Cohen-Kuznetsov liftings of quasimodular forms

by

MIN HO LEE (Cedar Falls, IA)

1. Introduction. Quasimodular forms generalize classical modular forms, and they were introduced by Kaneko and Zagier in [3]. For a discrete subgroup Γ of $SL(2,\mathbb{R})$ commensurable with $SL(2,\mathbb{Z})$ and for nonnegative integers m and λ , a quasimodular form ϕ of weight λ and depth at most m for Γ corresponds to holomorphic functions $\phi_0, \phi_1, \ldots, \phi_m$ on the Poincaré upper half-plane \mathcal{H} satisfying

$$\frac{1}{(cz+d)^{\lambda}}\phi\left(\frac{az+b}{cz+d}\right) = \phi_0(z) + \phi_1(z)\left(\frac{c}{cz+d}\right) + \dots + \phi_m(z)\left(\frac{c}{cz+d}\right)^m$$

for all $z \in \mathcal{H}$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$. The functions ϕ_k are also quasimodular forms and are determined uniquely by ϕ . Thus ϕ determines the corresponding polynomial

$$\Phi(z,X) = \sum_{r=0}^{m} \phi_r(z) X^r$$

of degree at most m in X. Such a polynomial is called *quasimodular*, and to study various aspects of quasimodular forms it is often convenient to work with quasimodular polynomials.

Jacobi-like forms for Γ are formal power series which generalize Jacobi forms, and they were studied by Cohen, Manin and Zagier [2], [6]. It is known that there is a one-to-one correspondence between Jacobi-like forms and certain sequences of modular forms. In particular, for a modular form f, there is a Jacobi-like form $\tilde{f}(z, X)$ corresponding to the sequence whose only nonzero term is f, which is known as the *Cohen-Kuznetsov lifting* of f.

Although the coefficient functions of a Jacobi-like form are not modular forms in general, they are in fact quasimodular forms. There is a surjective map from the space of Jacobi-like forms to the space of quasimodular poly-

²⁰¹⁰ Mathematics Subject Classification: 11F11, 11F50.

Key words and phrases: Cohen–Kuznetsov liftings, quasimodular forms, Jacobi-like forms, modular forms.

nomials, and it was proved in [1] that this surjective map has a right inverse. This result shows the existence of liftings of quasimodular polynomials to Jacobi-like forms. For a quasimodular polynomial, the proof of the existence of its lifting in the above-mentioned paper was carried out by induction on the degree of the given quasimodular polynomial, and therefore the proof does not provide a formula for this lifting. The goal of the present paper is to obtain an explicit formula for such a lifting, which can be regarded as the Cohen–Kuznetsov lifting of the given quasimodular polynomial or of the corresponding quasimodular form. Indeed, when the degree of a quasimodular polynomial or the depth of the corresponding quasimodular form is zero, the quasimodular polynomial or form can be identified with a modular form, and the lifting coincides with the usual Cohen–Kuznetsov lifting of that modular form.

2. Jacobi-like forms and quasimodular forms. In this section we review certain properties of Jacobi-like forms studied by Cohen, Manin and Zagier (see [2] and [6] for details) and their connections with modular forms and quasimodular forms. We also describe quasimodular polynomials, which correspond to quasimodular forms.

Let \mathcal{H} be the Poincaré upper half-plane, and let \mathcal{F} be the ring of holomorphic functions on \mathcal{H} that are bounded by powers of

(2.1)
$$\frac{|z|^2 + 1}{\operatorname{Im}(z)}$$

We denote by $\mathcal{F}[[X]]$ the complex algebra of formal power series in X with coefficients in \mathcal{F} . If δ is a nonnegative integer, we set

(2.2)
$$\mathcal{F}[[X]]_{\delta} = X^{\delta} \mathcal{F}[[X]],$$

so that an element $\Phi(z, X) \in \mathcal{F}[[X]]_{\delta}$ can be written in the form

(2.3)
$$\Phi(z,X) = \sum_{k=0}^{\infty} \phi_k(z) X^{k+\delta}$$

with $\phi_k \in \mathcal{F}$ for each $k \geq 0$. Given such $\Phi(z, X) \in \mathcal{F}[[X]]_{\delta}$ and a nonnegative integer λ , we consider two other formal power series

$$(\mathfrak{S}_{\lambda,\delta}\Phi)(z,X), (\mathfrak{T}_{\lambda,\delta}\Phi)(z,X) \in \mathcal{F}[[X]]_{\delta}$$

defined by

(2.4)
$$(\mathfrak{S}_{\lambda,\delta}\Phi)(z,X) = \sum_{k=0}^{\infty} \phi_k^{\mathfrak{S}}(z) X^{k+\delta},$$

(2.5)
$$(\mathfrak{T}_{\lambda,\delta}\Phi)(z,X) = \sum_{k=0}^{\infty} \phi_k^{\mathfrak{T}}(z) X^{k+\delta},$$

where

(2.6)
$$\phi_k^{\mathfrak{S}} = \sum_{r=0}^k \frac{1}{r!(2k+2\delta+\lambda-r-1)!} \phi_{k-r}^{(r)},$$
$$\phi_k^{\mathfrak{T}} = (2k+2\delta+\lambda-1) \sum_{r=0}^k (-1)^r \frac{(2k+2\delta+\lambda-r-2)!}{r!} \phi_{k-r}^{(r)}$$

for each $k \geq 0$.

We now turn to the usual action of the group $SL(2,\mathbb{R})$ on \mathcal{H} by linear fractional transformations, so that

$$\gamma z = \frac{az+b}{cz+d}$$

for all $z \in \mathcal{H}$ and $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2, \mathbb{R})$. For the same z and γ , by setting

$$\mathfrak{J}(\gamma, z) = cz + d, \qquad \mathfrak{K}(\gamma, z) = \frac{c}{cz + d}$$

we obtain the maps $\mathfrak{J}, \mathfrak{K} : \mathrm{SL}(2, \mathbb{R}) \times \mathcal{H} \to \mathbb{C}$ which satisfy

 $\mathfrak{J}(\gamma\gamma',z) = \mathfrak{J}(\gamma,\gamma'z)\mathfrak{J}(\gamma',z), \quad \mathfrak{K}(\gamma,\gamma'z) = \mathfrak{J}(\gamma',z)^2(\mathfrak{K}(\gamma\gamma',z) - \mathfrak{K}(\gamma',z))$ for all $z \in \mathcal{H}$ and $\gamma, \gamma' \in \mathrm{SL}(2, \mathbb{R})$.

Given a function $f \in \mathcal{F}$, a formal power series $\Phi(z, X) \in \mathcal{F}[[X]]$, a nonnegative integer λ , and an element $\gamma \in SL(2,\mathbb{R})$, we set

$$(f|_{\lambda}\gamma)(z) = \mathfrak{J}(\gamma, z)^{-\lambda}f(z),$$

$$(2.7) \qquad (\varPhi|_{\lambda}^{J}\gamma)(z, X) = \mathfrak{J}(\gamma, z)^{-\lambda}e^{-\mathfrak{K}(\gamma, z)X}\varPhi(\gamma z, \mathfrak{J}(\gamma, z)^{-2}X),$$

$$(2.8) \qquad (\varPhi|_{\lambda}^{M}\gamma)(z, X) = \mathfrak{J}(\gamma, z)^{-\lambda}\varPhi(\gamma z, \mathfrak{J}(\gamma, z)^{-2}X)$$

(2.8)
$$(\Phi|_{\lambda}^{M}\gamma)(z,X) = \mathfrak{J}(\gamma,z)^{-\lambda}\Phi(\gamma z,\mathfrak{J}(\gamma,z)^{-2}X)$$

for $z \in \mathcal{H}$.

PROPOSITION 2.1. The maps $\mathfrak{S}_{\lambda,\delta}, \mathfrak{T}_{\lambda,\delta} : \mathcal{F}[[X]]_{\delta} \to \mathcal{F}[[X]]_{\delta}$ given by (2.4) and (2.5) are complex linear isomorphisms with

(2.9)
$$(\mathfrak{T}_{\lambda,\delta})^{-1} = \mathfrak{S}_{\lambda,\delta}.$$

Proof. This is a slightly modified version of a result that follows from the equivalence of (4) and (5) in Proposition 2 of [2] and can be proved in a straightforward manner.

If α and ν are integers with $\nu > 0$, we note that a function $f \in \mathcal{F}$ satisfies

(2.10)
$$\frac{d^{\nu}}{dz^{\nu}}(f|_{\alpha}\gamma)(z) = \sum_{r=0}^{\nu} (-1)^{\nu-r} \frac{\nu!}{r!} \binom{\alpha+\nu-1}{\nu-r} \frac{\Re(\gamma,z)^{\nu-r}}{\Im(\gamma,z)^{\alpha+2r}} f^{(r)}(\gamma z)$$

for $z \in \mathcal{H}$ and $\gamma \in SL(2, \mathbb{R})$ (see [2, (1.9)]). The next proposition shows the $SL(2,\mathbb{R})$ -equivariance of the maps $\mathfrak{S}_{\lambda,\delta}$ and $\mathfrak{T}_{\lambda,\delta}$.

PROPOSITION 2.2. The isomorphisms $\mathfrak{S}_{\lambda,\delta}, \mathfrak{T}_{\lambda,\delta} : \mathcal{F}[[X]]_{\delta} \to \mathcal{F}[[X]]_{\delta}$ satisfy

(2.11)
$$(\mathfrak{S}_{\lambda,\delta}\Phi)|_{\lambda}^{J}\gamma = \mathfrak{S}_{\lambda,\delta}(\Phi|_{\lambda}^{M}\gamma),$$
$$(\mathfrak{T}_{\lambda,\delta}\Phi)|_{\lambda}^{M}\gamma = \mathfrak{T}_{\lambda,\delta}(\Phi|_{\lambda}^{J}\gamma)$$

for each $\gamma \in \mathrm{SL}(2,\mathbb{R})$ and $\Phi(z,X) \in \mathcal{F}[[X]]_{\delta}$.

Proof. Since $\mathfrak{T}_{\lambda,\delta}$ is the inverse of $\mathfrak{S}_{\lambda,\delta}$ by (2.9), it suffices to prove the relation (2.11). Given $\gamma \in \mathrm{SL}(2,\mathbb{R})$ and $\varPhi(z,X) \in \mathcal{F}[[X]]_{\delta}$ as in (2.3), using (2.4) and (2.7), we have

$$\begin{split} ((\mathfrak{S}_{\lambda,\delta}\Phi)|_{\lambda}^{J}\gamma)(z,X) \\ &= \mathfrak{J}(\gamma,z)^{-\lambda} \bigg(\sum_{r=0}^{\infty} \frac{(-1)^{r}}{r!} \mathfrak{K}(\gamma,z)^{r} X^{r} \bigg) \bigg(\sum_{\ell=0}^{\infty} \phi_{\ell}^{\mathfrak{S}}(\gamma z) \mathfrak{J}(\gamma,z)^{-2\ell-2\delta} X^{\ell+\delta} \bigg) \\ &= \sum_{r=0}^{\infty} \sum_{\ell=0}^{\infty} \frac{(-1)^{r}}{r!} \mathfrak{J}(\gamma,z)^{-\lambda-2\ell-2\delta} \mathfrak{K}(\gamma,z)^{r} \phi_{\ell}^{\mathfrak{S}}(\gamma z) X^{\ell+r+\delta} \\ &= \sum_{k=0}^{\infty} \sum_{r=0}^{k} \frac{(-1)^{r}}{r!} \mathfrak{J}(\gamma,z)^{-\lambda-2k+2r-2\delta} \mathfrak{K}(\gamma,z)^{r} \phi_{k-r}^{\mathfrak{S}}(\gamma z) X^{k+\delta}. \end{split}$$

Thus we may write

$$((\mathfrak{S}_{\lambda,\delta}\Phi)|_{\lambda}^{J}\gamma)(z,X) = \sum_{k=0}^{\infty} \xi_{k}^{\mathfrak{S}}(z)X^{k+\delta}$$

with

(2.12)
$$\xi_{k}^{\mathfrak{S}}(z) = \sum_{r=0}^{k} \frac{(-1)^{r}}{r!} \mathfrak{J}(\gamma, z)^{-\lambda - 2k + 2r - 2\delta} \mathfrak{K}(\gamma, z)^{r} \phi_{k-r}^{\mathfrak{S}}(\gamma z)$$
$$= \sum_{r=0}^{k} \sum_{\ell=0}^{k-r} \frac{(-1)^{r} \mathfrak{J}(\gamma, z)^{-\lambda - 2k + 2r - 2\delta} \mathfrak{K}(\gamma, z)^{r} \phi_{k-r-\ell}^{(\ell)}(\gamma z)}{r! \ell! (2k - 2r + 2\delta + \lambda - \ell - 1)!},$$

where we used (2.6). On the other hand, from (2.8) we obtain

$$\begin{split} (\varPhi|_{\lambda}^{M}\gamma)(z,X) &= \mathfrak{J}(\gamma,z)^{-\lambda}\sum_{k=0}^{\infty}\phi_{k}(\gamma z)\mathfrak{J}(\gamma,z)^{-2k-2\delta}X^{k+\delta} \\ &= \sum_{k=0}^{\infty}(\phi_{k}|_{\lambda+2k+2\delta}\gamma)(z)X^{k+\delta}; \end{split}$$

hence we see that

$$(\mathfrak{S}_{\lambda,\delta}(\varPhi|_{\lambda}^{M}\gamma))(z,X) = \sum_{k=0}^{\infty} \eta_{k}^{\mathfrak{S}}(z)X^{k+\delta},$$

where

$$\eta_k^{\mathfrak{S}}(z) = \sum_{r=0}^k \frac{1}{r!(\lambda + 2k + 2\delta - r - 1)!} (\phi_{k-r}|_{\lambda + 2k - 2r + 2\delta} \gamma)^{(r)}(z).$$

However, using (2.10), we have

$$(\phi_{k-r}|_{\lambda+2k-2r+2\delta\gamma})^{(r)}(z) = \sum_{\ell=0}^{r} (-1)^{r-\ell} \frac{r!}{\ell!} \binom{\lambda+2k-r+2\delta-1}{r-\ell} \frac{\mathfrak{K}(\gamma,z)^{r-\ell}}{\mathfrak{J}(\gamma,z)^{\lambda+2k-2r+2\delta+2\ell}} \phi_{k-r}^{(\ell)}(\gamma z).$$

Thus it follows that

$$\begin{split} \eta_{k}^{\mathfrak{S}}(z) &= \sum_{r=0}^{k} \sum_{\ell=0}^{r} \frac{(-1)^{r-\ell}}{\ell! (r-\ell)! (2k-2r+2\delta+\lambda+\ell-1)!} \\ &\qquad \times \frac{\mathfrak{K}(\gamma,z)^{r-\ell}}{\mathfrak{J}(\gamma,z)^{\lambda+2k-2r+2\delta+2\ell}} \phi_{k-r}^{(\ell)}(\gamma z) \\ &= \sum_{\ell=0}^{k} \sum_{r=\ell}^{k} \frac{(-1)^{r-\ell}}{\ell! (r-\ell)! (\lambda+2k-2r+2\delta+\ell-1)!} \\ &\qquad \times \frac{\mathfrak{K}(\gamma,z)^{r-\ell}}{\mathfrak{J}(\gamma,z)^{\lambda+2k-2r+2\delta+2\ell}} \phi_{k-r}^{(\ell)}(\gamma z). \end{split}$$

Changing the index r to $r + \ell$, we get

$$\begin{split} \eta_k^{\mathfrak{S}}(z) &= \sum_{\ell=0}^k \sum_{r=0}^{k-\ell} \frac{(-1)^r}{\ell! r! (\lambda + 2k - 2r + 2\delta - \ell - 1)!} \\ &\qquad \times \frac{\mathfrak{K}(\gamma, z)^r}{\mathfrak{J}(\gamma, z)^{\lambda + 2k - 2r + 2\delta}} \phi_{k-\ell-r}^{(\ell)}(\gamma z). \end{split}$$

Comparing this with (2.12), we see that

$$\xi_k^{\mathfrak{S}} = \eta_k^{\mathfrak{S}}$$

for each $k \ge 0$, and therefore (2.11) follows.

We now consider a discrete subgroup Γ of $SL(2, \mathbb{R})$ commensurable with $SL(2, \mathbb{Z})$. Then a modular form of weight λ for Γ is a holomorphic function $f \in \mathcal{F}$ satisfying

$$f|_{\lambda}\gamma = f$$

for all $\gamma \in \Gamma$. We denote by $M_{\lambda}(\Gamma)$ the space of such modular forms.

REMARK 2.3. For the growth condition at the cusps we note that the functions belonging to \mathcal{F} are bounded by powers of the quotient in (2.1). This condition was suggested by Cohen, Manin and Zagier [2].

Definition 2.4.

(i) A formal power series $\Phi(z, X) \in \mathcal{F}[[X]]$ is a Jacobi-like form of weight λ for Γ if it satisfies

$$(\Phi|^J_\lambda\gamma)(z,X) = \Phi(z,X)$$

for all $z \in \mathcal{H}$ and $\gamma \in \Gamma$.

(ii) A formal power series $\Phi(z, X) \in \mathcal{F}[[X]]$ is a modular series of weight λ for Γ if it satisfies

$$(\Phi|_{\lambda}^{M}\gamma)(z,X) = \Phi(z,X)$$

for all $z \in \mathcal{H}$ and $\gamma \in \Gamma$.

We denote by $\mathcal{J}_{\lambda}(\Gamma)$ and $\mathcal{M}_{\lambda}(\Gamma)$ the spaces of Jacobi-like forms and modular series, respectively, of weight λ for Γ . We see easily that $\Phi(z, X)$ in (2.3) belongs to $\mathcal{M}_{\lambda}(\Gamma)$ if and only if

$$\phi_k \in M_{2k+2\delta+\lambda}(\Gamma)$$

for each $k \geq 0$. Given a nonnegative integer δ , let $\mathcal{J}_{\lambda}(\Gamma)_{\delta}$ and $\mathcal{M}_{\lambda}(\Gamma)_{\delta}$ denote the subspaces of $\mathcal{J}_{\lambda}(\Gamma)$ and $\mathcal{M}_{\lambda}(\Gamma)$, respectively, defined by

$$\mathcal{J}_{\lambda}(\Gamma)_{\delta} = \mathcal{J}_{\lambda}(\Gamma) \cap \mathcal{F}[[X]]_{\delta}, \quad \mathcal{M}_{\lambda}(\Gamma)_{\delta} = \mathcal{M}_{\lambda}(\Gamma) \cap \mathcal{F}[[X]]_{\delta},$$

where $\mathcal{F}[[X]]_{\delta}$ is as in (2.2). Then by Proposition 2.2 the automorphisms $\mathfrak{S}_{\lambda,\delta}$ and $\mathfrak{T}_{\lambda,\delta}$ of $\mathcal{F}[[X]]_{\delta}$ induce the isomorphisms

(2.13) $\mathfrak{S}_{\lambda,\delta}: \mathcal{M}_{\lambda}(\Gamma)_{\delta} \to \mathcal{J}_{\lambda}(\Gamma)_{\delta}, \quad \mathfrak{T}_{\lambda,\delta}: \mathcal{J}_{\lambda}(\Gamma)_{\delta} \to \mathcal{M}_{\lambda}(\Gamma)_{\delta}$

with

(2.14)
$$\mathfrak{S}_{\lambda,\delta} = \mathfrak{T}_{\lambda,\delta}^{-1}.$$

We note that this result provides a slight variation of the correspondence between Jacobi-like forms and sequences of modular forms established by Cohen, Manin and Zagier in [2, Proposition 2].

We now fix a nonnegative integer m and denote by $\mathcal{F}_m[X]$ the complex vector space of polynomials in X over \mathcal{F} of degree at most m. If λ is a nonnegative integer and

(2.15)
$$\Psi(z,X) = \sum_{r=0}^{m} \psi_r(z) X^r \in \mathcal{F}_m[X],$$

we set

(2.16)
$$(\Psi|_{\lambda}^{X}\gamma)(z,X) = \sum_{r=0}^{m} (\psi_{r}|_{\lambda+2r}\gamma)(z)X^{r},$$

(2.17)
$$(\Psi \|_{\lambda} \gamma)(z, X) = \mathfrak{J}(\gamma, z)^{-\lambda} \Psi(\gamma z, \mathfrak{J}(\gamma, z)^2 (X - \mathfrak{K}(\gamma, z)))$$

for all $z \in \mathcal{H}$ and $\gamma \in SL(2, \mathbb{R})$.

If a polynomial $\Psi(z, X) \in \mathcal{F}_m[X]$ is as in (2.15) and if $\lambda > 2m$, we introduce two additional polynomials

$$(\Xi_{\lambda}^{m}\Psi)(z,X), (\Lambda_{\lambda}^{m}\Psi)(z,X) \in \mathcal{F}_{m}[X]$$

defined by

$$(2.18) \quad (\Xi^m_\lambda \Psi)(z,X) = \sum_{r=0}^m \psi^{m,\Xi}_r(z) X^r, \quad (\Lambda^m_\lambda \Psi)(z,X) = \sum_{r=0}^m \psi^{m,\Lambda}_r(z) X^r,$$

where

$$\psi_r^{m,\Xi} = \frac{1}{r!} \sum_{j=0}^{m-r} \frac{1}{j!(\lambda - 2r - j - 1)!} \psi_{m-r-j}^{(j)},$$
(2.19) $\psi_r^{m,\Lambda} = (\lambda + 2r - 2m - 1)$
 $\times \sum_{j=0}^r \frac{(-1)^j}{j!} (m - r + j)! (2r + \lambda - 2m - j - 2)! \psi_{m-r+j}^{(j)},$

for each $r \in \{0, 1, ..., m\}$. These formulas determine isomorphisms

(2.20)
$$\Xi_{\lambda}^{m}, \Lambda_{\lambda}^{m} : \mathcal{F}_{m}[X] \to \mathcal{F}_{m}[X]$$

with

$$(\Lambda^m_\lambda)^{-1} = \Xi^m_\lambda,$$

and they are known to satisfy

(2.21)
$$((\Xi_{\lambda}^{m}\Psi)\|_{\lambda}\gamma)(z,X) = \Xi_{\lambda}^{m}(\Psi|_{\lambda-2m}^{X}\gamma)(z,X),$$

(2.22)
$$((\Lambda^m_{\lambda}\Psi)|_{\lambda-2m}^{X}\gamma)(z,X) = \Lambda^m_{\lambda}(\Psi|_{\lambda}\gamma)(z,X)$$

for all $\Psi(z, X) \in \mathcal{F}_m[X]$ and $\gamma \in \mathrm{SL}(2, \mathbb{R})$ (see [4]).

DEFINITION 2.5. Let Γ be a discrete subgroup of $SL(2,\mathbb{R})$ commensurable with $SL(2,\mathbb{Z})$ as before.

(i) A modular polynomial for Γ of weight λ and degree at most m is an element $F(z, X) \in \mathcal{F}_m[X]$ satisfying

$$F|_{\lambda}^{X}\gamma = F$$

for all $\gamma \in \Gamma$.

(ii) An element $\Psi(z, X) \in \mathcal{F}_m[X]$ is a quasimodular polynomial for Γ of weight λ and degree at most m if it satisfies

$$\Psi \|_{\lambda} \gamma = \Psi$$

for all $\gamma \in \Gamma$.

We denote by $\operatorname{MP}_{\lambda}^{m}(\Gamma)$ and $\operatorname{QP}_{\lambda}^{m}(\Gamma)$ the spaces of, respectively, modular polynomials and quasimodular polynomials for Γ of weight λ and degree at

most *m*. From (2.21) and (2.22) we see that the maps Ξ_{λ}^{m} and Λ_{λ}^{m} induce the isomorphisms

(2.23)
$$\Xi^m_{\lambda} : \operatorname{MP}^m_{\lambda-2m}(\Gamma) \to \operatorname{QP}^m_{\lambda}(\Gamma), \quad \Lambda^m_{\lambda} : \operatorname{QP}^m_{\lambda}(\Gamma) \to \operatorname{MP}^m_{\lambda-2m}(\Gamma)$$

for each integer $\lambda > 2m$.

DEFINITION 2.6. An element $\psi \in \mathcal{F}$ is a quasimodular form for Γ of weight λ and depth at most m if there are functions $\psi_0, \ldots, \psi_m \in \mathcal{F}$ satisfying

(2.24)
$$(\psi|_{\lambda}\gamma)(z) = \sum_{r=0}^{m} \psi_r(z)\mathfrak{K}(\gamma, z)^r$$

for all $z \in \mathcal{H}$ and $\gamma \in \Gamma$. We denote by $\mathrm{QM}^m_{\lambda}(\Gamma)$ the space of such quasimodular forms.

If $\psi \in \text{QM}^m_{\lambda}(\Gamma)$ satisfies (2.24), it can be shown that the functions ψ_r are uniquely determined; hence we can consider the map

$$\mathcal{Q}^m_\lambda : \mathrm{QM}^m_\lambda(\Gamma) \to \mathcal{F}_m[X]$$

defined by

(2.25)
$$(\mathcal{Q}^m_\lambda \psi)(z, X) = \sum_{r=0}^m \psi_r(z) X^r.$$

In fact, it is also known that this map determines an isomorphism

(2.26)
$$\mathcal{Q}_{\lambda}^{m}: \mathrm{QM}_{\lambda}^{m}(\Gamma) \to \mathrm{QP}_{\lambda}^{m}(\Gamma),$$

whose inverse is given by

(2.27)
$$(\mathcal{Q}_{\lambda}^m)^{-1} \Psi(z, X) = \psi_0$$

for $\Psi(z, X) \in \operatorname{QP}^m_{\lambda}(\Gamma)$ as in (2.15) (see [1]).

3. Liftings of quasimodular forms. In this section we obtain an explicit formula for a lifting of a quasimodular polynomial to a Jacobi-like form whose existence was proved in [1]. Since quasimodular forms correspond to quasimodular polynomials, the same formula also determines a lifting of a quasimodular form to a Jacobi-like form, which generalizes the Cohen–Kuznetsov lifting of a modular form.

Let $\mathcal{F}[[X]]_{\delta}$ and $\mathcal{F}_m[X]$ with $\delta, m \geq 0$ be as in Section 2, and consider two surjective complex linear maps

(3.1)
$$\Pi_m^{\delta}, \widehat{\Pi}_m^{\delta} : \mathcal{F}[[X]]_{\delta} \to \mathcal{F}_m[X]$$

defined by

(3.2)
$$(\Pi_m^{\delta} \Phi)(z, X) = \sum_{r=0}^m \frac{1}{r!} \phi_{m-r}(z) X^r,$$

(3.3)
$$(\widehat{\Pi}_m^{\delta}\Phi)(z,X) = \sum_{r=0}^m \phi_r(z)X^r$$

for a formal power series of the form

(3.4)
$$\Phi(z,X) = \sum_{k=0}^{\infty} \phi_k(z) X^{k+\delta} \in \mathcal{F}[[X]]_{\delta}.$$

PROPOSITION 3.1. For each nonnegative integer λ the diagram

commutes, where $\mathfrak{T}_{\lambda,\delta}$ and $\Lambda^m_{\lambda+2\delta+2m}$ are the isomorphisms in Proposition 2.1 and (2.20).

Proof. Given a formal power series $\Phi(z, x) \in \mathcal{F}[[X]]_{\delta}$ as in (3.4), from (2.5) and (3.3) we obtain

$$((\widehat{\Pi}_m^{\delta} \circ \mathfrak{T}_{\lambda,\delta})\Phi)(z,X) = \sum_{r=0}^m \phi_r^{\mathfrak{T}}(z)X^r$$

where

$$\phi_r^{\mathfrak{T}} = (2r + \lambda + 2\delta - 1) \sum_{j=0}^r (-1)^j \frac{(2r + \lambda + 2\delta - j - 2)!}{j!} \phi_{r-j}^{(j)}$$

for $0 \le r \le m$. On the other hand, if we set

$$\widehat{\phi}_k = \frac{1}{k!} \phi_{m-k}$$

for $0 \le k \le m$, from (2.18) and (3.2) we see that

$$((\Lambda^m_{\lambda+2\delta+2m} \circ \Pi^\delta_m) \Phi)(z, X) = \sum_{r=0}^m \phi^{m,\Lambda}_r(z) X^r$$

where

$$\phi_r^{m,\Lambda} = (\lambda + 2\delta + 2r - 1) \sum_{j=0}^r \frac{(-1)^j}{j!} (m + r + j)! (2r + \lambda + 2\delta - j - 2)! \widehat{\phi}_{m-r+j}^{(j)}$$

with

$$\widehat{\phi}_{m-r+j}^{(j)} = \frac{1}{(m-r+j)!} \phi_{r-j}^{(j)}$$

for $0 \leq j \leq r \leq m$. Thus we have

$$\phi_r^{\mathfrak{T}} = \phi_r^{m,\Lambda}$$

for $0 \leq r \leq m$, which implies that

(3.5)
$$\widehat{\Pi}_{m}^{\delta} \circ \mathfrak{T}_{\lambda,\delta} = \Lambda_{\lambda+2\delta+2m}^{m} \circ \Pi_{m}^{\delta}$$

hence the proposition follows.

The surjective maps Π_m^{δ} and $\widehat{\Pi}_m^{\delta}$ in (3.1) are in fact equivariant with respect to the SL(2, \mathbb{R})-actions in (2.7), (2.8), (2.16) and (2.17) in such a way that

$$\Pi^{\delta}_{m}(\Phi|^{J}_{\lambda}\gamma) = \Pi^{\delta}_{m}(\Phi)||_{\lambda+2m+2\delta}\gamma, \qquad \widehat{\Pi}^{\delta}_{m}(\Phi|^{M}_{\lambda}\gamma) = \Pi^{\delta}_{m}(\Phi)|^{X}_{\lambda+2\delta}\gamma$$

for all $\Phi(z, X) \in \mathcal{F}[[X]]$ and $\gamma \in SL(2, \mathbb{R})$ (cf. [1]). Thus, if Γ is a discrete subgroup of $SL(2, \mathbb{R})$ considered in Section 2, they induce the complex linear maps

(3.6)
$$\Pi_m^{\delta} : \mathcal{J}_{\lambda}(\Gamma)_{\delta} \to \operatorname{QP}_{\lambda+2m+2\delta}^m(\Gamma), \quad \widehat{\Pi}_m^{\delta} : \mathcal{M}_{\lambda}(\Gamma)_{\delta} \to \operatorname{MP}_{\lambda+2\delta}^m(\Gamma).$$

Hence we obtain the commutative diagram

for each nonnegative integer λ .

We now consider the natural embedding

$$\mathcal{E}^m_\delta: \mathcal{F}_m[X] \to \mathcal{F}[[X]]_\delta$$

defined by

(3.7)
$$(\mathcal{E}^m_{\delta}\Psi)(z,X) = \sum_{k=0}^{\infty} \widetilde{\psi}_k(z) X^{k+\delta}$$

for

(3.8)
$$\Psi(z,X) = \sum_{r=0}^{m} \psi_r(z) X^r \in \mathcal{F}_m[X],$$

where

$$\widetilde{\psi}_k = \begin{cases} \psi_k & \text{for } 0 \le k \le m, \\ 0 & \text{for } k > m. \end{cases}$$

Then we easily see that it induces an embedding

(3.9)
$$\mathcal{E}^m_{\delta} : \mathrm{MP}^m_{\lambda}(\Gamma) \to \mathcal{M}_{\lambda-2\delta}(\Gamma)_{\delta}$$

of modular polynomials into modular series satisfying

(3.10)
$$(\widehat{\Pi}_m^{\delta} \circ \mathcal{E}_{\delta}^m) \Psi(z, X) = \Psi(z, X)$$

250

for all $\Psi(z, X) \in \operatorname{MP}^m_{\lambda}(\Gamma)$. Given $\lambda > 2m$, we now define the linear map $\mathcal{L}^m_{\delta,\lambda} : \mathcal{F}_m[X] \to \mathcal{F}[[X]]_{\delta}$

by setting

$$(\mathcal{L}^m_{\delta,\lambda}\Psi)(z,X) = \sum_{k=0}^{\infty} \psi_k^*(z) X^{k+\delta}$$

for $\Psi(z, X) \in \mathcal{F}_m[X]$ as in (3.8), where

(3.11)
$$\psi_k^* = \sum_{r=\max(k-m,0)}^k \sum_{j=0}^{k-r} (\lambda + 2k - 2r - 2m - 1) \\ \times \frac{(-1)^j (m-k+r+j)! (2k-2r+\lambda - 2m-j-2)!}{j! r! (2k+\lambda - 2m-r-1)!} \psi_{m-k+r+j}^{(j+r)}$$

for each $k \geq 0$.

THEOREM 3.2. The map $\mathcal{L}_{\delta,\lambda}^m$ induces a lifting

(3.12)
$$\mathcal{L}^m_{\delta,\lambda} : \mathrm{QP}^m_{\lambda}(\Gamma) \to \mathcal{J}_{\lambda-2\delta-2m}(\Gamma)_{\delta}$$

of quasimodular polynomials to Jacobi-like forms such that

$$((\Pi_m^\delta \circ \mathcal{L}^m_{\delta,\lambda})\Psi)(z,X) = \Psi(z,X)$$

for all $\Psi(z, X) \in \operatorname{QP}^m_{\lambda}(\Gamma)$.

Proof. From (2.13), (2.23) and (3.9) we obtain the following sequence of maps:

$$\operatorname{QP}^{m}_{\lambda}(\Gamma) \xrightarrow{\Lambda^{m}_{\lambda}} \operatorname{MP}^{m}_{\lambda-2m}(\Gamma) \xrightarrow{\mathcal{E}^{m}_{\delta}} \mathcal{M}_{\lambda-2\delta-2m}(\Gamma)_{\delta} \xrightarrow{\mathfrak{S}_{\lambda-2\delta-2m,\delta}} \mathcal{J}_{\lambda-2\delta-2m}(\Gamma)_{\delta}.$$

We shall first show that the composite of these maps coincides with $\mathcal{L}_{\delta,\lambda}^m$. Given a quasimodular polynomial

$$\Psi(z,X) = \sum_{r=0}^{m} \psi_r(z) X^r \in \operatorname{QP}^m_{\lambda}(\Gamma),$$

using (2.18) and (3.7), we have

$$((\mathcal{E}^m_{\delta} \circ \Lambda^m_{\lambda})\Psi)(z, X) = \sum_{k=0}^{\infty} \eta_k(z) X^{k+\delta} \in \mathcal{M}_{\lambda - 2\delta - 2m}(\Gamma)_{\delta}$$

with

$$\eta_k = \begin{cases} \psi_k^{m,\Lambda} & \text{for } 0 \le k \le m, \\ 0 & \text{for } k > m, \end{cases}$$

where $\psi_k^{m,\Lambda}$ is as in (2.19). From this and (2.4) we see that

$$\left((\mathfrak{S}_{\lambda-2\delta-2m,\delta} \circ \mathcal{E}_{\delta}^{m} \circ \Lambda_{\lambda}^{m}) \Psi \right)(z,X) = \sum_{k=0}^{\infty} \psi_{k}^{*}(z) X^{k+\delta} \in \mathcal{J}_{\lambda-2\delta-2m}(\Gamma)_{\delta},$$

where

$$\psi_k^* = \sum_{r=0}^k \frac{1}{r!(2k+\lambda-2m-r-1)!} \eta_{k-r}^{(r)}$$
$$= \sum_{r=\max(k-m,0)}^k \frac{1}{r!(2k+\lambda-2m-r-1)!} (\psi_{k-r}^{m,\Lambda})^{(r)}$$

for each $k \ge 0$. Noting that

$$\psi_{k-r}^{m,\Lambda} = (\lambda + 2k - 2r - 2m - 1) \\ \times \sum_{j=0}^{k-r} \frac{(-1)^j}{j!} (m - k + r + j)! (2k - 2r + \lambda - 2m - j - 2)! \psi_{m-k+r+j}^{(j)}$$

by (2.19), we obtain

$$\mathcal{L}^m_{\delta,\lambda} = \mathfrak{S}_{\lambda-2\delta-2m,\delta} \circ \mathcal{E}^m_{\delta} \circ \Lambda^m_{\lambda}.$$

On the other hand, from (3.5) we see that

$$\widehat{\Pi}_m^{\delta} \circ \mathfrak{T}_{\lambda-2\delta-2m,\delta} = \Lambda_\lambda^m \circ \Pi_m^{\delta}.$$

Using this, (2.14) and (3.10), we have

$$\begin{split} &((\Pi_m^{\delta} \circ \mathcal{L}_{\delta,\lambda}^m)\Psi)(z,X) \\ &= \left(((\Lambda_{\lambda}^m)^{-1} \circ \widehat{\Pi}_m^{\delta} \circ \mathfrak{T}_{\lambda-2\delta-2m,\delta} \circ \mathcal{L}_{\delta,\lambda}^m)\Psi\right)(z,X) \\ &= \left(((\Lambda_{\lambda}^m)^{-1} \circ \widehat{\Pi}_m^{\delta} \circ \mathfrak{T}_{\lambda-2\delta-2m,\delta} \circ \mathfrak{S}_{\lambda-2\delta-2m,\delta} \circ \mathcal{E}_{\delta}^m \circ \Lambda_{\lambda}^m)\Psi\right)(z,X) = \Psi(z,X) \\ &\text{for all } \Psi(z,X) \in \operatorname{QP}_{\lambda}^m(\Gamma); \text{ hence the proof of Theorem 3.2 is complete.} \blacksquare$$

In order to describe the lifting in the previous theorem in terms of quasimodular forms, we consider the map

$$\pi_n^\delta:\mathcal{J}_\lambda(\Gamma)_\delta\to\mathcal{F}$$

for each nonnegative integer n defined by

$$\pi_n^{\delta}(\Phi) = \phi_n$$

if $\Phi(z, X) \in \mathcal{J}_{\lambda}(\Gamma)_{\delta}$ is given by (3.4). Then $\pi_n^{\delta}(\Phi)$ is the constant term in the quasimodular polynomial $(\Pi_n^{\delta}\Phi)(z, X) \in \operatorname{QP}_{\lambda+2\delta+2n}^n(\Gamma)$ and therefore is a quasimodular form belonging to $\operatorname{QM}_{\lambda+2\delta+2n}^n(\Gamma)$ by (2.27). Thus π_n^{δ} determines the map

$$\pi_n^{\delta}: \mathcal{J}_{\lambda}(\Gamma)_{\delta} \to \mathrm{QM}_{\lambda+2\delta+2n}^n(\Gamma).$$

Given a nonnegative integer m, we now introduce the map $\widetilde{\mathcal{L}}^m_{\delta,\lambda}$ defined by

$$\widetilde{\mathcal{L}}^m_{\delta,\lambda} = \mathcal{L}^m_{\delta,\lambda} \circ \mathcal{Q}^m_{\lambda} : \mathrm{QM}^m_{\lambda}(\Gamma) \to \mathcal{F}[[X]]_{\delta},$$

where $\mathcal{Q}_{\lambda}^{m}$ is the isomorphism in (2.26).

252

COROLLARY 3.3. The map $\widetilde{\mathcal{L}}^m_{\delta,\lambda}$ induces a lifting

 $\widetilde{\mathcal{L}}^m_{\delta,\lambda}: \mathrm{QM}^m_{\lambda}(\Gamma) \to \mathcal{J}_{\lambda-2\delta-2m}(\Gamma)_{\delta}$

of quasimodular forms to Jacobi-like forms such that

$$(\pi_m^\delta \circ \widetilde{\mathcal{L}}^m_{\delta,\lambda})(\psi) = \psi$$

for all $\psi \in \mathrm{QM}^m_\lambda(\Gamma)$.

Proof. This follows from Theorem 3.2 and the fact that the coefficient of X^m in the Jacobi-like form

$$(\widetilde{\mathcal{L}}^m_{\delta,\lambda}\psi)(z,X) = ((\mathcal{L}^m_{\delta,\lambda} \circ \mathcal{Q}^m_{\lambda})\psi)(z,X) \in \mathcal{J}_{\lambda-2\delta-2m}(\Gamma)_{\delta}$$

coincides with the constant term in the quasimodular polynomial

$$(\mathcal{Q}^m_\lambda\psi)(z,X) \in \mathrm{QP}^m_\lambda(\Gamma),$$

which is equal to $\psi(z)$.

EXAMPLE 3.4. (i) We consider the lifting (3.12) for m = 0. First, we note that $\operatorname{QP}^0_{\lambda}(\Gamma)$ can be identified with $M_{\lambda}(\Gamma)$. Thus we have $\Psi(z, X) = \psi_0(z)$ with $\psi_0 \in M_{\lambda}(\Gamma)$, and we see in formula (3.11) that r = k and j = 0, so that

$$\psi_k^* = \frac{(\lambda - 1)!}{k!(k + \lambda - 1)!} \psi_0^{(k)},$$

$$(3.13) \qquad (\mathcal{L}_{\delta,\lambda}^0 \Psi)(z, X) = (\lambda - 1)! \sum_{k=0}^\infty \frac{\psi_0^{(k)}(z)}{k!(k + \lambda - 1)!} X^{k+\delta} \in \mathcal{J}_{\lambda - 2\delta}(\Gamma)_\delta$$

Thus the Jacobi-like form $(\mathcal{L}^{0}_{\delta,\lambda}\Psi)(z,X)/(\lambda-1)!$ is the well-known *Cohen–Kuznetsov lifting* of the modular form f_0 (see e.g. [2]).

(ii) We now consider the case of m = 1. First, for k = 0 we have r = j = 0 in the sum in (3.12), and therefore

$$\psi_0^* = (\lambda - 3) \frac{(\lambda - 4)!}{(\lambda - 3)!} \psi_1 = \psi_1.$$

On the other hand, using (3.12) for $k \ge 1$, we obtain

$$\psi_k^* = \sum_{r=k-1}^k \sum_{j=0}^{k-r} (\lambda + 2k - 2r - 3) \\ \times \frac{(-1)^j (1 - k + r + j)! (2k - 2r + \lambda - j - 4)!}{j! r! (2k + \lambda - r - 3)!} \psi_{1-k+r+j}^{(j+r)}$$

M. H. Lee

$$= (\lambda - 1) \frac{(\lambda - 2)!}{(k - 1)!(k + \lambda - 2)!} \psi_0^{(k - 1)} - (\lambda - 1) \frac{(\lambda - 3)!}{(k - 1)!(k + \lambda - 2)!} \psi_1^{(k)} + (\lambda - 3) \frac{(\lambda - 4)!}{k!(k + \lambda - 3)!} \psi_1^{(k)} = (\lambda - 1) \frac{(\lambda - 2)!}{(k - 1)!(k + \lambda - 2)!} \psi_0^{(k - 1)} - \frac{(\lambda - 2)!(k - 1)}{k!(k + \lambda - 2)!} \psi_1^{(k)} = \frac{(\lambda - 2)!}{k!(k + \lambda - 2)!} ((\lambda - 1)k\psi_0^{(k - 1)} - (k - 1)\psi_1^{(k)}).$$

Thus it follows that

(3.14)
$$(\mathcal{L}^{1}_{\delta,\lambda}\Psi)(z,X) = \psi_{1}(z)X^{\delta} + \sum_{k=1}^{\infty} \frac{(\lambda-2)!}{k!(k+\lambda-2)!} ((\lambda-1)k\psi_{0}^{(k-1)}(z) - (k-1)\psi_{1}^{(k)}(z))X^{k+\delta},$$

which belongs to $\mathcal{J}_{\lambda-2\delta-2}(\Gamma)_{\delta}$.

(iii) Let f be a modular form belonging to $M_w(\Gamma)$. Then it can be shown that f' is a quasimodular form belonging to $\mathrm{QM}^1_{w+2}(\Gamma)$ which satisfies

$$(f'|_{w+2}\gamma)(z) = f'(z) + wf(z)\mathfrak{K}(\gamma, z)$$

for all $z \in \mathcal{H}$ and $\gamma \in \Gamma$. Thus, if we set

$$\Psi(z,X) = (\mathcal{Q}_{w+2}^1(f'))(z,X) = \psi_0(z) + \psi_1(z)X$$

with \mathcal{Q}_{w+2}^1 as in (2.25), by using (3.14) for $\lambda = w + 2$ we obtain

$$\psi_0 = f', \quad \psi_1 = wf,$$

$$(\lambda - 1)k\psi_0^{(k-1)} - (k-1)\psi_1^{(k)} = (w+1)kf^{(k)} - (k-1)wf^{(k)} = (k+w)f^{(k)}.$$

Thus

$$(\mathcal{L}^{1}_{\delta,w+2}\Psi)(z,X) = wf(z)X^{\delta} + w! \sum_{k=1}^{\infty} \frac{(k+w)f^{(k)}}{k!(k+w)!} X^{k+\delta}$$
$$= w! \sum_{k=0}^{\infty} \frac{f^{(k)}}{k!(k+w-1)!} X^{k+\delta},$$

which belongs to $\mathcal{J}_{w-2\delta}(\Gamma)_{\delta}$. Comparing this with (3.13), we see that the lifting of the quasimodular polynomial $(\mathcal{Q}^1_{w+2}(f'))(z,X)$ corresponding to the quasimodular form f' is equal to the lifting of the modular form f times the weight of f.

4. Concluding remarks. We see easily that the kernel of the complex linear map Π_m^{δ} in (3.6) is equal to $\mathcal{J}_{\lambda}(\Gamma)_{\delta+m+1}$. On the other hand, by Theorem 3.2 the same map is surjective. Thus we obtain a short exact

sequence of the form

(4.1)
$$0 \to \mathcal{J}_{\lambda}(\Gamma)_{\delta+m+1} \to \mathcal{J}_{\lambda}(\Gamma)_{\delta} \xrightarrow{\Pi_m^{\delta}} \operatorname{QP}_{\lambda+2m+2\delta}^m(\Gamma) \to 0,$$

where the second arrow represents the inclusion map. Furthermore, from (3.12) we obtain the map

$$\mathcal{L}^{m}_{\delta,\lambda+2\delta+2m}: \operatorname{QP}^{m}_{\lambda+2\delta+2m}(\Gamma) \to \mathcal{J}_{\lambda}(\Gamma)_{\delta}$$

satisfying

$$(\Pi_m^\delta \circ \mathcal{L}^m_{\delta,\lambda+2\delta+2m})\Psi = \Psi$$

for all $\Psi(z, X) \in \operatorname{QP}_{\lambda+2\delta+2m}^m(\Gamma)$. Thus it follows that the short exact sequence (4.1) splits.

As we noted in Section 2, if $\psi \in \text{QM}^m_{\lambda}(\Gamma)$ satisfies (2.24), the functions ψ_r are uniquely determined. Since it is known that $\psi_r \in \text{QM}^{m-r}_{\lambda-2r}(\Gamma)$ for $0 \leq r \leq m$ (see e.g. [5]), we can consider the complex linear map

$$\mathfrak{S}_r: \mathrm{QM}^m_\lambda(\Gamma) \to \mathrm{QM}^{m-r}_{\lambda-2r}(\Gamma)$$

with $0 \le r \le m$ defined by

$$\mathfrak{S}_r(\psi) = \psi_r$$

for $\psi \in \text{QM}^m_{\lambda}(\Gamma)$ as in (2.24). Then the formula for the lifting map

$$\widetilde{\mathcal{L}}^m_{\delta,\lambda}: \mathrm{QM}^m_{\lambda}(\Gamma) \to \mathcal{J}_{\lambda-2\delta-2m}(\Gamma)_{\delta}$$

in Corollary 3.3 can be written as

$$(\widetilde{\mathcal{L}}^m_{\delta,\lambda}\psi)(z,X) = \sum_{k=0}^{\infty} \psi^{\#}_k(z) X^{k+\delta}$$

for $\psi \in \mathrm{QM}^m_{\lambda}(\Gamma)$, where

$$\psi_k^{\#} = \sum_{r=\max(k-m,0)}^k \sum_{j=0}^{k-r} (\lambda + 2k - 2r - 2m - 1) \\ \times \frac{(-1)^j (m-k+r+j)! (2k-2r+\lambda - 2m - j - 2)!}{j! r! (2k+\lambda - 2m - r - 1)!} (\mathfrak{S}_{m-k+r+j}\psi)^{(j+r)}$$

for each $k \ge 0$.

References

- Y. Choie and M. H. Lee, Quasimodular forms and Jacobi-like forms, Math. Z. 280 (2015), 643–667.
- P. B. Cohen, Yu. Manin, and D. Zagier, Automorphic pseudodifferential operators, in: Algebraic Aspects of Nonlinear Systems, Birkhäuser, Boston, 1997, 17–47.
- [3] M. Kaneko and D. Zagier, A generalized Jacobi theta function and quasimodular forms, in: Progr. Math. 129, Birkhäuser, Boston, 1995, 165–172.
- [4] M. H. Lee, Quasimodular forms and Poincaré series, Acta Arith. 137 (2009), 155–169.

M. H. Lee

- [5] F. Martin et E. Royer, Formes modulaires et périodes, in: Formes modulaires et transcendance, S. Fischler et al. (eds.), Sémin. Congr. 12, Soc. Math. France, Paris, 2005, 1–117.
- [6] D. Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci. 104 (1994), 57–75.

Min Ho Lee Department of Mathematics University of Northern Iowa Cedar Falls, IA 50614, U.S.A. E-mail: lee@math.uni.edu

Received on 19.3.2015 (8114)

256