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On the S-Euclidean minimum of an ideal class

by

Kevin J. McGown (Chico, CA)

1. Introduction. Let K be a number field of degree n = r1 + 2r2. Let
S be a finite set of primes containing the infinite primes S∞. Let OS denote
the S-integers of K, let US denote the S-units of K, and let NS denote the
S-norm map (1). Recall that we define OS = {ξ ∈K | v(ξ)≥ 0 for all v /∈ S}
and US = O×S ; additionally, the S-norm of a number ξ ∈ K is defined
as NS(ξ) =

∏
v∈S |ξ|v and the S-norm of an ideal a ⊆ OS is defined as

NS(a) = |OS/a|. This setting is a standard one in algebraic number theory
(one possible reference is [12]). For an ideal a ⊆ OS and an element ξ ∈ K,
we define

mS
a (ξ) =

1

NS(a)
inf
γ∈a

NS(ξ − γ) and MS
a = sup

ξ∈K
mS

a (ξ).

Notice that mS
a (ξ) depends upon the ideal a, but that MS

a only depends
upon the ideal class [a]; this follows easily from the fact that a = γb im-
plies ma(ξ) = mb(ξγ

−1) for nonzero γ ∈ K. We call MS
a the S-Euclidean

minimum of the ideal class [a].

One easily verifies that mS
a (ξ) ∈ Q for all ξ ∈ K since the infimum is

being taken over a discrete subset of Q (2). However, it is not by any means
clear whether MS

a is rational or not. When K = Q(
√
d), d > 0, and S = S∞,

the statement MS
a ∈ Q is equivalent to a classical conjecture of Barnes and

Swinnerton-Dyer, which is still unresolved. Our aim is to prove the following:

Theorem 1. If #S ≥ 3, then MS
a ∈ Q.
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(1) Dropping “S” from the notation will mean we are using S = S∞.

(2) Given ξ ∈ K there exists d ∈ Z+ such that dξ ∈ O and hence {NS(ξ − γ)}γ∈a is
contained in NS(d)−1Z.
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Cerri proved (see [9]) that MS
a ∈ Q when S = S∞, #S ≥ 3, and a = O;

our theorem generalizes his result to the S-integral setting. As we will discuss
in §3, the quantity MS

a is important in the study of norm-Euclidean ideal
classes. A priori, it is possible that there are norm-Euclidean ideal classes
with MS

a = 1. However, our results lead to:

Corollary 1. If #S ≥ 3, then an ideal class [a] of OS is norm-
Euclidean if and only if MS

a < 1.

A result closely related to the previous one (see Corollary 3) resolves a
conjecture of Lenstra except when US (modulo torsion) has rank one. In §4
we discuss the relationship of the quantity MS

a with the conjecture of Barnes
and Swinnerton-Dyer. In the case of K = Q(

√
d), d > 0, one has #S∞ = 2

and hence our result gives the following:

Corollary 2. The conjecture of Barnes and Swinnerton–Dyer holds
for fundamental discriminants if we invert a single prime.

Strictly speaking, the previous two corollaries will follow from a slight
refinement of Theorem 1 which we describe after introducing the requisite
notation (see Theorem 2).

2. Main idea and setup. From the definition one sees that mS
a can be

viewed as a function K → R≥0 as well as a function K/a → R≥0. As there
should be no confusion, we will denote both of these functions by mS

a .
The S-units US act on K/a by multiplication and the function mS

a :
K/a→ R≥0 is invariant under this action. The main idea is to embed K/a
into a compact metric group T where US still acts and mS

a extends naturally
to an upper semicontinuous function on T. In this setting we will be able to
study the action of the units from the point of view of ergodic theory and
topological dynamics.

We embed K diagonally into the product of its completions at the primes
in S. We will write K ⊆

∏
v∈SKv =: KS . The function NS : K → R≥0

extends to a continuous function NS : KS → R≥0, and this allows us to
define mS

a (ξ) for any ξ ∈ KS . It follows that mS
a : K → R≥0 extends to an

upper semicontinuous function mS
a : KS → R≥0 (3).

Finally, we define

M
S
a := sup

ξ∈KS

mS
a (ξ),

and call it S-inhomogeneous minimum of the ideal class [a].

(3) Given a metric space X, a function f : X → R is called upper semicontinuous if
lim supx→x0 f(x) ≤ f(x0) for every x0 ∈ X. Clearly, the infimum of a family of continuous
(and hence upper semicontinuous) functions is upper semicontinuous; from this general
fact it follows immediately that mS

a is upper semicontinuous.
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The embedding K ⊆ KS induces an embedding K/a ⊆ KS/a =: T, and
mS

a induces an upper semicontinuous function mS
a : T → R≥0. Since T is

compact, this tells us that there exists ξ0 ∈ KS such that mS
a (ξ0) = M

S
a . If

we can show that there exists an element ξ0 ∈ K such that mS
a (ξ0) = M

S
a ,

then it would follow that MS
a = M

S
a ∈ Q. Indeed, we will prove the following

result from which Theorem 1 follows.

Theorem 2. Suppose #S ≥ 3. Then there exists an element ξ0 ∈ K

such that mS
a (ξ0) = M

S
a .

Although many aspects of the proof of Theorem 2 are motivated by ideas
in topological dynamics and ergodic theory (particularly those of Berend),
our account will be largely self-contained. In fact, except for a couple of
small lemmas, the only outside results we appeal to are standard theorems
in number theory. However, we should mention that much has been gleaned
from studying the papers [10, 2, 3, 4, 9].

Before proceeding to the proof of Theorem 2, we will discuss some ap-
plications.

3. Euclidean ideal classes. Lenstra introduced the following defini-
tion: We call an ideal class [a] of OS norm-Euclidean if for every ξ ∈ K
there exists γ ∈ a such that NS(ξ − γ) < NS(a). (Recall that our norms are
defined to be positive.) Notice that if we take a = (1), then this reduces to
the usual definition of the ring OS being norm-Euclidean. One important
fact is that if an ideal class [a] is norm-Euclidean, then it generates the class
group of OS ; in particular, the existence of a norm-Euclidean ideal class
implies that the class group is cyclic. (See [14] for more details.)

It is clear that MS
a < 1 implies that [a] is norm-Euclidean, and that

MS
a > 1 implies that [a] is not norm-Euclidean. In the case MS

a = 1, one
cannot draw any immediate conclusion. However, in light of Theorem 2,
provided #S ≥ 3, the condition MS

a = 1 always implies that [a] is not
norm-Euclidean; indeed, in this case, Theorem 2 implies that there exists
ξ0 ∈ K such that NS(ξ0 − γ) ≥ NS(a) for all γ ∈ a. This establishes
Corollary 1.

Define the open neighborhoods Vt := {ξ ∈ KS | NS(ξ) < t}. Lenstra
points out that [a] is norm-Euclidean if and only if K ⊆ a + VNS(a). We
quote [14] (using our notation): “It seems that in all cases in which this
condition is known to be satisfied we actually have KS = a + VNS(a). It is

unknown whether both properties are in fact equivalent” (4). We completely

(4) He then goes on to state the only known result in this direction. It is not important
to us here as it pertains to the case where #S ≤ 2.
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answer this question when #S ≥ 3 (in the number field case) with the
following:

Corollary 3. Suppose #S ≥ 3. Then K ⊆ a + VNS(a) if and only if

KS = a + VNS(a).

Proof. One direction of the result is obvious. To prove the other direc-
tion, suppose K ⊆ a+VNS(a); in other words, [a] is norm-Euclidean. In light

of Theorem 2 and Corollary 1 we see that M
S
a = MS

a < 1. It follows that for
every ξ ∈ KS there exists γ ∈ a such that NS(ξ − γ) < NS(a); this proves
KS ⊆ a + VNS(a).

In light of the discussion in [15], we now immediately obtain the following
additional result:

Corollary 4. The question of whether [a] is norm-Euclidean is decid-
able when #S ≥ 3.

In the situation where S = S∞, a = O, the analog of Corollary 4
was established by Cerri [9]. This result was further extended by Shapira
and Wang [16] (5). Readers interested in reading more regarding the Eu-
clidean algorithm in number fields should consult the excellent expository
article [13].

4. The conjecture of Barnes and Swinnerton-Dyer. Let f(x, y) =
ax2+bxy+cy2 with a, b, c ∈ Z be a binary quadratic form with discriminant
∆ = b2 − 4ac > 0. For ease of exposition, we will henceforth write form to
mean binary quadratic form. For a form f and a point P ∈ Q2, we define

mf (P ) = inf
Q∈Z2

|f(P −Q)|, Mf = sup
P∈Q2

mf (P ), Mf = sup
P∈R2

mf (P ).

Since Mλf = |λ|Mf and Mλf = |λ|Mf for all λ ∈ Z, we will only consider
forms where gcd(a, b, c) = 1, which are known as primitive forms. Barnes
and Swinnerton-Dyer conjecture (see [1]) that there exists a point P0 ∈ Q2

such that mf (P0) = Mf = Mf ; in particular, Mf ∈ Q (6).

Fix a fundamental discriminant ∆ > 0. Let K = Q(
√
∆) be the real

quadratic field of discriminant ∆ having ring of integers O. Let a be an ideal
of O with Z-basis {α1, α2}. We can associate to a the form of discriminant ∆
given by

1

N(a)
(α1x+ α2y)(α1x+ α2y).

(5) In particular, they give a bound on the computational complexity of MS∞
O in

terms of the degree, discriminant, and regulator of K, provided #S ≥ 3 and K is not a
CM-field.

(6) They also conjecture that the minimum is so-called attained and isolated, but we
will ignore this part of the conjecture for the purposes of this investigation.
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In fact, every primitive form of discriminant ∆ arises in this way (7). See [6]
for a classical treatment of this correspondence or [5] for a more modern
approach.

The conjecture of Barnes and Swinnerton-Dyer (as stated above) for
fundamental discriminants is equivalent to the statement: Given an ideal
class [a] in a real quadratic field K, there exists ξ0 ∈ K such that mS∞

a (ξ0) =

M
S∞
a . Although we cannot prove this statement, since #S∞ = 2 in the case

where K = Q(
√
d), d > 0, we can prove the analogous statement when

S = S∞∪{p} where p is any (finite) prime of K. This follows from Theorem 2
and is the content of Corollary 2.

5. Preliminary results. In this section we give a brief justification
for the facts claimed in §2 and derive a couple of other basic results. The
hurried reader who is willing to refer back to this section as necessary may
skip to §6.

Observe that KS is a locally compact abelian group. It is also a complete
metric space with metric d(α, β) = maxv∈S |αv−βv|v. The fact that NS(ξ) =∏
v∈S |ξv|v is continuous on KS follows immediately from the fact that each
| · |v : Kv → R is continuous.

To show that OS is discrete in KS , it suffices to show that {0} is open
in the subspace topology on OS . The set V = {α ∈ KS | NS(α) < 1} is
open in KS since NS is continuous, and moreover V ∩ OS = {0}. Since
OS is discrete in KS , so is a. It now follows from generalities that T is
a locally compact Hausdorff space. In fact, one can show that the metric
on KS induces a metric on T in the usual manner.

The only fact that remains to be justified is that T is compact. For this,
we will need the following standard result from algebraic number theory
(see, for example, [8]).

Strong Approximation Theorem. Suppose we are given a finite set
of primes T , elements αv ∈ Kv for each v ∈ T , and a prime w /∈ T . Then
for each ε > 0, there exists a number β ∈ K such that |αv − β|v < ε for all
v ∈ T and |β|v ≤ 1 for all v /∈ T with v 6= w.

We mention in passing that applying the previous result with T = S
tells us that K is dense in KS , which explains the notation. In what follows
we write S0 for the finite primes in S, so that S = S∞ ∪ S0.

Lemma 5.1. Let (αv)v∈S ∈ KS. Then there exists γ ∈ a such that
v(αv − γ) ≥ 0 for all v ∈ S0.

(7) One can extend the correspondence to include forms with nonfundamental dis-
criminants by considering orders other than the full ring of integers, but in this paper we
are content to restrict ourselves to forms with fundamental discriminants.
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Proof. By the Strong Approximation Theorem, there exists γ ∈ K such
that v(αv − γ) ≥ 0 for all v ∈ S0, v(γ) ≥ v(a ∩ O) for all finite v dividing
a∩O, and v(γ) ≥ 0 for all other v. This is possible since a∩O is not divisible
by any primes in S. One checks that this choice of γ works.

Lemma 5.2. Let F be a fundamental domain for KS∞/(a ∩ O). (Note
that KS∞ ' Rr1 × Cr2 is the usual Minkowski space and a ∩ O is an ideal
of O.) Then each element of T has a unique representative in F×

∏
v∈S0
Ov.

Proof. Let (αv) ∈ KS . Using Lemma 5.1, choose γ ∈ a such that
v(αv − γ) ≥ 0 for all v ∈ S0. Choose a ∈ O∩a such that (αv−γ−a)v∈S∞ ∈ F .
Then αv − γ − a ∈ Ov for all v ∈ S0. Set βv = αv − γ − a ∈ F ×

∏
v∈S0
Ov.

Then (αv)− (βv) = γ + a ∈ a.
Now we show uniqueness. Suppose (αv) = (βv) + δ for some δ ∈ a

with (αv), (βv) ∈ F ×
∏
v∈S0
Ov. Then v(δ) ≥ 0 for all v ∈ S0, which

implies δ ∈ O ∩ a. Since (αv)v∈S∞ , (βv)v∈S∞ ∈ F and δ ∈ O ∩ a, we have
(αv)v∈S∞ = (βv)v∈S∞ , which implies δ = 0.

Lemma 5.3. T is compact.

Proof. By the previous lemma, T is the image under the natural projec-
tion of the compact set F ×

∏
v∈S0
Ov.

We conclude this section with another simple result that is a consequence
of Strong Approximation which will prove useful later. For each w ∈ S, we
can view Kw as a subset of KS by sending the element x ∈ Kw to the vector
ξ ∈ KS where ξw = x and ξv = 0 for v 6= w; that is, the image of Kw in KS

is zero outside the w-component.

Lemma 5.4. For each w ∈ S, the group Kw + a is dense in KS. In
particular, there are no proper closed subgroups of KS containing both Kw

and a (8).

Proof. Let ξ = (ξv)v∈S ∈ KS . Fix ε > 0. Using Strong Approximation,
choose γ ∈ K such that |γ − ξv|v < ε for all v ∈ S with v 6= w, |γ|v < ε for
all finite v dividing a ∩ O, and |γ|v ≤ 1 for all v /∈ S. When ε > 0 is small
enough, this implies γ ∈ a. Additionally, ξ − γ = (ξv − γ)v∈S is ε-close to
β := ξw−γ ∈ Kw ⊆ KS . It follows that ξ is ε-close to β+γ ∈ Kw +a. Since
ε > 0 was arbitrary, there are points in Kw + a arbitrarily close to ξ.

6. Outline of the proof. Given an element ξ ∈ KS , we will write [ξ]
for the class of ξ in T; that is, [ξ] = π(ξ) where π : KS → T is the natural
projection map. We begin with two lemmas concerning the orbit structure
of the action of US on T.

(8) Keep in mind that Kw is embedded into one component and a is embedded diag-
onally.
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Lemma 6.1. For ξ ∈ KS, the following are equivalent:

(1) ξ ∈ K.
(2) [ξ] ∈ Ttors.
(3) Orb([ξ]) is finite.
(4) [ξ] is an isolated point of Orb([ξ]).

Proof. First we show (1)⇒(2)⇒(3). If ξ ∈ K, there exists n ∈ Z+ such
that nξ ∈ a and hence [ξ] ∈ Ttors. In this case uξ ∈ (1/n)a for all u ∈ US
and therefore Orb([ξ]) ⊆ π((1/n)a), which is a finite subgroup of K/a.

Now we show (3)⇒(1). Suppose u[ξ] = u′[ξ] in T with u 6= u′ ∈ US .
Then there exists α ∈ a such that uξ = u′ξ + α in KS . It follows that
uξv = u′ξv + α in Kv for all v ∈ S. We conclude that ξv = α/(u − u′) ∈ K
for all v and therefore ξ ∈ K.

Now we show (3)⇔(4). For convenience of notation let A = Orb([ξ]).
The set A is a closed subset of T and therefore compact (see Lemma 5.3).
It is now easy to see that for ξ ∈ KS one has: [ξ] is isolated in A iff Orb([ξ])
is discrete in A iff Orb([ξ]) is finite.

Lemma 6.2. Let ξ ∈ KS \ K. Then the map US → Orb([ξ]) given by
u 7→ u[ξ] is a bijection.

Proof. This follows immediately from the proof of (3)⇒(1) in the previ-
ous lemma.

The next lemma is easily deduced, but essential. It constitutes the nat-
ural generalization of an important observation of Cerri. In fact, we employ
the group T = KS/a precisely so that the following result will go through
in our setting:

Lemma 6.3. The set {[ξ] ∈ T | mS
a (ξ) = M

S
a } is a nonempty closed

US-invariant subset of T.

Proof. This follows from the fact that mS
a is a US-invariant, upper semi-

continuous function defined on the compact set T.

Theorem 3. Suppose #S ≥ 3. Then every nonempty closed US-invariant
subset of T contains torsion elements.

If we can prove Theorem 3, then Theorems 2 and 1 immediately follow in
light of Lemmas 6.1 and 6.3. The proof requires the next three propositions
whose proofs we postpone until Sections 8, 9, and 10 respectively.

Definition. We refer to a nonempty US-invariant closed subset of T
which is minimal with respect to set inclusion as a US-minimal set.

Observe that by Zorn’s Lemma, every nonempty US-invariant closed sub-
set of T contains a US-minimal set.
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Proposition 1. Let M be US-minimal subset of T. Then M −M is a
proper subset of T.

Recall that a CM-field is a totally complex quadratic extension of a
totally real field. Let K+ denote the maximal totally real subfield of K. In
the case where K is a CM-field we have [K : K+] = 2.

Proposition 2. Suppose K is not a CM-field or S contains a finite
prime that splits in K/K+. Let N be a closed US-invariant subset of T that
contains 0 as a nonisolated point. If #S ≥ 3, then N = T.

Proposition 3. If Theorem 3 holds apart from the case where K is a
CM-field and distinct primes in S lie over distinct primes in K+, then it
holds in all cases.

Proof of Theorem 3. Let M be a US-minimal subset of T. Moreover,
assume that M contains no torsion elements. Then N = M −M is a closed
US-invariant subset of T.

We show that N contains 0 as a nonisolated point. Pick [ξ] ∈ M . Then
M = Orb([ξ]). By Lemma 6.1, [ξ] must be nonisolated and therefore there
is a sequence un ∈ US with the un distinct and un[ξ]→ [ξ]. Without loss of
generality, we may assume that un 6= 1 for all n. Now observe that un[ξ]− [ξ]
is a sequence of nonzero points in N converging to 0.

By Proposition 3 it suffices to prove the theorem in the situation where
Proposition 2 applies. We invoke Proposition 2 and conclude that N = T.
This contradicts Proposition 1. Thus M contains torsion elements.

7. Character theory and ergodicity. Before turning to the proofs
of Propositions 1–3, we need a few lemmas which are consequences of the
study of the character theory of KS and T. We have tried to assume a min-
imal amount of background, giving the appropriate definitions and stating
the necessary facts, but some familiarity with the duality theory of locally
compact abelian groups (and local fields in particular) will be helpful in this
section.

Let G be a locally compact abelian group. A (unitary) character of G is
a continuous group homomorphism χ : G → S1. (We will always view S1

as the unit circle inside C.) The Pontryagin dual of G, denoted by G∨, is
the (abelian) multiplicative group consisting of all the characters of G. It
is locally compact when endowed with the topology of uniform convergence
on compact sets.

We are interested in the characters of T. However, since any character
of T may be viewed as a character of KS that is trivial on a, we will first
consider characters of KS . (Note that another way to view the previous

sentence is that we have an injection T∨ ↪→ K
∨
S .) The group KS is self-dual
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since it is a product of local fields. We now construct an explicit nontrivial
character of KS that will facilitate subsequent arguments.

7.1. Constructing a character of KS. For each v ∈ S, one can define
a nontrivial local character φv : Kv → S1 in a natural way. If v is real, we
set φv(x) = e2πix, and if v is complex, we set φv(z) = e2πi(z+z). In the case
where v is a finite prime, we define φv(α) to be the exponential of 2πi times
the the “polar part” of TrKv/Qp(α) (9). Then ψ =

∏
v∈S φv is a nontrivial

character of KS and we have the explicit isomorphism KS → K
∨
S given by

ξ 7→ ψξ; here ψξ(η) = ψ(ξη).
Since OS is a proper closed subgroup of KS there is a nonzero character

φ of KS that is trivial on OS . By duality, φ = ψρ for some ρ ∈ KS . Therefore

(1) φ(ξ) =
∏
v∈S

φv(ρvξv).

As before, we have an explicit isomorphism KS → K
∨
S given by ξ 7→ φξ

where φξ(η) = φ(ξη). To completely justify this, one should check that
ρv 6= 0 for all v ∈ S. Suppose that ρw = 0 for some w. Then kerφ contains
both Kw and OS , which implies that φ is the trivial character (by an appli-
cation Lemma 5.4 with a = OS), a clear contradiction. We will not need to
determine the ρv; it will be enough to know that they are all nonzero.

For the remainder of the paper, φ will refer to this particular fixed char-
acter of KS. Likewise, the notations φξ and φv will refer to the characters
constructed here. Notice that φ depends upon the number field K and set
of primes S, but it does not depend upon the choice of a.

7.2. The dual of T
Definition. Given a subset E ⊆ KS , we define its complement by

E⊥ = {ξ ∈ KS | φ(ξE) = 1}.
It is an easy exercise to show that if E is a subgroup (or OS-submodule)

of KS , then so is E⊥.

Lemma 7.1. The map a⊥ → T∨ given by α 7→ φα is an isomorphism of
topological groups.

Proof. Every character of T may be viewed as a character of KS that
is trivial on a. Every character of KS is of the form φξ for some ξ ∈ KS .
Finally, a character φξ is trivial on a if and only if ξ ∈ a⊥.

To make the previous result useful, one would like a better description
of a⊥.

(9) Here p is the rational prime lying under v, and the polar part of an element of Qp
is the element of Q/Z defined by the (nonunique) decomposition Qp = Z[1/p] + Zp.
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Lemma 7.2. If b is a fractional ideal of OS, then so is b⊥. Moreover,
b⊥ = b−1O⊥S (10).

Proof. Since φ(OS) = 1 we have OS ⊆ O⊥S . We show that O⊥S /OS is
finite. First, since O⊥S is dual to the compact group KS/OS (by the previous
lemma) we know that O⊥S is discrete. It follows that O⊥S /OS is a discrete
subspace of the compact space KS/OS , and therefore finite. If we set d =
|O⊥S /OS |, then this gives dO⊥S ⊆ OS , and therefore O⊥S is contained in K.
In light of previous comments, it now follows easily that O⊥S is a fractional
ideal of OS . Finally, given that b and O⊥S are fractional ideals, it is easy to
show that b⊥ = b−1O⊥S .

7.3. The action of the units is ergodic

Definition. Let G be a compact topological group with normalized
Haar measure µ. An automorphism σ : G → G is ergodic if for every mea-
surable set E, σ(E) = E implies µ(E) = 0 or µ(E) = 1.

Lemma 7.3 (Halmos). A (continuous) automorphism of a compact abelian
group G is ergodic if and only if the induced automorphism on the character
group G∨ has no finite orbits (other than the trivial one).

Proof. The proof is a one page argument using Pontryagin duality and
Fourier series. See [11] for the details.

Lemma 7.4. If u ∈ US is not a root of unity, then the automorphism
of T given by [ξ] 7→ u[ξ] is ergodic.

Proof. We will use Lemma 7.3. Since any character of T may be viewed as
a character of KS that is trivial on a, we will consider characters of KS . One
checks that the action of multiplication by US induces the action uφξ = φuξ
on K

∨
S .

Now let n denote a nonzero integer. Using duality, we have unφξ = φξ ⇒
φunξ = φξ ⇒ unξ = ξ ⇒ (un − 1)ξ = 0 ⇒ un = 1 or ξ = 0. By hypothesis,
u is not a root of unity. Hence the only solution to unχ = χ is when χ is the
trivial character.

7.4. Convergence of subgroups

Definition. Let G be a locally compact abelian group. For a subgroup
H of G, we define the annihilator of H in G∨ to be

A(G∨, H) = {χ ∈ G∨ | χ(H) = 1}.
Lemma 7.5 (Berend). Let G be a compact abelian metric group. A se-

quence Gn of closed subgroups of G satisfies Gn → G in the Hausdorff

(10) Here O⊥S plays the role of the inverse different D−1. In particular, when S = S∞
one can take φ =

∏
v∈S φv and we have O⊥S = D−1.
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metric if and only if for every nonzero χ ∈ G∨ we have χ /∈ A(G∨, Gn) for
sufficiently large n.

Proof. The proof is half a page and uses the Haar measure and integral
on the groups involved. See [2] for the details.

Lemma 7.6. Suppose L is a subgroup of KS. Let u ∈ US. If unπ(L) 9 T,
then there exists nonzero α ∈ K and an increasing sequence nk ∈ Z+ such
that φ(unkαL) = 1 for all k (11).

Proof. Suppose unπ(L) 9 T. Then Lemma 7.5 says that there ex-
ists a nonzero χ ∈ T∨ and an increasing sequence nk ∈ Z+ such that
χ(unkπ(L)) = 1 for all k. Viewing χ as a character on KS and using du-
ality (Lemma 7.1), we know there exists a nonzero α ∈ a⊥ such that
χ([ξ]) = φα(ξ) = φ(αξ) for all ξ ∈ KS . This leads to φ(unkαL) = 1 for
all k.

8. Proof of Proposition 1

Lemma 8.1. Let U be a finite index subgroup of US, and Λ be a closed
U -invariant subset of T with nonempty interior. If #S ≥ 2, then Λ = T.

Proof. First observe that Λ has nonzero measure because it has nonempty
interior. The group U is of finite index in US and therefore rank(U) =
rank(US) = #S − 1 ≥ 1, so U contains a unit which is not a root of unity.
Now Lemma 7.4 implies that Λ is dense in T, giving the result.

In order to prove the proposition, we first give a construction and a
lemma. For the remainder of this section, let M be a US-minimal subset
of T. It suffices to show that M −M = T implies M = T, as clearly T is
not US-minimal. Hence we assume that M −M = T. We will write ξ, η for
an element of KS as well as the corresponding element of T; that is, we will
drop the brackets from the expressions [ξ], [η].

Construction. Define U (n) = (US)n! so that U (n) ⊆ (US)n and US =
U (1) ⊇ U (2) ⊇ · · · ; choose a sequence of subsets M = M (1) ⊇ M (2) ⊇ · · ·
so that M (k) is U (k)-minimal. Finally, define M∞ =

⋂
kM

(k); observe that
M∞ is closed and nonempty since T is compact.

Lemma 8.2. Given ξ ∈ K, we have ξ + η ∈M for all η ∈M∞.

Proof. Let ξ ∈ K. First we show that there exists η′ ∈ M∞ such that
ξ + η′ ∈ M . Since Orb(ξ) is finite, there exists N ∈ Z+ with (US)Nξ = {ξ}
and hence U (N)ξ = {ξ}. For ease of notation, set U ′ = U (N) and M ′ =
M (N). Since U ′ has finite index in US , we have US/U ′ = {a1U ′, . . . , a`U ′}
for ak ∈ US with a1 = 1.

(11) Actually α lies in the fractional ideal a⊥, but we will not need this.
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We define the closed sets Λi = M − aiM ′ for i = 1, . . . , `. We observe⋃`
i=1 aiM

′ = M as the former set is closed and US-invariant, and clearly
contained in the latter. Since M − M = T by hypothesis, this leads to⋃`
i=1 Λi = T. It is now easy to see that Λj must have nonempty interior for

some j. Since Λj is closed and U ′-invariant, Lemma 8.1 gives Λj = T.

It follows that there exists η ∈ ajM ′ such that ajξ+η ∈M and therefore
ξ + a−1j η = a−1j (ajξ + η) ∈ M . It is plain that η′ := a−1j η ∈ M ′. We have

shown that there exists η′ ∈ M ′ such that ξ + η′ ∈ M . Now observe that
U ′(ξ+ η′) ⊆M , and since U ′η′ = M ′ and U ′ξ = {ξ}, we have ξ+ η ∈M for
all η ∈M ′.

Proof of Proposition 1. Fix η ∈ M∞. We will show that M − η = T,
from which M = T immediately follows. Since K is dense in T, it suffices to
show that K ⊆ M − η. Let ξ ∈ K be arbitrary. The previous lemma says
that ξ + η ∈M . The result follows.

9. Proof of Proposition 2. The following standard result in algebraic
number theory will be helpful. If one were forced to attach names to it, the
following might be called the Dirichlet–Minkowski–Hasse–Chevalley Unit
Theorem.

S-Unit Theorem. For every w ∈ S there exists ε ∈ US such that
|ε|v < 1 for all v ∈ S with v 6= w. Moreover, choosing εw as above for
each w ∈ S yields a set {εw}w∈S which, after any one element is discarded,
forms an independent set of units (modulo torsion) and generates a finite
index subgroup of US; in particular rank(US) = #S − 1.

The following lemma allows us to locate points that “live in a single
component”.

Lemma 9.1. Suppose #S ≥ 2. Let N be a closed US-invariant subset
of KS that contains 0 as a nonisolated point. Then for each w ∈ S, the set
N ∩Kw contains a nonzero point.

Proof. By hypothesis, there is a sequence ξn ∈ N , ξn 6= 0, with ξn → 0.
We will write ξn = (ξn,v)v∈S . By the S-Unit Theorem there exists a unit
u ∈ US such that |u|v < 1 for all v 6= w, and hence C := |u|w > 1. Define

A = {(αv)v∈S ∈ KS | |αw|w ≥ 1, |αv|v ≤ C ∀v ∈ S}.

For all sufficiently large m we have |ξm,v|v ≤ 1 for all v ∈ S and hence there
exists a jm ∈ Z+ such that ujmξm ∈ A. Since A is compact there is a limit
point η of this sequence; we observe that η ∈ A and hence η 6= 0. Since N
is US-invariant and closed we have η ∈ N . Finally, for all v 6= w we have
|u|v < 1, which implies |ujmξm,v|v → 0 and hence η ∈ Kw.
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9.1. K has a real embedding. Given what we have shown up to this
point, it is now quite easy to establish Proposition 2 in the case where K
has a real embedding. This makes use of the following fact:

Lemma 9.2. Suppose K ⊆ R is a number field. If rank(US) ≥ 2, then
US is dense in R.

This result is well-known and not hard to establish, but we prove it here
for the sake of completeness and also because it motivates what we do in the
general case. We will need the following well-known result in Diophantine
approximation (see, for example, [7]).

Kronecker’s Theorem. Let α1, . . . , αn ∈ R. Then

{(mα1, . . . ,mαn) | m ∈ Z}
is dense in Rn/Zn iff 1, α1, . . . , αn are linearly independent over Q.

Lemma 9.2 follows immediately from:

Lemma 9.3. Let a, b ∈ R+. Suppose a and b are multiplicatively inde-
pendent. Then {anbm | n,m ∈ Z} is dense in R+.

Proof. Taking the logarithm to the base a of anbm gives m+ nα where
α = log b/log a. Thus it suffices to show that {m + nα | m,n ∈ Z} is dense
in R. But since a, b are multiplicatively independent, we know that α is
irrational. Thus {nα | n ∈ Z} is dense in R/Z by Kronecker’s Theorem. The
result follows.

Proof of Proposition 2 when K has a real embedding. Set Ñ = π−1(N).
Then Ñ is a closed US-invariant subset of KS that contains 0 as a non-
isolated point. Let w be a real place and apply Lemma 9.1 to Ñ . This gives
an element x ∈ R = Kw ⊆ KS such that x ∈ Ñ , x 6= 0. Lemma 9.2 tells us
that US is dense in R and hence {ux | u ∈ US} is dense in R; it follows that
Ñ contains R. Now Lemma 5.4 gives Ñ = KS and hence N = T.

At this junction, we point out that we have completely justified Theo-
rem 3, and hence all the results of §§1–3, in the case where K has a real
embedding. In particular, this is enough to establish Corollary 2. However,
there is more work to be done to establish our results in the case where K
is totally complex. We do not seem to get any additional mileage out of the
assumption that all the embeddings are complex, so we will simply work
with number fields that have at least one complex embedding.

9.2. K has a complex embedding. We recall the following standard
definition.

Definition. We call a number field K a CM-field if either of the two
equivalent conditions is satisfied:
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(1) K is a totally complex quadratic extension of a totally real field.
(2) There is a subfield F of K with rank(UF ) = rank(UK).

The equivalence of the two definitions follows from Dirichlet’s Unit The-
orem (or the S-Unit Theorem with S = S∞). We write K+ for the maxi-
mal totally real subfield of K. In the case where K is a CM-field we have
[K : K+] = 2.

Lemma 9.4. Suppose K ⊆ C is a number field with K 6⊆ R. If K is not
a CM-field, then there exists u ∈ U such that un /∈ R for all nonzero n ∈ Z.

Proof. Suppose that for every u ∈ U there exists n ∈ Z+ such that
un ∈ R. It follows that there must exist N ∈ Z+ such that UN ⊆ R. If
K 6⊆ R, this implies Q(UN ) 6= K, which forces K to be a CM-field.

Lemma 9.5. Suppose K ⊆ C is a number field with K 6⊆ R. If K is
a CM-field and S contains a finite prime that splits in K/K+, then there
exists u ∈ US such that un /∈ R for all nonzero n ∈ Z.

Proof. Let P be a finite prime in S that splits in K/K+. Let h denote
the class number of K. Then define u ∈ O by (u) = Ph. It is plain that
u ∈ US since v(u) = 0 for all v /∈ S. For contradiction, suppose un ∈ R for
some nonzero n ∈ Z. Then we would have un ∈ K+ and (un) = Phn in K.
Since P lies above two distinct primes in K+, this is impossible.

In what follows, we will write [x] to denote the floor of x, and write
x = [x] + {x} so that {x} denotes the fractional part of x. We will also use
the notation ‖x‖ = infy∈Z |x− y|.

Lemma 9.6. Suppose α, β ∈ R and α /∈ Q. Then there exist r,s ∈ Z with
r > 0 such that {(mα,mβ) | m ∈ Z} is dense in {(rt, st) | t ∈ R} when they
are both viewed as subsets of R2/Z2.

Proof. If {1, α, β} is linearly independent over Q then the result follows
from Kronecker’s Theorem (with n = 2). Otherwise we have aα+ bβ+ c = 0
with a, b, c ∈ Z, not all zero; we must have b 6= 0 lest we contradict the
fact that α /∈ Q, and, without loss of generality, we may assume that b > 0.
Pick t ∈ R and let ε > 0 be given. Pick δ > 0 so that |a|δ, |b|δ < ε.
Applying Kronecker’s Theorem (with n = 1) we may choose m ∈ Z so
that ‖mα − t‖ < δ. It follows that ‖mbα − bt‖ < |b|δ < ε. Also we have
bβ = −aα − c, which implies mbβ = −a(mα − t) − at − mc. Therefore
‖mbβ + at‖ < |a|δ < ε. It follows that (mbα,mbβ) is ε-close to (bt,−at) in
R2/Z2.

The following result says that in our situation the closure of US contains
a nice spiral or concentric circles. It is a little complicated to state, but it
plays the same role as Lemma 9.2.
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Lemma 9.7. Suppose K ⊆ C and K 6⊆ R. Suppose K is not a CM-field
or S contains a finite prime that splits in K/K+. If #S ≥ 3, then either

(1) US ⊇ {zt | t ∈ R} where z ∈ C \ R, |z| > 1, or
(2) US ⊇ {xnzt | t ∈ R, n ∈ Z} where z ∈ C \ R, |z| = 1, x ∈ R, x > 1.

Proof. First, suppose there exists u ∈ US with |u| = 1 which is not
a root of unity. In this case, {um | m ∈ Z} is dense in the unit circle.
Using the S-Unit Theorem we may choose v ∈ US with |v| > 1. We see
that {umvn | m,n ∈ Z} is dense in {|v|nut | t ∈ R, n ∈ Z}. In this case,
conclusion (2) holds with z = u and x = |v|. Hence we may assume that no
elements of US other than roots of unity are unimodular.

Since rank(US) = #S−1 ≥ 2, we know that US contains two independent
units u and v. Write u = |u|e2πiθ and v = |v|e2πiϕ, where |u|, |v| 6= 1. Given
our hypotheses, we may assume that θ /∈ Q (see Lemmas 9.4 and 9.5).
Without loss of generality, we may assume |u| > 1 by replacing u with u−1

if necessary.

Set α = log |v|/log |u| and β = ϕ − αθ. Observe that α is irrational: if
α = a/b, then uav−b would be a unimodular unit which is not a root of unity.
Choose r, s as in the previous lemma. Set z = |u|re2πi(rθ+s). Choose δ > 0
small enough so that {rt} = rt for all t ∈ [0, δ]. Since US is a multiplicative
group, to prove the lemma it suffices to show that US ⊇ {zt | 0 < t < δ}.

Fix t ∈ (0, δ). We construct sequences nk and mk so that unkvmk → zt.
By our choice of r, s, there is a sequence mk such that (mkα,mkβ) converges
to (rt, st) in R2/Z2; it follows that {mkα} → {rt} and mkβ converges to st
in R/Z. Set nk = −[mkα] so that nk +mkα→ rt. It follows that |u|nk |v|mk
→ |u|rt. Now observe that

nkθ +mkϕ = {mkα}θ +mkβ,

which converges (modulo 1) to rtθ + st. Consequently,

unkvmk → |u|rte2πi(rθ+s)t = zt.

Proof of Proposition 2. Set Ñ = π−1(N). Then Ñ is a closed US-
invariant subset of KS that contains 0 as a nonisolated point. Pick a complex
place of K and apply Lemma 9.1 to Ñ . (Since we have already proved the
result when K has a real place, we may certainly assume that K has a com-
plex place.) This gives a nonzero element a ∈ C ⊆ KS such that a ∈ Ñ . In
what follows, distances between sets and convergence of sets will always be
measured using the standard Hausdorff distance.

Claim 1. There exists a sequence of (compact) arcs An and line seg-
ments Ln which lie in C ⊆ KS with the following properties:

An ⊆ Ñ , d(Ln, An)→ 0, length(Ln)→∞.
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We apply Lemma 9.7 and obtain one of two possible conclusions (see
the statement of the lemma). First, we assume that conclusion (1) holds.
(For conclusion (2) the proof will be similar.) We observe that US contains
{zt | t ∈ R} for some z ∈ C \ R with |z| > 1. Therefore Ñ contains the
spiral {azt | t ∈ R} in C. The arcs An we construct will be subarcs of this
spiral and are therefore all automatically contained in Ñ . Let δn > 0 be a
sequence of real numbers with δn → 0 to be chosen later. Define the arc

An = {azt | t ∈ [n, n+ δn]}.
Let Ln denote the corresponding line segment which has the same endpoints,
that is,

Ln = {azn[1 + λ(zδn − 1)] | λ ∈ [0, 1]}.
For λ ∈ [0, 1] we write t = n+ δnλ and, using calculus, we obtain (12)

An(λ)− Ln(λ) = azn[(zλδn − 1)− λ(zδn − 1)]

= azn
[

Log2 z

2
λ(λ− 1)δ2n +O(δ3n)

]
.

Thus there are constants C1, C2 > 0 such that for n sufficiently large, we
have

d(An, Ln) ≤ C1|z|nδ2n,
length(Ln) = |a| |z|n|zδn − 1| ≥ C2|z|nδn.

Choose δn > 0 with |z|nδ2n → 0 but |z|nδn →∞ so that d(An, Ln)→ 0 and
length(Ln)→∞. This completes the proof of the claim in this case.

Now we suppose that conclusion (2) of Lemma 9.7 holds, so that Ñ
contains {axnzt | t ∈ R, n ∈ Z}; here z ∈ C \ R, |z| = 1, x ∈ R, x > 1. This
time we use

An = {axnzt | t ∈ [0, δn]},

Ln = {axn[1 + λ(zδn − 1)] | λ ∈ [0, 1]}.
For λ ∈ [0, 1] we write t = δnλ and find

An(λ)− Ln(λ) = axn[(zλδn − 1)− λ(zδn − 1)].

Hence there are constants C1, C2 > 0 such that for n sufficiently large, we
have

d(An, Ln) ≤ C1x
nδ2n, length(Ln) ≥ C2x

nδn.

As before, we choose δn appropriately and the claim follows.

Claim 2. There is a line L ⊆ C ⊆ KS passing through the origin such
that [ξ] + π(L) ⊆ N for some ξ ∈ KS.

(12) Log will denote the principal branch of the logarithm.
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We can think of each line segment Ln (given by the previous claim) as a
triple (xn, yn, zn) ∈ C × S1 × R+ which represents the midpoint, direction,
and length of the segment. In other words,

Ln = {xn + tyn | −zn ≤ 2t ≤ zn}.
(The choice of yn ∈ S1 in this representation is not unique, but this will
not affect the argument.) By passing to a subsequence, we may assume that
π(xn)→ [ξ] for some [ξ] ∈ T and yn → y for some y ∈ S1; we have zn →∞
by what we have already shown. Therefore, for each t ∈ R we see that
π(xn + tyn)→ [ξ] + π(ty).

Let L denote the line corresponding to the triple (0, y,∞) which passes
through the origin in the direction of y, that is,

L = {ty | t ∈ R}.
We show that [ξ] + π(L) ⊆ N . Let η ∈ [ξ] + π(L) be arbitrary and ε > 0 be
given. For n sufficiently large, we have

d(η,N) ≤ d(η, π(An)) ≤ d(η, π(Ln)) + d(π(Ln), π(An)) < ε.

Since N is closed, we obtain η ∈ N . This proves the claim.

Claim 3. There is a unit u ∈ US such that unπ(L)→ T.

Pick u ∈ US so that un /∈ R for all n ∈ Z+ (see Lemmas 9.4 and 9.5).
By way of contradiction, suppose unπ(L) 9 T. In light of Lemma 7.6 there
exists a nonzero α ∈ K and a strictly increasing sequence of positive integers
nk so that φ(unkαL) = 1 for all k. Fix an arbitrary k ∈ Z+. We have
φ(unkαty) = 1 for all t ∈ R. Since y ∈ C ⊆ KS and the local character
is φw(z) = e2πi(z+z) (see equation (1)), this leads to 2<(unkty′) ∈ Z for all
t ∈ R, where we define y′ := ρwαy ∈ C ⊆ KS . Because y′ 6= 0, it follows
that <(unky′) = 0. Now we see that un2−n1 ∈ R. This contradiction proves
the claim.

By Claim 2 and the fact that N is closed, we have [ξ] + π(L) ⊆ N . By
Claim 3, we have unπ(L) → T. Choose a subsequence so that unk [ξ] → [η]
for some [η] ∈ T. Therefore unk([ξ] + π(L)) = unk [ξ] + unkπ(L) → [η] + T.
Since N is closed and US-invariant, we conclude that [η] + T ⊆ N , which
implies N = T.

10. Proof of Proposition 3. Suppose Theorem 3 holds except in the
case where K is a CM-field and distinct primes in S lie over distinct primes
in K+. We will show it holds in the remaining cases.

Let K be a CM-field with totally real subfield K+. We assume that
distinct primes in S lie over distinct primes in K+. Let S+ denote the set of
all primes in K+ (including the infinite ones) lying under primes in S. Given
our hypotheses, no finite primes of S are split in K/K+ and #S = #S+.
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For ease of notation, we will write US = UK,S and US+ = UK+,S+ . Now we
proceed to the proof proper.

Proof of Proposition 3. Since US+ is contained in US , it suffices to prove
that every nonempty closed US+-invariant subset of T contains torsion ele-
ments.

First we consider what happens locally. Choose v ∈ S+. By our hy-
pothesis, there is exactly one prime w ∈ S lying above v. In this case, we
have the inclusion K+

v ⊆ Kw (with [Kw : K+
v ] = 2) and the isomorphism

Kw/K
+
v ' K+

v . (Let {1, θ} be a basis for K/K+; then {1, θ} is also a basis
for Kw/K

+
v and the aforementioned isomorphism is the one that sends the

coset represented by x+ yθ to the element y.) The multiplication action of
US+ on Kw induces an action on K+

v via the mapping Kw → Kw/K
+
v ' K+

v ;
one checks that this is just the usual multiplication action so that in subse-
quent arguments we will not be dealing with two different actions.

In light of the inclusions of local fields discussed above, we have an

inclusion K
+
S+ ⊆ KS and an isomorphism KS/K

+
S+ ' K

+
S+ . If we define

a+ = a ∩ K+ and T+ = K
+
S+/a+, then this leads to an exact sequence of

compact abelian groups:

(2) 0→ T+ → T→ T/T+ → 0.

We observe that US+ acts on T and T+, and this leads to an action of US+

on T/T+. Moreover, Theorem 3 applies to K+ and hence every nonempty
US+-invariant subset of T+ contains torsion elements. We will show that the
same holds for T/T+ and hence for T.

The situation is summarized by the following commutative diagram:

0

��

0

��

0

��
0 // a+ //

��

a //

��

a/a+ //

��

0

0 // K
+
S+

//

��

KS
//

��

KS/K
+
S+

//

��

0

0 // T+ //

��

T //

��

T/T+ //

��

0

0 0 0

The isomorphism KS/K
+
S+ ' K+

S+ carries a/a+ to a fractional ideal b, and
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we obtain the isomorphic exact sequences

0 // a/a+ //

��

�O

KS/K
+
S+

//

��
�O

T/T+ //

��
�O

0

0 // b // K
+
S+

// T+
∗ // 0

In light of previous comments, the induced action of US+ on T+
∗ = K

+
S+/b is

just the usual multiplication action. Here we have written T+
∗ to emphasize

that it is potentially different from T+ since the quotient is by a different
ideal. In any case, Theorem 3 applied to K+ tells us that every nonempty
closed US+-invariant subset of T+

∗ contains torsion elements; hence the same
holds for T/T+.

Finally, we use what we have shown to complete the proof. Reconsidering
the exact sequence (2), we note that the desired result holds for both T+

and T/T+. Let N be a nonempty closed US+-invariant subset of T. Applying
the result for T/T+, we see that π(N) ⊆ T/T+ contains torsion elements
which implies (13) that mN ∩ T+ 6= ∅ for some m ∈ Z+. Since the set
mN∩T+ has the property in question, we apply the result for T+ to conclude
that mN ∩T+ contains torsion elements. It follows that N contains torsion
elements.
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