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1. Introduction. Let A/k be an abelian variety over a field, let
R ≤ End(A) be a commutative ring of endomorphisms of A (here and below,
we regard the abelian varieties as schemes over a base, and this is also the
category in which our morphisms will live; in particular, End(A) denotes
endomorphisms of A defined over k; the same remark applies to statements
like “A is principally polarised”, etc.), and let K/k be a finite Galois ex-
tension with Galois group G. Let Γ be an R[G]-module, together with an
isomorphism ψ : Rn → Γ for some n. Attached to this data is the so-called
twist of A by Γ , denoted by B = Γ ⊗R A, which is an abelian variety over
k with the property that the base change BK = B ×k K is isomorphic
to (AK)n.

As soon as n > 1, B is, by its very definition, never absolutely simple.
But it can be simple over k, and to know when this is the case is important
for some applications (see e.g. [4]). If A′ is a proper abelian subvariety of A,
then Γ ⊗R A′ is a proper abelian subvariety of Γ ⊗R A. Similarly, if Γ ′ ≤ Γ
is an R-free R[G]-submodule of strictly smaller R-rank, then Γ ′ ⊗R A is
isogenous to a proper abelian subvariety of Γ ⊗R A. The purpose of this
note is to point out that, under some mild additional hypotheses (and in
particular over number fields in the generic case, when End(Ak̄)

∼= Z), these
are the only two ways in which B can fail to be simple.

As a concrete example, we mention the following generalisation of Howe’s
analysis [4]:

Theorem 1.1. Let A/k be a simple abelian variety of dimension 1 or 2
over a number field, let p be an odd prime number and let K/k be a Galois
extension with Galois group G of order p. If A is not absolutely simple or
not principally polarised, assume that p > 3. Let I be the augmentation ideal
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in Z[G], i.e. the kernel of the map Z[G]→ Z, g 7→ 1 for g ∈ G. Then I⊗ZA
is simple if and only if End(A)⊗Q does not contain the quadratic subfield
of Q(µp).

Remark 1.2. If p = 2, then I ⊗Z A is a quadratic twist of A, and so
also simple if A is. Since, for all p, I⊗Q is the unique non-trivial irreducible
Q[G]-module, the theorem completely deals with simplicity of those twists of
elliptic curves and of principally polarised absolutely simple abelian surfaces
that are trivialised by a cyclic prime degree extension.

Remark 1.3. By computing the endomorphism ring of I ⊗ Q as a
Q[G]-module, Howe [4] showed part of one implication in the case when
dim(A) = 1: he proved that if E/k is a non-CM elliptic curve, then I ⊗Z E
is simple. In the proof of the theorem that we present, one does not need
to know the endomorphism ring of I ⊗ Q to deduce the result for elliptic
curves; one does, however, need to know it to prove the statement for abelian
surfaces.

The same technique yields uniform statements for higher-dimensional
abelian varieties, where the restriction on p depends on the dimension of
the variety:

Theorem 1.4. Fix an integer d. There exists an integer p0 such that
for all number fields k, all simple abelian varieties A/k of dimension d, all
primes p > p0, and all Galois extensions K/k with cyclic Galois group G
of order p, the twist I ⊗Z A is simple if and only if End(A) ⊗ Q does not
contain a subfield of Q(µp) other than Q. Here, I is, as in Theorem 1.1, the
augmentation ideal in Z[G].

Similarly concrete results can be obtained for twists by other represen-
tations, and we give several more examples in the same vein in the last
section.

The tensor construction Γ⊗RA can be defined in a more general setting,
namely when Γ is merely assumed to be R-projective, rather than R-free.
The object Γ⊗RA then represents the functor on k-algebras T 7→ Γ⊗RA(T ).
Since we shall mainly be interested in R = Z, we will not indulge in this
generality here.

2. Endomorphisms of twists of abelian varieties. In this section
we begin by recalling (see [9, §III.1.3]) the definition of a twist of an abelian
variety by an Artin representation, and then give sufficient conditions for the
endomorphism ring of such a twist to be an integral domain, equivalently
for the twist to be simple. We strongly recommend [6] for a very thorough
treatment of twists of abelian varieties, and, more generally, of commutative
algebraic groups.
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Let Y/k be an abelian variety, and K/k a finite Galois extension with
Galois group G. A K/k-form of Y is a pair (X, f), where X/k is an abelian
variety, and f : YK → XK is an isomorphism, defined over K. There is
an obvious notion of isomorphism between such pairs, and the set of iso-
morphism classes of K/k-forms of Y is in bijection with the pointed set
H1(G,AutYK), where the G-action on AutYK is given by φσ = σ ◦ φ ◦ σ−1

for σ ∈ G and φ ∈ AutYK (we adhere to the common convention that the
superscript for the action is written on the right, even though this is actually
a left action). The bijection is given by assigning to a K/k-form (X, f) the
cocycle represented by σ 7→ f−1fσ, where, as before, fσ is defined to be
σ ◦ f ◦ σ−1.

Now, suppose that A/k is an abelian variety, and R ≤ End(A) a commu-
tative ring. With K/k and G as above, let Γ be an R[G]-module, together
with an R-module isomorphism ψ : Rn → Γ for some n ∈ N. Then the map
aΓ : σ 7→ ψ−1ψσ = ψ−1 ◦ σ ◦ ψ ∈ GLn(R) ≤ Aut (AK)n defines a cocycle
in H1(G,Aut (AK)n). Indeed, note that since G acts trivially on automor-
phisms of An that are defined over k, as is the case for GLn(R) ≤ Aut (AK)n,
1-cocycles whose image lies in GLn(R) are simply group homomorphisms.
The twist B of A by Γ , written B = Γ ⊗RA is, by definition, the K/k-form
of An corresponding to the cocycle aΓ .

We now come to the endomorphism ring of B. Our aim is to find cri-
teria for B to be simple, equivalently for End(B) to be a division ring. In
theory, one can easily describe End(B) in terms of the G-module structure
of End(AK) and EndR(Γ ), as follows.

Lemma 2.1. There is an isomorphism

End(Γ ⊗R A)
∼→ (EndR(Γ )⊗ End(AK))G.

Proof. This immediately follows from [6, Proposition 1.6], by noting that
the absolute Galois group of k acts on Γ through the quotient G.

However, in the most general form, this description is not easy to use for
determining when the right hand side of the equation is a division ring. On
the other hand, generically the situation is much better.

Assumption 2.2. For the rest of this section, assume that End(A) =
End(AK). Since we are interested in criteria for B to be simple, we will
also assume from now on that A itself is simple, therefore so is AK by the
previous assumption.

Remark 2.3. This assumption is generically satisfied over number fields
in the following sense. Fix an abelian variety A over a number field k, and
a Galois group G. The ring End(Ak̄) is a module under the absolute Galois
group Gal(k̄/k) of k. Let L be the fixed field under the maximal subgroup of
Gal(k̄/k) that acts trivially. Then End(AK) = End(A) whenever K∩L = k.
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See also [7, 10] for a more in-depth discussion on fields of definition of
endomorphisms.

Notation 2.4. The following notation will be retained throughout the
paper:

• K/k — a Galois extension of fields with Galois group G;
• A/k — a simple abelian variety;
• S = End(A);
• R ≤ S — a commutative subring;
• Γ — an R-free R[G]-module;
• B = Γ ⊗RA — the twist of A by Γ , which is an abelian variety over k;
• D = S ⊗Z Q — a division algebra;
• F = R⊗Z Q — a field contained in D.

Under Assumption 2.2, Lemma 2.1 becomes

End(B) ∼= EndR[G](Γ )⊗R S.(2.5)

In general, it is a subtle question with a rich literature when the tensor
product of two division rings over a common subring is a division ring. But
for a generic polarised abelian variety, S = Z. More generally, if S is com-
mutative, Schur’s Lemma furnishes an elementary answer to the question of
simplicity of B.

Proposition 2.6. Assume, in addition to Assumption 2.2, that S is
commutative, i.e. D is a field. Then B is simple if and only if Γ ⊗RD is a
simple D[G]-module.

Proof. The twist B is simple if and only if End(B) is a division ring,
which in turn is equivalent to

End(B)⊗Z Q ∼= EndR[G](Γ )⊗R D

being a division algebra. An elementary computation shows that when S is
commutative, EndR[G](Γ )⊗R D is isomorphic to the endomorphism ring of
the D[G]-module Γ ⊗R D. The isomorphism is given by

EndR[G](Γ )⊗R D → EndD[G](Γ ⊗R D),

α⊗ f 7→ (γ ⊗ g 7→ α(γ)⊗ fg).

We deduce that, by Schur’s Lemma, B is simple if and only if Γ ⊗R D is a
simple D[G]-module.

There is a slightly different way of phrasing this discussion, which is closer
to Howe’s original proof. Since AK is assumed to be simple, S is a division
ring, and EndK(An) ∼= Mn(S), the n-by-n matrix ring over S. Since the base
change of B to K is isomorphic to (AK)n, any endomorphism of B gives rise
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to an endomorphism of (AK)n, i.e. an element of Mn(S). Conversely, it is
easy to characterise the elements of Mn(S) that descend to endomorphisms
of B, as follows.

Proposition 2.7 ([4, Proposition 2.1]). An element of Mn(S) descends
to an endomorphism of B if and only if it commutes with all elements of
the image of G under the cocycle aΓ : G→ GLn(R) ≤ GLn(S).

Now, we merely need to observe that, as we remarked above, the cocycle
aΓ is in fact nothing but the group homomorphism G→ AutΓ with respect
to an R-basis on Γ . The commutant of its image in Mn(S) is the intersection
ofMn(S) with the commutant of the image of aΓ inMn(D), whereD = S⊗Q
is, as in Proposition 2.6, assumed to be a field. Moreover, since for any
x ∈ Mn(D), some integer multiple of x lies in Mn(S), the commutant of
aΓ (G) in Mn(S) is a division ring if and only if its commutant in Mn(D) is
a division algebra. By Schur’s Lemma, the latter is the case if and only if
Γ ⊗R D is simple.

Another example in which equation (2.5) can be completely analysed is
when D = S ⊗ Q is a quaternion algebra over F = R ⊗ Q. In that case, a
theorem of Risman [8] asserts that if D′ is any division algebra over F , then
D ⊗F D′ has zero-divisors if and only if D′ contains a splitting field for D.
So we immediately deduce the following result.

Proposition 2.8. Assume, in addition to Assumption 2.2, that D is
a quaternion algebra over F = R ⊗ Q. Then B is simple if and only if
EndF [G](Γ ⊗ F ) contains no splitting field of D.

A generalisation in a slightly different direction is the special case that
L = EndR[G](Γ )⊗Q is a field.

Proposition 2.9. Assume, in addition to Assumption 2.2, that L is
a field. Suppose also that R is contained in the centre of End(A). Then
B is simple if and only if L intersects every splitting field of D in F =
R⊗Q.

Proof. The proof will use the general theory of division algebras (see e.g.
[1, §74A]). Let Z be the centre of D. If L∩Z 6= F , then certainly L⊗F D is
not a division algebra, since L⊗F Z is not a field. Suppose that L∩Z = F ,
so that L ⊗F Z is a field. Then L ⊗F D is a simple algebra with centre
L ⊗F Z. The dimension of D over F is equal to the dimension of L ⊗F D
over L, and their respective dimensions over their centres are therefore also
equal. So L intersects a splitting field of D in a field that is bigger than F
if and only if the index of L ⊗F D is smaller than that of D if and only if
L⊗F D has zero divisors.
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3. Consequences. We first deduce Theorem 1.1 from Propositions 2.6
and 2.8.

Let G be cyclic of odd prime order p. Recall that I ≤ Z[G] is defined
to be the augmentation ideal in Z[G], I = ker(

∑
g∈G ngg 7→

∑
g∈G ng). The

complexification I ⊗ C is isomorphic to the direct sum of all non-trivial
simple C[G]-modules, which are all Galois conjugate. It is therefore easy
to see that I ⊗Z Q is a simple Q[G]-module, and that moreover, given any
number field D, I ⊗Z D is reducible if and only if D intersects Q(µp) non-
trivially.

First, let A/k be an elliptic curve over a number field. Then End(A)⊗Q
is a field, and the fact that End(A) = End(AK) for an odd degree extension
K/k follows from classical CM theory (see e.g. [5, Chapter 3]). Thus, the
dimension 1 case of Theorem 1.1 follows from Proposition 2.6.

The dimension 2 case is more subtle. Let A/k be an absolutely simple
abelian surface over a number field. Then End(Ak̄)⊗Q is one of the following:

(1) Q,
(2) a real quadratic number field,
(3) a CM field of degree 4,
(4) an indefinite quaternion algebra over Q.

We first claim that in all four cases, End(A) = End(AK) for an odd degree
extension K/k. This is clear in case (1), and in case (3) this follows from
classical CM theory (see e.g. [5, Chapter 3]). For case (2), observe that the
absolute Galois group of k acts on End(Ak̄) ⊗ Q by Q-algebra automor-
phisms. If the endomorphism algebra is a quadratic field, then the action
factors through a quotient of Gal(k̄/k) of index at most 2, which proves the
claim. Finally, case (4) is handled by [2, Theorem 1.3].

If A/k̄ is isogenous to a product of elliptic curves, then there are more
possibilities for the structure of End(A), which have been classified in [3,
Theorem 4.3]. It follows from this classification that if End(A)⊗Q is a divi-
sion algebra, then it is still either isomorphic to Q or a quadratic field or a
quaternion algebra, and that moreover End(A) = End(AK) for any exten-
sion K/k of degree coprime to 6. So the dimension 2 case of Theorem 1.1
follows from Proposition 2.6 when End(A) ⊗ Q is a field, and from Propo-
sition 2.8 when it is a quaternion algebra, which covers all possible cases.

To deduce Theorem 1.4 from Proposition 2.9, we use a result of Silver-
berg [10], which we will rephrase slightly for our purposes: for any fixed d,
there exists a bound b depending only on d (specifically, b = 4(9d)4d is
enough), such that for all abelian varieties over number fields A/k of dimen-
sion d, and all extensions K/k of prime degree greater than b, End(A) =
End(AK). Theorem 1.4 is an immediate consequence of this result together
with Proposition 2.9, because EndQ[G](Γ ⊗Q) ∼= Q(µp).
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Proposition 2.6 has an application to questions of simplicity of Weil
restrictions of scalars. If A/k is a simple abelian variety, and K/k is a
finite Galois extension with Galois group G, then the Weil restriction of
scalars RK/k(AK) is never simple, since there is a surjective trace map
RK/k(AK) → A. Its kernel is, up to isogeny, precisely the twist I ⊗Z A,
where I is the augmentation ideal in Z[G]. The following is therefore an
immediate consequence of Proposition 2.6.

Corollary 3.1. Let A/k be an abelian variety with End(Ak̄) = Z. Let
K/k be a finite Galois extension with Galois group G. The kernel of the
trace map RK/k(AK) → A is simple over k if and only if G has prime
order.

Proof. Cyclic groups of prime order are precisely the finite groups with
only two rational irreducible representations, i.e. those for which I ⊗Z Q is
a simple Q[G]-module.

IfK/k is Galois with dihedral Galois groupG of order 2p, p an odd prime,
then there is a unique intermediate quadratic extension k′ = k(

√
d)/k, and

for any abelian variety A/k, RK/k(AK) ∼ A × Ad × X2, where Ad is the
quadratic twist of A by k′/k. The remaining factor X (up to isogeny) is
the twist of A by a lattice in the (p − 1)-dimensional irreducible rational
representation ρ of G, which is the sum of all the two-dimensional complex
representations of G.

Corollary 3.2. Let E/k be an elliptic curve over a number field, and
K/k,X as above. Then X is simple.

Proof. The values of each irreducible two-dimensional character of G
generate the maximal real subfield Q(µp)

+ of the pth cyclotomic field, and
they are all Galois conjugate over Q. They will therefore remain conjugate
over any imaginary quadratic field, so the conclusion holds even when E
has CM.

We conclude with an amusing example of a “symplectic twist”. Let E/k
be an elliptic curve over a number field, let K/k be Galois with Galois
group Q8, the quaternion group. There are three intermediate quadratic
fields, and correspondingly, the Weil restriction RK/k(EK) has, up to isogeny,
four factors E,E1, E2, E3 that are quadratic twists of E. Write RK/k(EK) ∼
E × E1 × E2 × E3 ×H.

Corollary 3.3. Let K/k, E/k, H be defined as above. Then H is
simple, unless E has CM by an imaginary quadratic field Q(

√
−d) with d

equal to the sum of three squares, in which case H is isogenous to a product
of two isomorphic simple factors.
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Proof. The factor H is (up to isogeny) the twist of E by two copies
of the standard representation of Q8. The endomorphism algebra of this
representation is isomorphic to Hamilton’s quaternions, which is split by
precisely the imaginary quadratic fields Q(

√
−d) for which d is the sum of

three squares.
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