + y/2‖ < 1 + δ and by (i), ‖y/2‖ < ε/2 and so
‖y‖ < ε. Therefore (ii) is satisfied.

To show (iv)⇒(iii), suppose that {yn} ⊂ X and supλ=±1,±i ‖x + λyn‖
→ 1. Then limn ‖x± yn‖ ≤ 1 and limn ‖x± iyn‖ ≤ 1. Thus by Lemma 1.5,
for all λ = ±1,±i we have limn ‖x+ λyn‖ = 1, and so by (iv), ‖yn‖ → 0.
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We finish with examples showing that complex uniform rotundity, com-
plex local uniform rotundity and complex rotundity do not coincide.

Example 5.3. (1) The space E = (`∞, ‖ · ‖) equipped with the norm
‖x‖ = ‖x‖∞+

∑∞
n=1 |x(n)|/2n−1 is complex rotund but not complex locally

uniformly rotund. One can show easily [26] that the unit vector 2−1e1 =
(2−1, 0, . . . ) is an UM point in BEr , so it is C-extreme point in BE , but not
an ULUM point so not a C-LUR point (Theorem 1.4).

(2) Orlicz–Lorentz spaces Λϕ,w are locally uniformly rotund and hence
C-LUR whenever ϕ is strictly convex and satisfies condition ∆2 [4]. However
if they are complex uniformly rotund then in addition to those conditions
on ϕ, the weight w must be regular [8]. So there exist Orlicz–Lorentz spaces
that are C-LUR but not complex uniformly rotund.
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[10] S. J. Dilworth, Complex convexity and the geometry of Banach spaces, Math. Proc.
Cambridge Philos. Soc. 99 (1986), 495–506.

[11] P. G. Dodds and T. K. Dodds, Some aspects of the theory of symmetric operator
spaces, in: First International Conference in Abstract Algebra (Kruger Park, 1993),
Quaestiones Math. 18 (1995), 47–89.

[12] P. G. Dodds, T. K. Dodds, and B. de Pagter, Noncommutative Banach function
spaces, Math. Z. 201 (1989), 583–597.

[13] —, —, —, Fully symmetric operator spaces, Integral Equations Operator Theory 15
(1992), 942–972.
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