Cohen-Kuznetsov liftings of quasimodular forms

by
Min Ho Lee (Cedar Falls, IA)

1. Introduction. Quasimodular forms generalize classical modular forms, and they were introduced by Kaneko and Zagier in [3]. For a discrete subgroup Γ of $\operatorname{SL}(2, \mathbb{R})$ commensurable with $\mathrm{SL}(2, \mathbb{Z})$ and for nonnegative integers m and λ, a quasimodular form ϕ of weight λ and depth at most m for Γ corresponds to holomorphic functions $\phi_{0}, \phi_{1}, \ldots, \phi_{m}$ on the Poincaré upper half-plane \mathcal{H} satisfying

$$
\frac{1}{(c z+d)^{\lambda}} \phi\left(\frac{a z+b}{c z+d}\right)=\phi_{0}(z)+\phi_{1}(z)\left(\frac{c}{c z+d}\right)+\cdots+\phi_{m}(z)\left(\frac{c}{c z+d}\right)^{m}
$$

for all $z \in \mathcal{H}$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$. The functions ϕ_{k} are also quasimodular forms and are determined uniquely by ϕ. Thus ϕ determines the corresponding polynomial

$$
\Phi(z, X)=\sum_{r=0}^{m} \phi_{r}(z) X^{r}
$$

of degree at most m in X. Such a polynomial is called quasimodular, and to study various aspects of quasimodular forms it is often convenient to work with quasimodular polynomials.

Jacobi-like forms for Γ are formal power series which generalize Jacobi forms, and they were studied by Cohen, Manin and Zagier [2], 6]. It is known that there is a one-to-one correspondence between Jacobi-like forms and certain sequences of modular forms. In particular, for a modular form f, there is a Jacobi-like form $\widetilde{f}(z, X)$ corresponding to the sequence whose only nonzero term is f, which is known as the Cohen-Kuznetsov lifting of f.

Although the coefficient functions of a Jacobi-like form are not modular forms in general, they are in fact quasimodular forms. There is a surjective map from the space of Jacobi-like forms to the space of quasimodular poly-

[^0]nomials, and it was proved in [1] that this surjective map has a right inverse. This result shows the existence of liftings of quasimodular polynomials to Jacobi-like forms. For a quasimodular polynomial, the proof of the existence of its lifting in the above-mentioned paper was carried out by induction on the degree of the given quasimodular polynomial, and therefore the proof does not provide a formula for this lifting. The goal of the present paper is to obtain an explicit formula for such a lifting, which can be regarded as the Cohen-Kuznetsov lifting of the given quasimodular polynomial or of the corresponding quasimodular form. Indeed, when the degree of a quasimodular polynomial or the depth of the corresponding quasimodular form is zero, the quasimodular polynomial or form can be identified with a modular form, and the lifting coincides with the usual Cohen-Kuznetsov lifting of that modular form.
2. Jacobi-like forms and quasimodular forms. In this section we review certain properties of Jacobi-like forms studied by Cohen, Manin and Zagier (see [2] and [6] for details) and their connections with modular forms and quasimodular forms. We also describe quasimodular polynomials, which correspond to quasimodular forms.

Let \mathcal{H} be the Poincaré upper half-plane, and let \mathcal{F} be the ring of holomorphic functions on \mathcal{H} that are bounded by powers of

$$
\begin{equation*}
\frac{|z|^{2}+1}{\operatorname{Im}(z)} \tag{2.1}
\end{equation*}
$$

We denote by $\mathcal{F}[[X]]$ the complex algebra of formal power series in X with coefficients in \mathcal{F}. If δ is a nonnegative integer, we set

$$
\begin{equation*}
\mathcal{F}[[X]]_{\delta}=X^{\delta} \mathcal{F}[[X]] \tag{2.2}
\end{equation*}
$$

so that an element $\Phi(z, X) \in \mathcal{F}[[X]]_{\delta}$ can be written in the form

$$
\begin{equation*}
\Phi(z, X)=\sum_{k=0}^{\infty} \phi_{k}(z) X^{k+\delta} \tag{2.3}
\end{equation*}
$$

with $\phi_{k} \in \mathcal{F}$ for each $k \geq 0$. Given such $\Phi(z, X) \in \mathcal{F}[[X]]_{\delta}$ and a nonnegative integer λ, we consider two other formal power series

$$
\left(\mathfrak{S}_{\lambda, \delta} \Phi\right)(z, X),\left(\mathfrak{T}_{\lambda, \delta} \Phi\right)(z, X) \in \mathcal{F}[[X]]_{\delta}
$$

defined by

$$
\begin{align*}
& \left(\mathfrak{S}_{\lambda, \delta} \Phi\right)(z, X)=\sum_{k=0}^{\infty} \phi_{k}^{\mathfrak{S}}(z) X^{k+\delta} \tag{2.4}\\
& \left(\mathfrak{T}_{\lambda, \delta} \Phi\right)(z, X)=\sum_{k=0}^{\infty} \phi_{k}^{\mathfrak{T}}(z) X^{k+\delta} \tag{2.5}
\end{align*}
$$

where

$$
\begin{align*}
\phi_{k}^{\mathfrak{S}} & =\sum_{r=0}^{k} \frac{1}{r!(2 k+2 \delta+\lambda-r-1)!} \phi_{k-r}^{(r)}, \tag{2.6}\\
\phi_{k}^{\mathfrak{T}} & =(2 k+2 \delta+\lambda-1) \sum_{r=0}^{k}(-1)^{r} \frac{(2 k+2 \delta+\lambda-r-2)!}{r!} \phi_{k-r}^{(r)}
\end{align*}
$$

for each $k \geq 0$.
We now turn to the usual action of the group $\mathrm{SL}(2, \mathbb{R})$ on \mathcal{H} by linear fractional transformations, so that

$$
\gamma z=\frac{a z+b}{c z+d}
$$

for all $z \in \mathcal{H}$ and $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbb{R})$. For the same z and γ, by setting

$$
\mathfrak{J}(\gamma, z)=c z+d, \quad \mathfrak{K}(\gamma, z)=\frac{c}{c z+d},
$$

we obtain the maps $\mathfrak{J}, \mathfrak{K}: \operatorname{SL}(2, \mathbb{R}) \times \mathcal{H} \rightarrow \mathbb{C}$ which satisfy

$$
\mathfrak{J}\left(\gamma \gamma^{\prime}, z\right)=\mathfrak{J}\left(\gamma, \gamma^{\prime} z\right) \mathfrak{J}\left(\gamma^{\prime}, z\right), \quad \mathfrak{K}\left(\gamma, \gamma^{\prime} z\right)=\mathfrak{J}\left(\gamma^{\prime}, z\right)^{2}\left(\mathfrak{K}\left(\gamma \gamma^{\prime}, z\right)-\mathfrak{K}\left(\gamma^{\prime}, z\right)\right)
$$

for all $z \in \mathcal{H}$ and $\gamma, \gamma^{\prime} \in \operatorname{SL}(2, \mathbb{R})$.
Given a function $f \in \mathcal{F}$, a formal power series $\Phi(z, X) \in \mathcal{F}[[X]]$, a nonnegative integer λ, and an element $\gamma \in \operatorname{SL}(2, \mathbb{R})$, we set

$$
\begin{align*}
\left(\left.f\right|_{\lambda} \gamma\right)(z) & =\mathfrak{J}(\gamma, z)^{-\lambda} f(z) \\
\left(\left.\Phi\right|_{\lambda} ^{J} \gamma\right)(z, X) & =\mathfrak{J}(\gamma, z)^{-\lambda} e^{-\mathfrak{K}(\gamma, z) X} \Phi\left(\gamma z, \mathfrak{J}(\gamma, z)^{-2} X\right) \tag{2.7}\\
\left(\left.\Phi\right|_{\lambda} ^{M} \gamma\right)(z, X) & =\mathfrak{J}(\gamma, z)^{-\lambda} \Phi\left(\gamma z, \mathfrak{J}(\gamma, z)^{-2} X\right) \tag{2.8}
\end{align*}
$$

for $z \in \mathcal{H}$.
Proposition 2.1. The maps $\mathfrak{S}_{\lambda, \delta}, \mathfrak{T}_{\lambda, \delta}: \mathcal{F}[[X]]_{\delta} \rightarrow \mathcal{F}[[X]]_{\delta}$ given by (2.4) and (2.5) are complex linear isomorphisms with

$$
\begin{equation*}
\left(\mathfrak{T}_{\lambda, \delta}\right)^{-1}=\mathfrak{S}_{\lambda, \delta} \tag{2.9}
\end{equation*}
$$

Proof. This is a slightly modified version of a result that follows from the equivalence of (4) and (5) in Proposition 2 of [2] and can be proved in a straightforward manner.

If α and ν are integers with $\nu>0$, we note that a function $f \in \mathcal{F}$ satisfies

$$
\begin{equation*}
\frac{d^{\nu}}{d z^{\nu}}\left(\left.f\right|_{\alpha} \gamma\right)(z)=\sum_{r=0}^{\nu}(-1)^{\nu-r} \frac{\nu!}{r!}\binom{\alpha+\nu-1}{\nu-r} \frac{\mathfrak{K}(\gamma, z)^{\nu-r}}{\mathfrak{J}(\gamma, z)^{\alpha+2 r}} f^{(r)}(\gamma z) \tag{2.10}
\end{equation*}
$$

for $z \in \mathcal{H}$ and $\gamma \in \operatorname{SL}(2, \mathbb{R})$ (see [2, (1.9)]). The next proposition shows the $\mathrm{SL}(2, \mathbb{R})$-equivariance of the maps $\mathfrak{S}_{\lambda, \delta}$ and $\mathfrak{T}_{\lambda, \delta}$.

Proposition 2.2. The isomorphisms $\mathfrak{S}_{\lambda, \delta}, \mathfrak{T}_{\lambda, \delta}: \mathcal{F}[[X]]_{\delta} \rightarrow \mathcal{F}[[X]]_{\delta}$ satisfy

$$
\begin{align*}
& \left.\left(\mathfrak{S}_{\lambda, \delta} \Phi\right)\right|_{\lambda} ^{J} \gamma=\mathfrak{S}_{\lambda, \delta}\left(\left.\Phi\right|_{\lambda} ^{M} \gamma\right), \tag{2.11}\\
& \left.\left(\mathfrak{T}_{\lambda, \delta} \Phi\right)\right|_{\lambda} ^{M} \gamma=\mathfrak{T}_{\lambda, \delta}\left(\left.\Phi\right|_{\lambda} ^{J} \gamma\right)
\end{align*}
$$

for each $\gamma \in \operatorname{SL}(2, \mathbb{R})$ and $\Phi(z, X) \in \mathcal{F}[[X]]_{\delta}$.
Proof. Since $\mathfrak{T}_{\lambda, \delta}$ is the inverse of $\mathfrak{S}_{\lambda, \delta}$ by (2.9), it suffices to prove the relation (2.11). Given $\gamma \in \operatorname{SL}(2, \mathbb{R})$ and $\Phi(z, X) \in \mathcal{F}[[X]]_{\delta}$ as in (2.3), using (2.4) and (2.7), we have

$$
\begin{aligned}
&\left(\left.\left(\mathfrak{S}_{\lambda, \delta} \Phi\right)\right|_{\lambda} ^{J} \gamma\right)(z, X) \\
&=\mathfrak{J}(\gamma, z)^{-\lambda}\left(\sum_{r=0}^{\infty} \frac{(-1)^{r}}{r!} \mathfrak{K}(\gamma, z)^{r} X^{r}\right)\left(\sum_{\ell=0}^{\infty} \phi_{\ell}^{\mathfrak{S}}(\gamma z) \mathfrak{J}(\gamma, z)^{-2 \ell-2 \delta} X^{\ell+\delta}\right) \\
& \quad=\sum_{r=0}^{\infty} \sum_{\ell=0}^{\infty} \frac{(-1)^{r}}{r!} \mathfrak{J}(\gamma, z)^{-\lambda-2 \ell-2 \delta} \mathfrak{K}(\gamma, z)^{r} \phi_{\ell}^{\mathfrak{S}}(\gamma z) X^{\ell+r+\delta} \\
& \quad=\sum_{k=0}^{\infty} \sum_{r=0}^{k} \frac{(-1)^{r}}{r!} \mathfrak{J}(\gamma, z)^{-\lambda-2 k+2 r-2 \delta} \mathfrak{K}(\gamma, z)^{r} \phi_{k-r}^{\mathfrak{S}}(\gamma z) X^{k+\delta} .
\end{aligned}
$$

Thus we may write

$$
\left(\left.\left(\mathfrak{S}_{\lambda, \delta} \Phi\right)\right|_{\lambda} ^{J} \gamma\right)(z, X)=\sum_{k=0}^{\infty} \xi_{k}^{\mathfrak{S}}(z) X^{k+\delta}
$$

with

$$
\begin{align*}
\xi_{k}^{\mathfrak{S}}(z) & =\sum_{r=0}^{k} \frac{(-1)^{r}}{r!} \mathfrak{J}(\gamma, z)^{-\lambda-2 k+2 r-2 \delta} \mathfrak{K}(\gamma, z)^{r} \phi_{k-r}^{\mathfrak{S}}(\gamma z) \tag{2.12}\\
& =\sum_{r=0}^{k} \sum_{\ell=0}^{k-r} \frac{(-1)^{r} \mathfrak{J}(\gamma, z)^{-\lambda-2 k+2 r-2 \delta} \mathfrak{K}(\gamma, z)^{r} \phi_{k-r-\ell}^{(\ell)}(\gamma z)}{r!\ell!(2 k-2 r+2 \delta+\lambda-\ell-1)!}
\end{align*}
$$

where we used 2.6 . On the other hand, from 2.8 we obtain

$$
\begin{aligned}
\left(\left.\Phi\right|_{\lambda} ^{M} \gamma\right)(z, X) & =\mathfrak{J}(\gamma, z)^{-\lambda} \sum_{k=0}^{\infty} \phi_{k}(\gamma z) \mathfrak{J}(\gamma, z)^{-2 k-2 \delta} X^{k+\delta} \\
& =\sum_{k=0}^{\infty}\left(\left.\phi_{k}\right|_{\lambda+2 k+2 \delta} \gamma\right)(z) X^{k+\delta}
\end{aligned}
$$

hence we see that

$$
\left(\mathfrak{S}_{\lambda, \delta}\left(\left.\Phi\right|_{\lambda} ^{M} \gamma\right)\right)(z, X)=\sum_{k=0}^{\infty} \eta_{k}^{\mathfrak{S}}(z) X^{k+\delta}
$$

where

$$
\eta_{k}^{\mathfrak{S}}(z)=\sum_{r=0}^{k} \frac{1}{r!(\lambda+2 k+2 \delta-r-1)!}\left(\left.\phi_{k-r}\right|_{\lambda+2 k-2 r+2 \delta} \gamma\right)^{(r)}(z)
$$

However, using (2.10), we have

$$
\begin{aligned}
& \left(\left.\phi_{k-r}\right|_{\lambda+2 k-2 r+2 \delta} \gamma\right)^{(r)}(z) \\
& \quad=\sum_{\ell=0}^{r}(-1)^{r-\ell} \frac{r!}{\ell!}\binom{\lambda+2 k-r+2 \delta-1}{r-\ell} \frac{\mathfrak{K}(\gamma, z)^{r-\ell}}{\mathfrak{J}(\gamma, z)^{\lambda+2 k-2 r+2 \delta+2 \ell}} \phi_{k-r}^{(\ell)}(\gamma z)
\end{aligned}
$$

Thus it follows that

$$
\begin{aligned}
\eta_{k}^{\mathfrak{S}}(z)= & \sum_{r=0}^{k} \sum_{\ell=0}^{r} \frac{(-1)^{r-\ell}}{\ell!(r-\ell)!(2 k-2 r+2 \delta+\lambda+\ell-1)!} \\
& \times \frac{\mathfrak{K}(\gamma, z)^{r-\ell}}{\mathfrak{J}(\gamma, z)^{\lambda+2 k-2 r+2 \delta+2 \ell}} \phi_{k-r}^{(\ell)}(\gamma z) \\
= & \sum_{\ell=0}^{k} \sum_{r=\ell}^{k} \frac{(-1)^{r-\ell}}{\ell!(r-\ell)!(\lambda+2 k-2 r+2 \delta+\ell-1)!} \\
& \times \frac{\mathfrak{K}(\gamma, z)^{r-\ell}}{\mathfrak{J}(\gamma, z)^{\lambda+2 k-2 r+2 \delta+2 \ell}} \phi_{k-r}^{(\ell)}(\gamma z)
\end{aligned}
$$

Changing the index r to $r+\ell$, we get

$$
\begin{aligned}
\eta_{k}^{\mathfrak{S}}(z)=\sum_{\ell=0}^{k} \sum_{r=0}^{k-\ell} \frac{(-1)^{r}}{\ell!r!(\lambda+2 k-2 r+2 \delta} & \\
& \times \frac{\ell-1)!}{\mathfrak{J}(\gamma, z)^{\lambda+2 k-2 r+2 \delta}} \phi_{k-\ell-r}^{(\ell)}(\gamma z)
\end{aligned}
$$

Comparing this with 2.12, we see that

$$
\xi_{k}^{\mathfrak{S}}=\eta_{k}^{\mathfrak{S}}
$$

for each $k \geq 0$, and therefore 2.11 follows.
We now consider a discrete subgroup Γ of $\mathrm{SL}(2, \mathbb{R})$ commensurable with $\mathrm{SL}(2, \mathbb{Z})$. Then a modular form of weight λ for Γ is a holomorphic function $f \in \mathcal{F}$ satisfying

$$
\left.f\right|_{\lambda} \gamma=f
$$

for all $\gamma \in \Gamma$. We denote by $M_{\lambda}(\Gamma)$ the space of such modular forms.
REMARK 2.3. For the growth condition at the cusps we note that the functions belonging to \mathcal{F} are bounded by powers of the quotient in (2.1). This condition was suggested by Cohen, Manin and Zagier [2].

Definition 2.4.

(i) A formal power series $\Phi(z, X) \in \mathcal{F}[[X]]$ is a Jacobi-like form of weight λ for Γ if it satisfies

$$
\left(\left.\Phi\right|_{\lambda} ^{J} \gamma\right)(z, X)=\Phi(z, X)
$$

for all $z \in \mathcal{H}$ and $\gamma \in \Gamma$.
(ii) A formal power series $\Phi(z, X) \in \mathcal{F}[[X]]$ is a modular series of weight λ for Γ if it satisfies

$$
\left(\left.\Phi\right|_{\lambda} ^{M} \gamma\right)(z, X)=\Phi(z, X)
$$

for all $z \in \mathcal{H}$ and $\gamma \in \Gamma$.
We denote by $\mathcal{J}_{\lambda}(\Gamma)$ and $\mathcal{M}_{\lambda}(\Gamma)$ the spaces of Jacobi-like forms and modular series, respectively, of weight λ for Γ. We see easily that $\Phi(z, X)$ in (2.3) belongs to $\mathcal{M}_{\lambda}(\Gamma)$ if and only if

$$
\phi_{k} \in M_{2 k+2 \delta+\lambda}(\Gamma)
$$

for each $k \geq 0$. Given a nonnegative integer δ, let $\mathcal{J}_{\lambda}(\Gamma)_{\delta}$ and $\mathcal{M}_{\lambda}(\Gamma)_{\delta}$ denote the subspaces of $\mathcal{J}_{\lambda}(\Gamma)$ and $\mathcal{M}_{\lambda}(\Gamma)$, respectively, defined by

$$
\mathcal{J}_{\lambda}(\Gamma)_{\delta}=\mathcal{J}_{\lambda}(\Gamma) \cap \mathcal{F}[[X]]_{\delta}, \quad \mathcal{M}_{\lambda}(\Gamma)_{\delta}=\mathcal{M}_{\lambda}(\Gamma) \cap \mathcal{F}[[X]]_{\delta}
$$

where $\mathcal{F}[[X]]_{\delta}$ is as in 2.2 . Then by Proposition 2.2 the automorphisms $\mathfrak{S}_{\lambda, \delta}$ and $\mathfrak{T}_{\lambda, \delta}$ of $\mathcal{F}[[X]]_{\delta}$ induce the isomorphisms

$$
\begin{equation*}
\mathfrak{S}_{\lambda, \delta}: \mathcal{M}_{\lambda}(\Gamma)_{\delta} \rightarrow \mathcal{J}_{\lambda}(\Gamma)_{\delta}, \quad \mathfrak{T}_{\lambda, \delta}: \mathcal{J}_{\lambda}(\Gamma)_{\delta} \rightarrow \mathcal{M}_{\lambda}(\Gamma)_{\delta} \tag{2.13}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathfrak{S}_{\lambda, \delta}=\mathfrak{T}_{\lambda, \delta}^{-1} \tag{2.14}
\end{equation*}
$$

We note that this result provides a slight variation of the correspondence between Jacobi-like forms and sequences of modular forms established by Cohen, Manin and Zagier in [2, Proposition 2].

We now fix a nonnegative integer m and denote by $\mathcal{F}_{m}[X]$ the complex vector space of polynomials in X over \mathcal{F} of degree at most m. If λ is a nonnegative integer and

$$
\begin{equation*}
\Psi(z, X)=\sum_{r=0}^{m} \psi_{r}(z) X^{r} \in \mathcal{F}_{m}[X] \tag{2.15}
\end{equation*}
$$

we set

$$
\begin{align*}
\left(\left.\Psi\right|_{\lambda} ^{X} \gamma\right)(z, X) & =\sum_{r=0}^{m}\left(\left.\psi_{r}\right|_{\lambda+2 r} \gamma\right)(z) X^{r} \tag{2.16}\\
\left(\Psi \|_{\lambda} \gamma\right)(z, X) & =\mathfrak{J}(\gamma, z)^{-\lambda} \Psi\left(\gamma z, \mathfrak{J}(\gamma, z)^{2}(X-\mathfrak{K}(\gamma, z))\right) \tag{2.17}
\end{align*}
$$

for all $z \in \mathcal{H}$ and $\gamma \in \operatorname{SL}(2, \mathbb{R})$.

If a polynomial $\Psi(z, X) \in \mathcal{F}_{m}[X]$ is as in 2.15) and if $\lambda>2 m$, we introduce two additional polynomials

$$
\left(\Xi_{\lambda}^{m} \Psi\right)(z, X),\left(\Lambda_{\lambda}^{m} \Psi\right)(z, X) \in \mathcal{F}_{m}[X]
$$

defined by

$$
\begin{equation*}
\left(\Xi_{\lambda}^{m} \Psi\right)(z, X)=\sum_{r=0}^{m} \psi_{r}^{m, \Xi}(z) X^{r}, \quad\left(\Lambda_{\lambda}^{m} \Psi\right)(z, X)=\sum_{r=0}^{m} \psi_{r}^{m, \Lambda}(z) X^{r} \tag{2.18}
\end{equation*}
$$ where

$$
\begin{align*}
\psi_{r}^{m, \Xi}= & \frac{1}{r!} \sum_{j=0}^{m-r} \frac{1}{j!(\lambda-2 r-j-1)!} \psi_{m-r-j}^{(j)} \\
\psi_{r}^{m, \Lambda}= & (\lambda+2 r-2 m-1) \tag{2.19}\\
& \times \sum_{j=0}^{r} \frac{(-1)^{j}}{j!}(m-r+j)!(2 r+\lambda-2 m-j-2)!\psi_{m-r+j}^{(j)}
\end{align*}
$$

for each $r \in\{0,1, \ldots, m\}$. These formulas determine isomorphisms

$$
\begin{equation*}
\Xi_{\lambda}^{m}, \Lambda_{\lambda}^{m}: \mathcal{F}_{m}[X] \rightarrow \mathcal{F}_{m}[X] \tag{2.20}
\end{equation*}
$$

with

$$
\left(\Lambda_{\lambda}^{m}\right)^{-1}=\Xi_{\lambda}^{m}
$$

and they are known to satisfy

$$
\begin{align*}
\left(\left(\Xi_{\lambda}^{m} \Psi\right) \|_{\lambda} \gamma\right)(z, X) & =\Xi_{\lambda}^{m}\left(\left.\Psi\right|_{\lambda-2 m} ^{X} \gamma\right)(z, X) \tag{2.21}\\
\left(\left.\left(\Lambda_{\lambda}^{m} \Psi\right)\right|_{\lambda-2 m} ^{X} \gamma\right)(z, X) & =\Lambda_{\lambda}^{m}\left(\Psi \|_{\lambda} \gamma\right)(z, X) \tag{2.22}
\end{align*}
$$

for all $\Psi(z, X) \in \mathcal{F}_{m}[X]$ and $\gamma \in \operatorname{SL}(2, \mathbb{R})$ (see [4]).
Definition 2.5. Let Γ be a discrete subgroup of $\operatorname{SL}(2, \mathbb{R})$ commensurable with $\mathrm{SL}(2, \mathbb{Z})$ as before.
(i) A modular polynomial for Γ of weight λ and degree at most m is an element $F(z, X) \in \mathcal{F}_{m}[X]$ satisfying

$$
\left.F\right|_{\lambda} ^{X} \gamma=F
$$

for all $\gamma \in \Gamma$.
(ii) An element $\Psi(z, X) \in \mathcal{F}_{m}[X]$ is a quasimodular polynomial for Γ of weight λ and degree at most m if it satisfies

$$
\Psi \|_{\lambda} \gamma=\Psi
$$

for all $\gamma \in \Gamma$.
We denote by $\mathrm{MP}_{\lambda}^{m}(\Gamma)$ and $\mathrm{QP}_{\lambda}^{m}(\Gamma)$ the spaces of, respectively, modular polynomials and quasimodular polynomials for Γ of weight λ and degree at
most m. From 2.21 and 2.22 we see that the maps Ξ_{λ}^{m} and Λ_{λ}^{m} induce the isomorphisms

$$
\begin{equation*}
\Xi_{\lambda}^{m}: \operatorname{MP}_{\lambda-2 m}^{m}(\Gamma) \rightarrow \mathrm{QP}_{\lambda}^{m}(\Gamma), \quad \Lambda_{\lambda}^{m}: \mathrm{QP}_{\lambda}^{m}(\Gamma) \rightarrow \operatorname{MP}_{\lambda-2 m}^{m}(\Gamma) \tag{2.23}
\end{equation*}
$$

for each integer $\lambda>2 m$.
Definition 2.6. An element $\psi \in \mathcal{F}$ is a quasimodular form for Γ of weight λ and depth at most m if there are functions $\psi_{0}, \ldots, \psi_{m} \in \mathcal{F}$ satisfying

$$
\begin{equation*}
\left(\left.\psi\right|_{\lambda} \gamma\right)(z)=\sum_{r=0}^{m} \psi_{r}(z) \mathfrak{K}(\gamma, z)^{r} \tag{2.24}
\end{equation*}
$$

for all $z \in \mathcal{H}$ and $\gamma \in \Gamma$. We denote by $\operatorname{QM}_{\lambda}^{m}(\Gamma)$ the space of such quasimodular forms.

If $\psi \in \mathrm{QM}_{\lambda}^{m}(\Gamma)$ satisfies 2.24 , it can be shown that the functions ψ_{r} are uniquely determined; hence we can consider the map

$$
\mathcal{Q}_{\lambda}^{m}: \operatorname{QM}_{\lambda}^{m}(\Gamma) \rightarrow \mathcal{F}_{m}[X]
$$

defined by

$$
\begin{equation*}
\left(\mathcal{Q}_{\lambda}^{m} \psi\right)(z, X)=\sum_{r=0}^{m} \psi_{r}(z) X^{r} \tag{2.25}
\end{equation*}
$$

In fact, it is also known that this map determines an isomorphism

$$
\begin{equation*}
\mathcal{Q}_{\lambda}^{m}: \operatorname{QM}_{\lambda}^{m}(\Gamma) \rightarrow \operatorname{QP}_{\lambda}^{m}(\Gamma) \tag{2.26}
\end{equation*}
$$

whose inverse is given by

$$
\begin{equation*}
\left(\mathcal{Q}_{\lambda}^{m}\right)^{-1} \Psi(z, X)=\psi_{0} \tag{2.27}
\end{equation*}
$$

for $\Psi(z, X) \in \mathrm{QP}_{\lambda}^{m}(\Gamma)$ as in 2.15 (see [1]).
3. Liftings of quasimodular forms. In this section we obtain an explicit formula for a lifting of a quasimodular polynomial to a Jacobi-like form whose existence was proved in [1]. Since quasimodular forms correspond to quasimodular polynomials, the same formula also determines a lifting of a quasimodular form to a Jacobi-like form, which generalizes the CohenKuznetsov lifting of a modular form.

Let $\mathcal{F}[[X]]_{\delta}$ and $\mathcal{F}_{m}[X]$ with $\delta, m \geq 0$ be as in Section 2 , and consider two surjective complex linear maps

$$
\begin{equation*}
\Pi_{m}^{\delta}, \widehat{\Pi}_{m}^{\delta}: \mathcal{F}[[X]]_{\delta} \rightarrow \mathcal{F}_{m}[X] \tag{3.1}
\end{equation*}
$$

defined by

$$
\begin{align*}
& \left(\Pi_{m}^{\delta} \Phi\right)(z, X)=\sum_{r=0}^{m} \frac{1}{r!} \phi_{m-r}(z) X^{r} \tag{3.2}\\
& \left(\widehat{\Pi}_{m}^{\delta} \Phi\right)(z, X)=\sum_{r=0}^{m} \phi_{r}(z) X^{r} \tag{3.3}
\end{align*}
$$

for a formal power series of the form

$$
\begin{equation*}
\Phi(z, X)=\sum_{k=0}^{\infty} \phi_{k}(z) X^{k+\delta} \in \mathcal{F}[[X]]_{\delta} \tag{3.4}
\end{equation*}
$$

Proposition 3.1. For each nonnegative integer λ the diagram

$$
\begin{array}{llr}
\mathcal{F}[[X]]_{\delta} & \xrightarrow{\mathfrak{T}_{\lambda, \delta}} & \mathcal{F}[[X]]_{\delta} \\
\Pi_{m}^{\delta} \downarrow & & \downarrow \widehat{\Pi}_{m}^{\delta} \\
\mathcal{F}_{m}[X] & \xrightarrow{\Lambda_{\lambda+2 \delta+2 m}^{m}} & \mathcal{F}_{m}[X]
\end{array}
$$

commutes, where $\mathfrak{T}_{\lambda, \delta}$ and $\Lambda_{\lambda+2 \delta+2 m}^{m}$ are the isomorphisms in Proposition 2.1 and 2.20.

Proof. Given a formal power series $\Phi(z, x) \in \mathcal{F}[[X]]_{\delta}$ as in (3.4), from (2.5) and (3.3) we obtain

$$
\left(\left(\widehat{\Pi}_{m}^{\delta} \circ \mathfrak{T}_{\lambda, \delta}\right) \Phi\right)(z, X)=\sum_{r=0}^{m} \phi_{r}^{\mathfrak{T}}(z) X^{r}
$$

where

$$
\phi_{r}^{\mathfrak{T}}=(2 r+\lambda+2 \delta-1) \sum_{j=0}^{r}(-1)^{j} \frac{(2 r+\lambda+2 \delta-j-2)!}{j!} \phi_{r-j}^{(j)}
$$

for $0 \leq r \leq m$. On the other hand, if we set

$$
\widehat{\phi}_{k}=\frac{1}{k!} \phi_{m-k}
$$

for $0 \leq k \leq m$, from 2.18 and 3.2 we see that

$$
\left(\left(\Lambda_{\lambda+2 \delta+2 m}^{m} \circ \Pi_{m}^{\delta}\right) \Phi\right)(z, X)=\sum_{r=0}^{m} \phi_{r}^{m, \Lambda}(z) X^{r}
$$

where

$$
\phi_{r}^{m, \Lambda}=(\lambda+2 \delta+2 r-1) \sum_{j=0}^{r} \frac{(-1)^{j}}{j!}(m+r+j)!(2 r+\lambda+2 \delta-j-2)!\widehat{\phi}_{m-r+j}^{(j)}
$$

with

$$
\widehat{\phi}_{m-r+j}^{(j)}=\frac{1}{(m-r+j)!} \phi_{r-j}^{(j)}
$$

for $0 \leq j \leq r \leq m$. Thus we have

$$
\phi_{r}^{\mathfrak{T}}=\phi_{r}^{m, \Lambda}
$$

for $0 \leq r \leq m$, which implies that

$$
\begin{equation*}
\widehat{\Pi}_{m}^{\delta} \circ \mathfrak{T}_{\lambda, \delta}=\Lambda_{\lambda+2 \delta+2 m}^{m} \circ \Pi_{m}^{\delta} \tag{3.5}
\end{equation*}
$$

hence the proposition follows.
The surjective maps Π_{m}^{δ} and $\widehat{\Pi}_{m}^{\delta}$ in (3.1) are in fact equivariant with respect to the $\mathrm{SL}(2, \mathbb{R})$-actions in (2.7), (2.8), 2.16) and (2.17) in such a way that

$$
\Pi_{m}^{\delta}\left(\left.\Phi\right|_{\lambda} ^{J} \gamma\right)=\Pi_{m}^{\delta}(\Phi) \|_{\lambda+2 m+2 \delta} \gamma, \quad \widehat{\Pi}_{m}^{\delta}\left(\left.\Phi\right|_{\lambda} ^{M} \gamma\right)=\left.\Pi_{m}^{\delta}(\Phi)\right|_{\lambda+2 \delta} ^{X} \gamma
$$

for all $\Phi(z, X) \in \mathcal{F}[[X]]$ and $\gamma \in \operatorname{SL}(2, \mathbb{R})$ (cf. [1]). Thus, if Γ is a discrete subgroup of $\operatorname{SL}(2, \mathbb{R})$ considered in Section 2 , they induce the complex linear maps
(3.6) $\quad \Pi_{m}^{\delta}: \mathcal{J}_{\lambda}(\Gamma)_{\delta} \rightarrow \mathrm{QP}_{\lambda+2 m+2 \delta}^{m}(\Gamma), \quad \widehat{\Pi}_{m}^{\delta}: \mathcal{M}_{\lambda}(\Gamma)_{\delta} \rightarrow \operatorname{MP}_{\lambda+2 \delta}^{m}(\Gamma)$.

Hence we obtain the commutative diagram

$$
\begin{array}{ccc}
\mathcal{J}_{\lambda}(\Gamma)_{\delta} & \stackrel{\mathfrak{T}_{\lambda, \delta}}{ } & \mathcal{M}_{\lambda}(\Gamma)_{\delta} \\
\Pi_{m}^{\delta} \downarrow & \downarrow{ }_{\Pi}^{m} \\
\mathrm{QP}_{\lambda+2 \delta+2 m}^{m}(\Gamma) & \xrightarrow{\Lambda_{\lambda+2 \delta+2 m}^{m}} & \operatorname{MP}_{\lambda+2 \delta}^{m}(\Gamma)
\end{array}
$$

for each nonnegative integer λ.
We now consider the natural embedding

$$
\mathcal{E}_{\delta}^{m}: \mathcal{F}_{m}[X] \rightarrow \mathcal{F}[[X]]_{\delta}
$$

defined by

$$
\begin{equation*}
\left(\mathcal{E}_{\delta}^{m} \Psi\right)(z, X)=\sum_{k=0}^{\infty} \widetilde{\psi}_{k}(z) X^{k+\delta} \tag{3.7}
\end{equation*}
$$

for

$$
\begin{equation*}
\Psi(z, X)=\sum_{r=0}^{m} \psi_{r}(z) X^{r} \in \mathcal{F}_{m}[X] \tag{3.8}
\end{equation*}
$$

where

$$
\widetilde{\psi}_{k}= \begin{cases}\psi_{k} & \text { for } 0 \leq k \leq m \\ 0 & \text { for } k>m\end{cases}
$$

Then we easily see that it induces an embedding

$$
\begin{equation*}
\mathcal{E}_{\delta}^{m}: \operatorname{MP}_{\lambda}^{m}(\Gamma) \rightarrow \mathcal{M}_{\lambda-2 \delta}(\Gamma)_{\delta} \tag{3.9}
\end{equation*}
$$

of modular polynomials into modular series satisfying

$$
\begin{equation*}
\left(\widehat{\Pi}_{m}^{\delta} \circ \mathcal{E}_{\delta}^{m}\right) \Psi(z, X)=\Psi(z, X) \tag{3.10}
\end{equation*}
$$

for all $\Psi(z, X) \in \operatorname{MP}_{\lambda}^{m}(\Gamma)$. Given $\lambda>2 m$, we now define the linear map

$$
\mathcal{L}_{\delta, \lambda}^{m}: \mathcal{F}_{m}[X] \rightarrow \mathcal{F}[[X]]_{\delta}
$$

by setting

$$
\left(\mathcal{L}_{\delta, \lambda}^{m} \Psi\right)(z, X)=\sum_{k=0}^{\infty} \psi_{k}^{*}(z) X^{k+\delta}
$$

for $\Psi(z, X) \in \mathcal{F}_{m}[X]$ as in (3.8), where

$$
\begin{align*}
\psi_{k}^{*} & =\sum_{r=\max (k-m, 0}^{k} \sum_{j=0}^{k-r}(\lambda+2 k-2 r-2 m-1) \tag{3.11}\\
& \times \frac{(-1)^{j}(m-k+r+j)!(2 k-2 r+\lambda-2 m-j-2)!}{j!r!(2 k+\lambda-2 m-r-1)!} \psi_{m-k+r+j}^{(j+r)}
\end{align*}
$$

for each $k \geq 0$.
Theorem 3.2. The map $\mathcal{L}_{\delta, \lambda}^{m}$ induces a lifting

$$
\begin{equation*}
\mathcal{L}_{\delta, \lambda}^{m}: \operatorname{QP}_{\lambda}^{m}(\Gamma) \rightarrow \mathcal{J}_{\lambda-2 \delta-2 m}(\Gamma)_{\delta} \tag{3.12}
\end{equation*}
$$

of quasimodular polynomials to Jacobi-like forms such that

$$
\left(\left(\Pi_{m}^{\delta} \circ \mathcal{L}_{\delta, \lambda}^{m}\right) \Psi\right)(z, X)=\Psi(z, X)
$$

for all $\Psi(z, X) \in \operatorname{QP}_{\lambda}^{m}(\Gamma)$.
Proof. From (2.13), 2.23) and (3.9) we obtain the following sequence of maps:
$\mathrm{QP}_{\lambda}^{m}(\Gamma) \xrightarrow{\Lambda_{\lambda}^{m}} \operatorname{MP}_{\lambda-2 m}^{m}(\Gamma) \xrightarrow{\mathcal{E}_{\delta}^{m}} \mathcal{M}_{\lambda-2 \delta-2 m}(\Gamma)_{\delta} \xrightarrow{\mathfrak{S}_{\lambda-2 \delta-2 m, \delta}} \mathcal{J}_{\lambda-2 \delta-2 m}(\Gamma)_{\delta}$.
We shall first show that the composite of these maps coincides with $\mathcal{L}_{\delta, \lambda}^{m}$. Given a quasimodular polynomial

$$
\Psi(z, X)=\sum_{r=0}^{m} \psi_{r}(z) X^{r} \in \operatorname{QP}_{\lambda}^{m}(\Gamma)
$$

using (2.18) and (3.7), we have

$$
\left(\left(\mathcal{E}_{\delta}^{m} \circ \Lambda_{\lambda}^{m}\right) \Psi\right)(z, X)=\sum_{k=0}^{\infty} \eta_{k}(z) X^{k+\delta} \in \mathcal{M}_{\lambda-2 \delta-2 m}(\Gamma)_{\delta}
$$

with

$$
\eta_{k}= \begin{cases}\psi_{k}^{m, \Lambda} & \text { for } 0 \leq k \leq m \\ 0 & \text { for } k>m\end{cases}
$$

where $\psi_{k}^{m, \Lambda}$ is as in (2.19). From this and (2.4) we see that

$$
\left(\left(\mathfrak{S}_{\lambda-2 \delta-2 m, \delta} \circ \mathcal{E}_{\delta}^{m} \circ \Lambda_{\lambda}^{m}\right) \Psi\right)(z, X)=\sum_{k=0}^{\infty} \psi_{k}^{*}(z) X^{k+\delta} \in \mathcal{J}_{\lambda-2 \delta-2 m}(\Gamma)_{\delta}
$$

where

$$
\begin{aligned}
\psi_{k}^{*} & =\sum_{r=0}^{k} \frac{1}{r!(2 k+\lambda-2 m-r-1)!} \eta_{k-r}^{(r)} \\
& =\sum_{r=\max (k-m, 0)}^{k} \frac{1}{r!(2 k+\lambda-2 m-r-1)!}\left(\psi_{k-r}^{m, \Lambda}\right)^{(r)}
\end{aligned}
$$

for each $k \geq 0$. Noting that

$$
\begin{aligned}
\psi_{k-r}^{m, \Lambda}= & (\lambda+2 k-2 r-2 m-1) \\
& \times \sum_{j=0}^{k-r} \frac{(-1)^{j}}{j!}(m-k+r+j)!(2 k-2 r+\lambda-2 m-j-2)!\psi_{m-k+r+j}^{(j)}
\end{aligned}
$$

by 2.19, we obtain

$$
\mathcal{L}_{\delta, \lambda}^{m}=\mathfrak{S}_{\lambda-2 \delta-2 m, \delta} \circ \mathcal{E}_{\delta}^{m} \circ \Lambda_{\lambda}^{m} .
$$

On the other hand, from (3.5) we see that

$$
\widehat{\Pi}_{m}^{\delta} \circ \mathfrak{T}_{\lambda-2 \delta-2 m, \delta}=\Lambda_{\lambda}^{m} \circ \Pi_{m}^{\delta}
$$

Using this, 2.14 and 3.10, we have

$$
\begin{aligned}
& \left(\left(\Pi_{m}^{\delta} \circ \mathcal{L}_{\delta, \lambda}^{m}\right) \Psi\right)(z, X) \\
& =\left(\left(\left(\Lambda_{\lambda}^{m}\right)^{-1} \circ \widehat{\Pi}_{m}^{\delta} \circ \mathfrak{T}_{\lambda-2 \delta-2 m, \delta} \circ \mathcal{L}_{\delta, \lambda}^{m}\right) \Psi\right)(z, X) \\
& =\left(\left(\left(\Lambda_{\lambda}^{m}\right)^{-1} \circ \widehat{\Pi}_{m}^{\delta} \circ \mathfrak{T}_{\lambda-2 \delta-2 m, \delta} \circ \mathfrak{S}_{\lambda-2 \delta-2 m, \delta} \circ \mathcal{E}_{\delta}^{m} \circ \Lambda_{\lambda}^{m}\right) \Psi\right)(z, X)=\Psi(z, X)
\end{aligned}
$$

for all $\Psi(z, X) \in \operatorname{QP}_{\lambda}^{m}(\Gamma)$; hence the proof of Theorem 3.2 is complete.
In order to describe the lifting in the previous theorem in terms of quasimodular forms, we consider the map

$$
\pi_{n}^{\delta}: \mathcal{J}_{\lambda}(\Gamma)_{\delta} \rightarrow \mathcal{F}
$$

for each nonnegative integer n defined by

$$
\pi_{n}^{\delta}(\Phi)=\phi_{n}
$$

if $\Phi(z, X) \in \mathcal{J}_{\lambda}(\Gamma)_{\delta}$ is given by (3.4). Then $\pi_{n}^{\delta}(\Phi)$ is the constant term in the quasimodular polynomial $\left(\Pi_{n}^{\delta} \Phi\right)(z, X) \in \mathrm{QP}_{\lambda+2 \delta+2 n}^{n}(\Gamma)$ and therefore is a quasimodular form belonging to $\mathrm{QM}_{\lambda+2 \delta+2 n}^{n}(\Gamma)$ by (2.27). Thus π_{n}^{δ} determines the map

$$
\pi_{n}^{\delta}: \mathcal{J}_{\lambda}(\Gamma)_{\delta} \rightarrow \mathrm{QM}_{\lambda+2 \delta+2 n}^{n}(\Gamma)
$$

Given a nonnegative integer m, we now introduce the map $\widetilde{\mathcal{L}}_{\delta, \lambda}^{m}$ defined by

$$
\widetilde{\mathcal{L}}_{\delta, \lambda}^{m}=\mathcal{L}_{\delta, \lambda}^{m} \circ \mathcal{Q}_{\lambda}^{m}: \operatorname{QM}_{\lambda}^{m}(\Gamma) \rightarrow \mathcal{F}[[X]]_{\delta}
$$

where $\mathcal{Q}_{\lambda}^{m}$ is the isomorphism in 2.26).

Corollary 3.3. The map $\widetilde{\mathcal{L}}_{\delta, \lambda}^{m}$ induces a lifting

$$
\widetilde{\mathcal{L}}_{\delta, \lambda}^{m}: \mathrm{QM}_{\lambda}^{m}(\Gamma) \rightarrow \mathcal{J}_{\lambda-2 \delta-2 m}(\Gamma)_{\delta}
$$

of quasimodular forms to Jacobi-like forms such that

$$
\left(\pi_{m}^{\delta} \circ \widetilde{\mathcal{L}}_{\delta, \lambda}^{m}\right)(\psi)=\psi
$$

for all $\psi \in \operatorname{QM}_{\lambda}^{m}(\Gamma)$.
Proof. This follows from Theorem 3.2 and the fact that the coefficient of X^{m} in the Jacobi-like form

$$
\left(\widetilde{\mathcal{L}}_{\delta, \lambda}^{m} \psi\right)(z, X)=\left(\left(\mathcal{L}_{\delta, \lambda}^{m} \circ \mathcal{Q}_{\lambda}^{m}\right) \psi\right)(z, X) \in \mathcal{J}_{\lambda-2 \delta-2 m}(\Gamma)_{\delta}
$$

coincides with the constant term in the quasimodular polynomial

$$
\left(\mathcal{Q}_{\lambda}^{m} \psi\right)(z, X) \in \operatorname{QP}_{\lambda}^{m}(\Gamma),
$$

which is equal to $\psi(z)$.
Example 3.4. (i) We consider the lifting (3.12) for $m=0$. First, we note that $\operatorname{QP}_{\lambda}^{0}(\Gamma)$ can be identified with $M_{\lambda}(\Gamma)$. Thus we have $\Psi(z, X)=\psi_{0}(z)$ with $\psi_{0} \in M_{\lambda}(\Gamma)$, and we see in formula (3.11) that $r=k$ and $j=0$, so that

$$
\begin{align*}
\psi_{k}^{*} & =\frac{(\lambda-1)!}{k!(k+\lambda-1)!} \psi_{0}^{(k)}, \\
\left(\mathcal{L}_{\delta, \lambda}^{0} \Psi\right)(z, X) & =(\lambda-1)!\sum_{k=0}^{\infty} \frac{\psi_{0}^{(k)}(z)}{k!(k+\lambda-1)!} X^{k+\delta} \in \mathcal{J}_{\lambda-2 \delta}(\Gamma)_{\delta} . \tag{3.13}
\end{align*}
$$

Thus the Jacobi-like form $\left(\mathcal{L}_{\delta, \lambda}^{0} \Psi\right)(z, X) /(\lambda-1)$! is the well-known CohenKuznetsov lifting of the modular form f_{0} (see e.g. [2]).
(ii) We now consider the case of $m=1$. First, for $k=0$ we have $r=j=0$ in the sum in (3.12), and therefore

$$
\psi_{0}^{*}=(\lambda-3) \frac{(\lambda-4)!}{(\lambda-3)!} \psi_{1}=\psi_{1}
$$

On the other hand, using (3.12) for $k \geq 1$, we obtain

$$
\begin{aligned}
\psi_{k}^{*}=\sum_{r=k-1}^{k} \sum_{j=0}^{k-r}(\lambda+ & 2 k-2 r-3) \\
& \times \frac{(-1)^{j}(1-k+r+j)!(2 k-2 r+\lambda-j-4)!}{j!r!(2 k+\lambda-r-3)!} \psi_{1-k+r+j}^{(j+r)}
\end{aligned}
$$

$$
\begin{aligned}
= & (\lambda-1) \frac{(\lambda-2)!}{(k-1)!(k+\lambda-2)!} \psi_{0}^{(k-1)}-(\lambda-1) \frac{(\lambda-3)!}{(k-1)!(k+\lambda-2)!} \psi_{1}^{(k)} \\
& +(\lambda-3) \frac{(\lambda-4)!}{k!(k+\lambda-3)!} \psi_{1}^{(k)} \\
= & (\lambda-1) \frac{(\lambda-2)!}{(k-1)!(k+\lambda-2)!} \psi_{0}^{(k-1)}-\frac{(\lambda-2)!(k-1)}{k!(k+\lambda-2)!} \psi_{1}^{(k)} \\
= & \frac{(\lambda-2)!}{k!(k+\lambda-2)!}\left((\lambda-1) k \psi_{0}^{(k-1)}-(k-1) \psi_{1}^{(k)}\right) .
\end{aligned}
$$

Thus it follows that

$$
\begin{align*}
& \left(\mathcal{L}_{\delta, \lambda}^{1} \Psi\right)(z, X)=\psi_{1}(z) X^{\delta} \tag{3.14}\\
& \quad+\sum_{k=1}^{\infty} \frac{(\lambda-2)!}{k!(k+\lambda-2)!}\left((\lambda-1) k \psi_{0}^{(k-1)}(z)-(k-1) \psi_{1}^{(k)}(z)\right) X^{k+\delta}
\end{align*}
$$

which belongs to $\mathcal{J}_{\lambda-2 \delta-2}(\Gamma)_{\delta}$.
(iii) Let f be a modular form belonging to $M_{w}(\Gamma)$. Then it can be shown that f^{\prime} is a quasimodular form belonging to $\mathrm{QM}_{w+2}^{1}(\Gamma)$ which satisfies

$$
\left(\left.f^{\prime}\right|_{w+2} \gamma\right)(z)=f^{\prime}(z)+w f(z) \mathfrak{K}(\gamma, z)
$$

for all $z \in \mathcal{H}$ and $\gamma \in \Gamma$. Thus, if we set

$$
\Psi(z, X)=\left(\mathcal{Q}_{w+2}^{1}\left(f^{\prime}\right)\right)(z, X)=\psi_{0}(z)+\psi_{1}(z) X
$$

with \mathcal{Q}_{w+2}^{1} as in (2.25), by using (3.14) for $\lambda=w+2$ we obtain

$$
\begin{gathered}
\psi_{0}=f^{\prime}, \quad \psi_{1}=w f \\
(\lambda-1) k \psi_{0}^{(k-1)}-(k-1) \psi_{1}^{(k)}=(w+1) k f^{(k)}-(k-1) w f^{(k)}=(k+w) f^{(k)}
\end{gathered}
$$

Thus

$$
\begin{aligned}
\left(\mathcal{L}_{\delta, w+2}^{1} \Psi\right)(z, X) & =w f(z) X^{\delta}+w!\sum_{k=1}^{\infty} \frac{(k+w) f^{(k)}}{k!(k+w)!} X^{k+\delta} \\
& =w!\sum_{k=0}^{\infty} \frac{f^{(k)}}{k!(k+w-1)!} X^{k+\delta}
\end{aligned}
$$

which belongs to $\mathcal{J}_{w-2 \delta}(\Gamma)_{\delta}$. Comparing this with (3.13), we see that the lifting of the quasimodular polynomial $\left(\mathcal{Q}_{w+2}^{1}\left(f^{\prime}\right)\right)(z, X)$ corresponding to the quasimodular form f^{\prime} is equal to the lifting of the modular form f times the weight of f.
4. Concluding remarks. We see easily that the kernel of the complex linear map Π_{m}^{δ} in 3.6 is equal to $\mathcal{J}_{\lambda}(\Gamma)_{\delta+m+1}$. On the other hand, by Theorem 3.2 the same map is surjective. Thus we obtain a short exact
sequence of the form

$$
\begin{equation*}
0 \rightarrow \mathcal{J}_{\lambda}(\Gamma)_{\delta+m+1} \rightarrow \mathcal{J}_{\lambda}(\Gamma)_{\delta} \xrightarrow{\Pi_{m}^{\delta}} \mathrm{QP}_{\lambda+2 m+2 \delta}^{m}(\Gamma) \rightarrow 0 \tag{4.1}
\end{equation*}
$$

where the second arrow represents the inclusion map. Furthermore, from (3.12) we obtain the map

$$
\mathcal{L}_{\delta, \lambda+2 \delta+2 m}^{m}: \operatorname{QP}_{\lambda+2 \delta+2 m}^{m}(\Gamma) \rightarrow \mathcal{J}_{\lambda}(\Gamma)_{\delta}
$$

satisfying

$$
\left(\Pi_{m}^{\delta} \circ \mathcal{L}_{\delta, \lambda+2 \delta+2 m}^{m}\right) \Psi=\Psi
$$

for all $\Psi(z, X) \in \mathrm{QP}_{\lambda+2 \delta+2 m}^{m}(\Gamma)$. Thus it follows that the short exact sequence (4.1) splits.

As we noted in Section 2, if $\psi \in \mathrm{QM}_{\lambda}^{m}(\Gamma)$ satisfies (2.24), the functions ψ_{r} are uniquely determined. Since it is known that $\psi_{r} \in \mathrm{QM}_{\lambda-2 r}^{m-r}(\Gamma)$ for $0 \leq r \leq m$ (see e.g. [5), we can consider the complex linear map

$$
\mathfrak{S}_{r}: \mathrm{QM}_{\lambda}^{m}(\Gamma) \rightarrow \mathrm{QM}_{\lambda-2 r}^{m-r}(\Gamma)
$$

with $0 \leq r \leq m$ defined by

$$
\mathfrak{S}_{r}(\psi)=\psi_{r}
$$

for $\psi \in \operatorname{QM}_{\lambda}^{m}(\Gamma)$ as in (2.24). Then the formula for the lifting map

$$
\widetilde{\mathcal{L}}_{\delta, \lambda}^{m}: \mathrm{QM}_{\lambda}^{m}(\Gamma) \rightarrow \mathcal{J}_{\lambda-2 \delta-2 m}(\Gamma)_{\delta}
$$

in Corollary 3.3 can be written as

$$
\left(\widetilde{\mathcal{L}}_{\delta, \lambda}^{m} \psi\right)(z, X)=\sum_{k=0}^{\infty} \psi_{k}^{\#}(z) X^{k+\delta}
$$

for $\psi \in \mathrm{QM}_{\lambda}^{m}(\Gamma)$, where

$$
\begin{aligned}
\psi_{k}^{\#} & =\sum_{r=\max (k-m, 0)}^{k} \sum_{j=0}^{k-r}(\lambda+2 k-2 r-2 m-1) \\
& \times \frac{(-1)^{j}(m-k+r+j)!(2 k-2 r+\lambda-2 m-j-2)!}{j!r!(2 k+\lambda-2 m-r-1)!}\left(\mathfrak{S}_{m-k+r+j} \psi\right)^{(j+r)}
\end{aligned}
$$

for each $k \geq 0$.

References

[1] Y. Choie and M. H. Lee, Quasimodular forms and Jacobi-like forms, Math. Z. 280 (2015), 643-667.
[2] P. B. Cohen, Yu. Manin, and D. Zagier, Automorphic pseudodifferential operators, in: Algebraic Aspects of Nonlinear Systems, Birkhäuser, Boston, 1997, 17-47.
[3] M. Kaneko and D. Zagier, A generalized Jacobi theta function and quasimodular forms, in: Progr. Math. 129, Birkhäuser, Boston, 1995, 165-172.
[4] M. H. Lee, Quasimodular forms and Poincaré series, Acta Arith. 137 (2009), 155-169.
[5] F. Martin et E. Royer, Formes modulaires et périodes, in: Formes modulaires et transcendance, S. Fischler et al. (eds.), Sémin. Congr. 12, Soc. Math. France, Paris, 2005, 1-117.
[6] D. Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci. 104 (1994), 57-75.

Min Ho Lee
Department of Mathematics University of Northern Iowa Cedar Falls, IA 50614, U.S.A.
E-mail: lee@math.uni.edu

[^0]: 2010 Mathematics Subject Classification: 11F11, 11F50.
 Key words and phrases: Cohen-Kuznetsov liftings, quasimodular forms, Jacobi-like forms, modular forms.

