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An extension of Schwick’s theorem for normal families

by Yasheng Ye, Xuecheng Pang and Liu Yang (Shanghai)

Abstract. In this paper, the definition of the derivative of meromorphic functions is
extended to holomorphic maps from a plane domain into the complex projective space. We
then use it to study the normality criteria for families of holomorphic maps. The results
obtained generalize and improve Schwick’s theorem for normal families.

1. Introduction. The concept of a normal family was introduced by
P. Montel [M]. Perhaps the most celebrated criterion for normality in one
complex variable is Montel’s result which can be stated as follows (see [Y,
pp. 53–54]).

Theorem A. Let F be a family of meromorphic functions on a plane
domain D which omit three distinct values a, b, c in the extended complex
plane. Then F is normal on D.

In [D], Theorem A was extended to holomorphic maps into the complex
projective space.

Theorem B ([D]). Let F be a family of holomorphic maps of a domain
D ⊂ C into PN (C). Let H1, . . . ,H2N+1 be hyperplanes in PN (C) in general
position. If for each f ∈ F , f omits H1, . . . ,H2N+1, then F is normal on D.

Recall that two nonconstant meromorphic functions f and g share the
value a if f−1(a) = g−1(a) as sets (ignoring multiplicities). There are many
results concerning this notion in value distribution theory. For example,
R. Nevanlinna proved that two meromorphic functions on the complex
plane that share five distinct values coincide identically [N, pp. 109–110].
W. Schwick seems to have been the first to draw a connection between nor-
mality criteria and shared values.
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Theorem C ([S]). Let F be a family of meromorphic functions on a
plane domain D, and a, b, c be three distinct finite complex numbers. If for
every f ∈ F , f and f ′ share the values a, b, c, then F is normal on D.

In [LLP], the authors proved that for two families of functions which
share four values, if one is normal, so is the other. Recently, we extended this
result to holomorphic maps of a plane domain into the complex projective
space [YFP].

In this paper, by applying the generalized Zalcman lemma attributed to
Aladro and Krantz [AK], we shall prove some normality criteria for families
of holomorphic maps into PN (C). This generalizes both Theorem B and
Theorem C in some degree. First, we should introduce a sort of derivative
for holomorphic maps which possesses similar properties to the derivative
of meromorphic functions.

2. Preliminaries and results. We start with relevant notions and
definitions. For details see [F1], [R, pp. 99–102], [F2].

2.1. Recall that the N -dimensional complex projective space is PN (C) =
CN+1−{0}/∼, where (a0, . . . , aN ) ∼ (b0, . . . , bN ) if and only if (a0, . . . , aN )
= λ(b0, . . . , bN ) for some λ ∈ C. We denote by [a0 : · · · : aN ] the equivalence
class of (a0, . . . , aN ).

Let H1, . . . ,Hq (q ≥ N + 1) be hyperplanes in PN (C) which are given by

Hj = {[x0 : · · · : xN ]; aj0x0 + · · ·+ ajNxN = 0},

with nonzero cofficient vectors aj = (aj0, . . . , a
j
N ) ∈ CN+1 (for j = 1, . . . , q).

We say that H1, . . . ,Hq are in general position if for any injective map
φ : {0, 1, . . . , N} → {1, . . . , q}, aφ(0), . . . ,aφ(N) are linearly independent.
When N = 1 this just means that H1, . . . ,Hq are mutually distinct points
on the Riemann sphere.

2.2. Let D be a domain in C, f : D → PN (C) be a holomorphic map
and U be an open set in D. Any holomorphic map f : U → CN+1 such
that P(f(z)) ≡ f(z) in U is called a representation of f on U, where P :
CN+1 − {0} → PN (C) is the standard quotient map.

Definition 2.1. For an open subset U of D we call f = (f0, . . . , fN )
a reduced representation of f on U if f0, . . . , fN are holomorphic functions
on U without common zeros.

Let H = {[x0 : · · · : xN ]; a0x0 + · · · + aNxN = 0} be a hyperplane in
PN (C). We write

‖H‖ := max
0≤i≤N

|ai|.

Throughout, we only consider normalized hyperplane representations so that
‖H‖ = 1.
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Next, for any reduced representation f of a holomorphic map f, we define
the holomorphic function

〈f(z), H〉 :=
N∑
i=0

aifi(z),

and put

‖f(z)‖ :=
{ N∑
i=0

|fi(z)|2
}1/2

.

Moreover, we write f instead of f when the properties are independent of
the choice of a reduced representation, for example, we can consider the

function |〈f(z),H〉|
‖f(z)‖·‖H‖ .

Remark 2.1. As is easily seen, if both fj : Uj → CN+1 are reduced
representations of f for j = 1, 2 with U1∩U2 6= ∅ then there is a holomorphic
function h (6= 0) : U1 ∩ U2 → C such that f2 = hf1 on U1 ∩ U2.

2.3. Next, we recall the definition of a normal family.

Definition 2.2. A family F of holomorphic maps of a domain Ω in
Cm into PN (C) is said to be normal on Ω if any sequence in F contains
a subsequence which converges uniformly on compact subsets of Ω to a
holomorphic map of Ω into PN (C); and F is said to be normal at a point a
in Ω if F is normal on some neighborhood of a in Ω.

Using the Fubini–Study metric form on PN (C), we see that a sequence
{fn}∞n=1 of holomorphic maps of D into PN (C) converges uniformly on com-
pact subsets of D to a holomorphic map f if and only if, for any a ∈ D,
each fn has a reduced representation

fn = (fn0, fn1, . . . , fnN )

on some fixed neighborhood U of a in D such that {fni}∞n=1 converges
uniformly on compact subsets of U to a holomorphic function fi (for i =
0, 1, . . . , N) on U with the property that

f = (f0, f1, . . . , fN )

is a reduced representation of f on U.

2.4. Let f = [f0 : · · · : fN ] be a holomorphic map of D into PN (C),
µ ∈ {0, . . . , N} with fµ 6≡ 0, and d(z) be a holomorphic function such that

f2µ/d and W (fµ, fi)/d (i = 0, 1, . . . , N ; i 6= µ)

are holomorphic functions without common zeros. Here, as usual,

W (fµ, fi) =

∣∣∣∣ fµ fi

f ′µ f ′i

∣∣∣∣
denotes the Wronskian of fµ and fi.
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Our definition of an extension of the derivative of meromorphic functions
is as follows.

Definition 2.3 (extension of derivative). We call the holomorphic maps
induced by the map

(W (fµ, f0), . . . ,W (fµ, fµ−1), f
2
µ,W (fµ, fµ+1), . . . ,W (fµ, fN )) : D → CN+1

the µth derived holomorphic map of f and write

∇µf = [W (fµ, f0)/d : · · · : W (fµ, fµ−1)/d : f2µ/d :

W (fµ, fµ+1)/d : · · · : W (fµ, fN )/d].

For simplicity, we also write ∇0f as ∇f .

Remark 2.2. The definition of ∇µf does not depend on the choice of a
reduced representation of f.

Remark 2.3. When N = 1, ∇f corresponds exactly to the derivative
of the meromorphic function f1/f0.

The main result of this paper is the following theorem.

Theorem 2.1. Let F be a family of holomorphic maps of a domain
D in C into PN (C), H1, . . . ,H2N+1 be hyperplanes in PN (C) in general
position, and δ be a real number with 0 < δ < 1. Suppose that for each
f ∈ F the following conditions are satisfied:

(i) If ∇f(z) ∈ Hj , then f(z) ∈ Hj , for j = 1, . . . , 2N + 1.

(ii) If f(z) ∈
⋃2N+1
j=1 Hj , then

|〈f(z), H0〉|
‖f(z)‖ · ‖H0‖

≥ δ,

where H0 = {x0 = 0} is a coordinate hyperplane.

(iii) If f(z) ∈
⋃2N+1
j=1 Hj , then

|〈∇f(z), Hk〉|
|f0(z)|2

≤ 1

δ

for k = 1, . . . , 2N + 1.

Then F is normal on D.

Remark 2.4. Condition (ii) in Theorem 2.1 implies that no hyperplane
in {Hj}2N+1

j=1 is H0.

We note that all the proofs of this theorem work also when the map is
∇µf instead of ∇f. In particular when N = 1, condition (ii) of Theorem 2.1
holds naturally for some δ. We immediately have the following corollary
which contains Theorem C.
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Corollary 2.2. Let F be a family of meromorphic functions on a plane
domain D, a1, a2, a3 be three distinct finite complex numbers, and M be a
positive real number. Suppose that for each f ∈ F the following conditions
are satisfied:

(i) If f ′(z) = aj , then f(z) = aj , for j = 1, 2, 3.
(ii) If f(z) = aj , then |f ′(z)| ≤M, for j = 1, 2, 3.

Then F is normal on D.

According to the uniqueness theory of meromorphic maps from Cm into
PN (C), here we give the definition of sharing a hyperplane [F3, CRY].

Definition 2.4. Let f and g be two meromorphic maps from a domain
in Cn into PN (C), and H be a hyperplane in PN (C). We say f and g share
the hyperplane H if f−1(H) = g−1(H) and f = g on f−1(H).

We have the following improvement of Theorem C.

Theorem 2.3. Let F be a family of holomorphic maps of a domain D in
C into PN (C), H1, . . . ,H2N+1 be hyperplanes in PN (C) in general position,
and δ be a real number with 0 < δ < 1. Suppose that for each f ∈ F the
following conditions are satisfied:

(i) The maps f and ∇f share Hj on D for j = 1, . . . , 2N + 1.

(ii) If f(z) ∈
⋃2N+1
j=1 Hj , then |〈f(z),H0〉|

‖f(z)‖·‖H0‖ ≥ δ, where H0 = {x0 = 0}.

Then F is normal on D.

3. Proofs. The following is the general version of Zalcman’s lemma.

Lemma 3.1 ([AK]). Let F be a family of holomorphic maps of a domain
Ω in Cm into PN (C). The family F is not normal on Ω if and only if there
exist sequences {fn} ⊂ F , {zn} ⊂ Ω with zn → z0 ∈ Ω, {%n} with %n > 0
and %n → 0 and {en} ⊂ Cm Euclidean unit vectors, such that

gn(ξ) := fn(zn + %nenξ)

converges uniformly on compact subsets of C to a nonconstant holomorphic
map g of C into PN (C).

The degenerate second main theorem in Nevanlinna theory shows the
following fact.

Lemma 3.2 (see [R, p. 141]). Let f : C→ PN (C) be a holomorphic map,
and H1, . . . ,Hq (q ≥ 2N + 1) be hyperplanes in PN (C) in general position.
If for each j = 1, . . . , q, either f(C) is contained in Hj , or f(C) omits Hj,
then f is constant.
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Proof of Theorem 2.1. Suppose F is not normal onD.Then byLemma 3.1,
there exist points zn → z0 ∈ D, positive numbers %n → 0 and holomorphic
maps fn ∈ F such that

gn(ξ) := fn(zn + %nξ)

converges uniformly on compact subsets of C to a nonconstant holomorphic
map g : C→ PN (C). Set

Hj = {[x0 : · · · : xN ]; aj0x0 + · · ·+ ajNxN = 0} for j = 1, . . . , 2N + 1.

Since H1, · · · , H2N+1 are in general position, by Lemma 3.2 we may assume
that the holomorphic function 〈g,H1〉 does not vanish identically and has
at least one zero in C. Take any fixed zero of 〈g,H1〉, say ξ0, that is,

〈g(ξ0), H1〉 = 0.(3.1)

There exists a small neighborhood U := U(ξ0) of ξ0 such that 〈g,H1〉 has
no other zeros in U. Moreover, each gn has a reduced representation

gn(ξ) = (gn0(ξ), . . . , gnN (ξ)) = (fn0(zn + %nξ), . . . , fnN (zn + %nξ))

on U such that {gni}∞n=1 converges uniformly on U to a holomorphic func-
tion gi (for i = 0, 1, . . . , N) on U with the property that

g = (g0, . . . , gN )

is a reduced representation of g on U. Thus,
∑N

i=0 a
1
i gni(ξ) converges uni-

formly on U to
∑N

i=0 a
1
i gi(ξ).

By the argument principle we may find a sequence {ξn} tending to ξ0
such that, for large n,

∑N
i=0 a

1
i gni(ξn) = 0, that is,

N∑
i=0

a1i fni(zn + %nξn) = 0.(3.2)

We have

|gn0(ξn)| ≥ δ‖gn(ξn)‖,

by (3.2) and condition (ii). Setting n → ∞ yields |g0(ξ0)| ≥ δ‖g(ξ0)‖ > 0.
Thus, g0(ξ0) 6= 0.

Shrinking the neighborhood U if necessary, we may assume that g0(ξ) 6=0
and thus gn0(ξ) 6= 0 on U when n is sufficiently large. Then for each such n,

(g2n0(ξ),W (gn0, gn1)(ξ), . . . ,W (gn0, gnN )(ξ))

is a reduced representation of ∇gn(ξ) on U. Note that

g′ni(ξ) = %nf
′
ni(zn + %nξ)(3.3)

for i = 0, 1, . . . , N.



Extension of Schwick’s theorem 29

Now, by (3.2), (3.3) and condition (iii) we have∣∣∣∣ak0 +
N∑
i=1

W (gn0, gni)(ξn)

%ng2n0(ξn)

∣∣∣∣ ≤ 1

δ
,

and hence ∣∣∣∣%nak0 +

N∑
i=1

W (gn0, gni)(ξn)

g2n0(ξn)

∣∣∣∣ ≤ %n
δ

(3.4)

for k = 2, . . . , 2N + 1. Put

ϕk(ξ) =

N∑
i=1

aki
W (g0, gi)(ξ)

g20(ξ)
, ξ ∈ U.

Letting n→∞ in (3.4), we obtain ϕk(ξ0) = 0 for k = 2, . . . , 2N + 1.

Claim. There are at mostN hyperplanes in {Hk}2N+1
k=2 such that ϕk(ξ)≡0.

Suppose, to the contrary, that ϕ2(ξ) ≡ · · · ≡ ϕN+2(ξ) ≡ 0. Since

ϕj(ξ) =

( N∑
i=1

aji
gi
g0

)′
≡ 0,

there exist complex numbers cj such that

N∑
i=1

aji
gi
g0
≡ cj for j = 2, . . . , N + 2.(3.5)

Since H1, . . . ,H2N+1 are in general position, linear algebra shows that
either the system of equations

N∑
i=1

ajixi ≡ cj for j = 2, . . . , N + 2

has no solution, or the solution is unique. This means g is constant from
(3.5), a contradiction. The claim is true.

We now return to the proof of the theorem. By the claim, we can suppose
ϕk(ξ) 6≡ 0 for k = 2, . . . , N + 1. Then for each k ∈ {2, . . . , N + 1},

%na
k
0 + %n

N∑
i=1

aki
W (fn0, fni)

f2n0
(zn + %nξ)

converges uniformly to ϕk(ξ) on U. Again, the argument principle implies
that there exist ξ∗n → ξ0 such that

〈∇fn(zn + %nξ
∗
n), Hk〉 = 0.

It follows from condition (i) that

〈fn(zn + %nξ
∗
n), Hk〉 = 0.
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Setting n→∞ yields

〈g(ξ0), Hk〉 = 0 for k = 2, . . . , N + 1.

Noting (3.1), we have

〈g(ξ0), Hk〉 = 0 for k = 1, . . . , N + 1,

which contradicts the hyperplanes {Hk}N+1
k=1 being in general position. Hence,

F is normal on D.

Proof of Theorem 2.3. We will show that the assumptions imply the con-
ditions in Theorem 2.1. It suffices to prove that condition (iii) of Theorem 2.1

holds. For this, fix a map f ∈ F and a point z0 ∈
⋃2N+1
j=1 f−1(Hj). Then

there exists a reduced representation of f, say, f(z) = (f0(z), . . . , fN (z)) on
some fixed neighborhood U of z0 in D. By condition (ii) of Theorem 2.3,
f0(z0) 6= 0. Then

(f20 (z),W (f0, f1)(z), . . . ,W (f0, fN )(z))

is a reduced representation of ∇f(z) on U.
Using condition (i) and Definition 2.4, we obtain

W (f0, fi)(z0) = f0(z0) · fi(z0) for i = 1, . . . , N.(3.6)

If we set

Hk = {ak0x0 + · · ·+ akNxN = 0} for k = 1, . . . , 2N + 1

then for each k,

|〈∇f(z0), Hk〉|
|f20 (z0)|

=
|〈f(z0), Hk〉|
|f0(z0)|

≤ ‖f(z0)‖ · ‖Hk‖
|f0(z0)|

≤ 1

δ

by condition (ii) and (3.6). Hence, condition (iii) of Theorem 2.1 holds. This
proves Theorem 2.3.
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[D] J. Dufresnoy, Théorie nouvelle des familles complexes normales. Applications à
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