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On the Cauchy problem for
hyperbolic functional-differential equations

by Adrian Karpowicz and Henryk Leszczyński (Gdańsk)

Abstract. We consider the Cauchy problem for a nonlocal wave equation in one
dimension. We study the existence of solutions by means of bicharacteristics. The existence
and uniqueness is obtained in W 1,∞

loc topology. The existence theorem is proved in a subset
generated by certain continuity conditions for the derivatives.

1. Introduction. This paper is devoted to the study of the Cauchy
problem for a second-order hyperbolic functional-differential equation.
Theorems on existence and uniqueness for this type of problems can be
formulated and proved by means of semigroup theory. The differential
equation of second order Dttu − Lu = f(t, x, u) (here L is a second-
order differential operator) is transformed to the system of first order
differential equations

(1.1)


d

dt
u(t) =

[
0 1

L 0

]
u(t) + f(t, x,u),

u(0) =

[
u0

u1

]
,

and then semigroup techniques are used. In [E] we can find an example
of applications of semigroup theory to homogeneous hyperbolic differential
equations of second order.

Another method consists in using sine and cosine families. If a > 0 is
a constant and f(t, x, ·) is a causal operator, then the Cauchy problem for
the wave equation Dttu − a2Dxxu = f(t, x, u) can be transformed to the
abstract problem
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(1.2)


d2

dt2
u(t) = Au(t) + f(t, ut),

u(0) = u0,
d

dt
u(0) = u1,

where ut is the Hale operator

ut(s) = u(t+ s)

and the differential operator A generates a cosine family C(t). The solution
of problem (1.2) satisfies the integral equation

u(t) = C(t)u0 + S(t)u1 +

t�

0

S(t− s)f(s, us) ds,

where S(t) =
	t
0C(s) ds is the sine family corresponding to C(t). We find in

[TW] an outline of the theory of abstract second-order equations and sine
and cosine families. Abstract integrodifferential equations of second order
are investigated in [TD1] and [TD2].

We consider a hyperbolic functional-differential equation where the func-
tional model depends on a set generated by bicharacteristics. If we want to
transform the PDE problem to the form (1.2), then this functional model
becomes difficult and does not seem to be natural.

Among other methods to prove existence theorems for hyperbolic equa-
tions, one can mention the fixed point theory, e.g. the method developed by
J. Schauder [S], who proved the existence of solutions to the Cauchy problem
for quasilinear hyperbolic equations in the normal form. In the case of semi-
grup theory and fixed point theory, we cannot see that the wave propagates
at finite speed and obeys the Huygens principle.

In the second half of the 20th century inner and exterior problems con-
cerning scattering of waves in bounded areas were studied. There are many
modern applications of scattering theory [LP]. One can see that inner and
exterior problems are mutually conjugated, which leads to nonlocal prob-
lems on the whole space Rn, in particular R1. We regard this as an addi-
tional motivation for extensive studies of nonlocal problems. Any extension
of boundary value problems to the whole space demands some regularity of
solutions (see [LT1, LT2]).

In this paper, we define a functional sequence convergent to the solu-
tion of the differential problem which yields existence and uniqueness. This
definition is based on the method of bicharacteristics for linear hyperbolic
equations with nonconstant coefficient in the normal form. The theory of
bicharacteristics for second order partial differential equations is extensively
discussed in the monograph [K] which presents both methods: Picard iter-
ations in W 1,∞ and Schauder’s fixed-point approach with a kind of W 2,∞

regularity assumptions. We derive the existence in W 1,∞ with more gen-
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eral regularity conditions for first-order derivatives. Namely, our moduli of
continuity for partial derivatives are nonlinear.

Hyperbolic nonlinear PDE’s in two independent variables are used in
hydro- and gas dynamics, superconductivity, chemical technology and many
other application areas. For example, the waves in two-conductor transmis-
sion lines having small transverse dimensions are modeled by the telegraph
equation

Dttu = Dx(F (u)Dxu) +G′(u)Dxu,

where u, F (u) and G(u) are respectively: the voltage between the conduc-
tors, the leakage current per unit length and the differential capacitance.
Nonlinear telegraph equations are investigated in many papers, in particu-
lar in [G], [B] and [HZ]. Another example of applications of our new results
is the one-dimensional heat propagation in a rigid body. It is described by
the equation

Dxxθ = Dt

(
τ0

χ
C(θ)Dtθ

)
+

1

χ
Dθ

[�
C(θ) dθ

]
Dtθ,

where C(θ) is the special heat, τ0 is the thermal relaxation time and χ is
the thermal conductivity. Concerning the heat propagation in a rigid body
we refer to [HZ].

Notation.

• C(X) is the space of continuous functions from a metric space X to R.
• C1(X) denotes the space of continuous functions from X to R that

have continuous first-order derivatives; here X is a subset of a normed
space.
• W 1,∞(X) means the Sobolev space of L∞-functions from X ⊂ Rn to
R having first-order derivatives of the same class L∞(X).
• If u = u(t, x), then u1 and u2 denote partial first-order derivatives of
u in t and x, respectively.
• If η = η(s, t, x), then η1, η2 and η3 denote partial first-order derivatives

of η in s, t and x, respectively.

2. Integral equations. Let E = [0, T ]×R. In this section, we consider
the classical wave equation, where a ∈ C1(E), a > 0 on E and g ∈ C(E).
It is natural to provide a decomposition of the operator Dtt− a2Dxx, which
leads to integral equations. We first consider the Cauchy problem for the
classical wave equation with homogeneous initial conditions

(2.1)

{
Dttu− a2Dxxu = g in E,

u(0, x) = 0, Dtu(0, x) = 0 for x ∈ R.
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More general initial-value problems with the initial conditions can be easily
reduced to the Cauchy problem (2.1). Indeed, if u satisfies the IVP

Dttu− a2Dxxu = g, u(0, x) = φ(x), Dtu(0, x) = ψ(x),

then ũ = u − w satisfies (2.1) where w solves the Cauchy problem for the
homogeneous PDE

Dttw − a2Dxxw = 0, w(0, x) = φ(x), Dtw(0, x) = ψ(x).

Denote A = a1 + aa2 where Dta = a1 and Dxa = a2. It is natural
to consider bicharacteristics η, θ of the hyperbolic equation (2.1) passing
through (t, x) ∈ E:

η′(s) = a(s, η(s)), η(t) = x,

θ′(s) = −a(s, θ(s)), θ(t) = x.

These bicharacteristics will be denoted by η = η(s) = ηt,x(s) and θ = θ(s) =
θt,x(s), respectively. It is also convenient to write them in some formulas as
follows: η(s) = η(s; t, x) and θ(s) = θ(s; t, x). In that case we denote partial
first-order derivatives of η in s, t, x by η1, η2, η3, respectively. A similar
notation θ1, θ2, θ3 applies to θ. If u is a solution of (2.1) then

(Dt + aDx)(Dt − aDx)u = g −ADxu.

From this representation it is seen that the Cauchy problem (2.1) is equiv-
alent to the system of first-order equations

(2.2)


Dtu− aDxu = v in E,

Dtv + aDxv = g −ADxu in E,

u(0, x) = 0, v(0, x) = 0 for x ∈ R.
System (2.2) can be integrated along the curves θt,x and ηt,x, which leads

to the integral equations

u(t, x) =

t�

0

v(s, θt,x(s)) ds,

v(t, x) =

t�

0

[g(s, ηt,x(s))−A(s, ηt,x(s))Dxu(s, ηt,x(s))] ds.

If we substitute v from the second equation to the first one, we get an
integral equation for u:

u(t, x) =

t�

0

τ�

0

[g(s, ητ,θ
t,x(τ)(s))−A(s, ητ,θ

t,x(τ)(s))Dxu(s, ητ,θ
t,x(τ)(s))] ds dτ

=

t�

0

t�

s

[g(s, ητ,θ
t,x(τ)(s))−A(s, ητ,θ

t,x(τ)(s))Dxu(s, ητ,θ
t,x(τ)(s))] dτ ds.



Cauchy problem for hyperbolic equations 57

We change variables

[s, t] 3 τ 7→ y = ητ,θ
t,x(τ)(s).(2.3)

If we have the inverse mapping y 7→ τ = T (y; s, t, x), we denote

B(s, y, t, x) = a(τ, θt,x(τ)) exp
( s�
τ

a2(z, ητ,θ
t,x(τ)(z)) dz

)
.

With this notation the above integral equation takes the form

u(t, x) =
1

2

t�

0

θt,x(s)�

ηt,x(s)

g(s, y)−A(s, y)Dxu(s, y)

B(s, y, t, x)
dy ds.

Recall the notation η1 = Dsη, η2 = Dtη, η3 = Dxη, θ1 = Dsθ, θ2 = Dtθ
and θ3 = Dxθ. We see that

Dxu(t, x) =
1

2

t�

0

{
g(s, y)−A(s, y)Dxu(s, y)

B(s, y, t, x)
θ3(s; t, x)

∣∣∣∣
y=θt,x(s)

− g(s, y)−A(s, y)Dxu(s, y)

B(s, y, t, x)
η3(s; t, x)

∣∣∣∣
y=ηt,x(s)

}
ds

− 1

2

t�

0

θt,x(s)�

ηt,x(s)

g(s, y)−A(s, y)Dxu(s, y)

B2(s, y, t, x)

∂B

∂x
(s, y, t, x) dy ds,

Dtu(t, x) =
1

2

t�

0

{
g(s, y)−A(s, y)Dxu(s, y)

B(s, y, t, x)
θ2(s; t, x)

∣∣∣∣
y=θt,x(s)

− g(s, y)−A(s, y)Dxu(s, y)

B(s, y, t, x)
η2(s; t, x)

∣∣∣∣
y=ηt,x(s)

}
ds

− 1

2

t�

0

θt,x(s)�

ηt,x(s)

g(s, y)−A(s, y)Dxu(s, y)

B2(s, y, t, x)

∂B

∂t
(s, y, t, x) dy ds.

In order to get ∂B
∂x and ∂B

∂t we calculate partial derivatives. From the
implicit function theorem we get

∂τ

∂x
= − η3(s; τ, θt,x(τ))θ3(τ ; t, x)

η2(s; τ, θt,x(τ)) + η3(s; τ, θt,x(τ))θ1(τ ; t, x)
,

∂τ

∂t
= − η3(s; τ, θt,x(τ))θ2(τ ; t, x)

η2(s; τ, θt,x(τ)) + η3(s; τ, θt,x(τ))θ1(τ ; t, x)
.

Note that θ1(τ ; t, x) = −a(τ, θt,x(τ)). From the theorem on differentiability
of solutions with respect to initial conditions (see [W]) we have
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η2(s; τ, θt,x(τ)) = −a(τ, θt,x(τ)) exp
( s�
τ

a2(z, ητ,θ
t,x(τ)(z)) dz

)
,

η3(s; τ, θt,x(τ)) = exp
( s�
τ

a2(z, ητ,θ
t,x(τ)(z)) dz

)
,

θ2(τ ; t, x) = a(t, x) exp
(
−
τ�

t

a2(z, θt,x(z)) dz
)
,

θ3(τ ; t, x) = exp
(
−
τ�

t

a2(z, θt,x(z)) dz
)
.

Thus

∂τ

∂x
=

exp
(	t
τ a2(z, θt,x(z)) dz

)
2a(τ, θt,x(τ))

,

∂τ

∂t
=
a(t, x) exp

(	t
τ a2(z, θt,x(z)) dz

)
2a(τ, θt,x(τ))

.

We calculate the derivatives of B:

∂B

∂x
(s, y, t, x)

=
a1(τ, θt,x(τ))

2a(τ, θt,x(τ))
exp

( t�

τ

a2(t′, θt,x(t′)) dt′ +

s�

τ

a2(t′, ητ,θ
t,x(τ)(t′)) dt′

)
,

∂B

∂t
(s, y, t, x)

=
a(t, x)a1(τ, θt,x(τ))

2a(τ, θt,x(τ))
exp

( t�

τ

a2(t′, θt,x(t′)) dt′ +

s�

τ

a2(t′, ητ,θ
t,x(τ)(t′)) dt′

)
,

where τ = T (y; s, t, x).

Remark 2.1. We apply the method of bicharacteristics and the above
decomposition to the Cauchy problem

(2.4)

{
Dttu− a2Dxxu = g(t, x) in E,

u(0, x) = φ(x), Dtu(0, x) = ψ(x) for x ∈ R.
Then we obtain the fixed-point equation

u(t, x) =
1

2

t�

0

θt,x(s)�

ηt,x(s)

g(s, y)−A(s, y)Dxu(s, y)

B(s, y, t, x)
dy ds(2.5)

+
1

2

θt,x(0)�

ηt,x(0)

ψ(y)− a(0, y)φ′(y)

C(y, t, x)
dy + φ(θt,x(0)),
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where

C(y, t, x) = a(s, θt,x(s)) exp
(
−
s�

0

a2(z, ηs,θ
t,x(s)(z)) dz

)
.

Here y = ηs,θ
t,x(s)(0), and we have the inverse mapping y 7→ s = S(y; t, x).

Remark 2.2. If a = const > 0 then A = 0, and we get the well known
d’Alembert formula

u(t, x) =
1

2a

t�

0

x−as+at�

x+as−at
g(s, y) dy ds

for problem (2.1), and the formula

u(t, x) =
1

2a

t�

0

x−as+at�

x+as−at
g(s, y) dy ds+

1

2a

x+at�

x−at
ψ(y) dy

+ 1
2 [φ(x+ at) + φ(x− at)]

for problem (2.4).

3. Main results. In this section, we present an existence and unique-
ness theorem, another existence theorem and some applications.

3.1. Functional-differential equation. We use the integral represen-
tation (2.4) to the differential-functional problem to be formulated in this
subsection. Our functional model is associated with the area of the wave
dependence. Let (t, x) ∈ E and u ∈ C(E,R). Then u|Et,x : Et,x → R is the
restriction of u to the set Et,x, where

Et,x = {(s, y) ∈ [0, t]× R : ηt,x(s) ≤ y ≤ θt,x(s)}.

By formula (2.5) for solutions of the Cauchy problem (2.4), we see that the
value of u at any point (t, x) ∈ E depends only on the values given in the
bounded region Et,x (compare with the Huygens principle). It is seen that
the initial condition at the point (0, x) affects only that part of the solution
in the bounded region

{(s, y) ∈ [0, t]× R : θt,x(s) + x− θt,x(0) ≤ y ≤ ηt,x(s) + x− ηt,x(0)}.

This illustrates the finite speed of wave propagation. We deal with the follow-
ing Cauchy problem for a second-order partial functional-differential equa-
tion: {

Dttu(t, x)− a2(t, x)Dxxu(t, x) = f(t, x, u|Et,x) for (t, x) ∈ E,
u(0, x) = 0, Dtu(0, x) = 0 for x ∈ R,

(3.1)

where a : E → R and f(t, x, ·) : W 1,∞(Et,x)→ R for all (t, x) ∈ E.
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The Cauchy problem (3.1) is equivalent to the integral fixed-point equa-
tion

u(t, x) =
1

2

t�

0

θt,x(s)�

ηt,x(s)

f(s, y, u|Es,y)−A(s, y)Dxu(s, y)

B(s, y, t, x)
dy ds.(3.2)

We will give sufficient conditions for W 1,∞
loc convergence of Picard iterations

corresponding to (3.2). Next we provide a Schauder-type existence theorem
in a similar metric space.

Lemma 3.1. If a ∈ C1(E) and a(t, x) > 0 for (t, x) ∈ E, then the
bicharacteristics θt,x and ηt,x are unique, ηt,x(s) < θt,x(s) for 0 ≤ s < t ≤ T ,
and Es,y ⊂ Et,x for (s, y) ∈ Et,x.

Proof. Since the solutions η and θ are unique, we see that if (s, y) ∈ Et,x
then s ≤ t and

ηs,y(t′) ≥ ηt,x(t′) and θs,y(t′) ≤ θt,x(t′) for 0 ≤ t′ ≤ t.
Thus Es,y ⊂ Et,x.

Theorem 3.2. Suppose that:

(a) a ∈ C1(E) and a(t, x) > 0 for (t, x) ∈ E.
(b) f(·, ·, 0) : E → R is continuous and f(t, x, ·) : W 1,∞(Et,x)→ R.
(c) There is a nonnegative function L ∈ C(E) such that L(s, y) ≤ L(t, x)

for Es,y ⊂ Et,x and

|f(t, x, w)− f(t, x, v)| ≤ L(t, x)‖w − v‖W 1,∞(Et,x) for (t, x) ∈ E.

Then there exists exactly one solution of problem (3.1) in the classW 1,∞
loc (E).

Assumption (c) of Theorem 3.2 can be formulated with any nonnegative
L̃ ∈ C(E), and then this function can be modified as follows: L(t, x) =

supEt,x L̃(s, y). Its monotonicity with respect to the sets Et,x is justified by
Lemma 3.1.

Remark 3.3. Theorem 3.2 can be used to investigate the existence and
uniqueness of solution of variable-coefficient delayed nonlinear telegraph
equations of the form

Dttu = Dx(a(t, x)Dxu) + g(t, x, u(t/2, x), Dxu(t/2, x)),

where a ∈ C1(E), a > 0 and g satisfies the Lipschitz condition.

3.2. Existence of solutions. We deal with the existence of solutions
to the Cauchy problem (3.1), not necessarily unique. The main assumptions
are: the sublinearity of f and the existence of moduli of continuity for the
unknown functions and their derivatives. It turns out that these moduli are
more general than the Lipschitz condition: they are generated by Perron
comparison conditions. A function σ : [0, T ] × R+ → R+ is said to be a



Cauchy problem for hyperbolic equations 61

Perron function if σ is continuous, σ(t, 0) = 0 for t ∈ [0, T ], and the unique
solution of the Cauchy problem

y′(t) = σ(t, y(t)), y(0) = 0,

is y(t) = 0 for t ∈ [0, T ].

Denote Dw(t, x) = (Dtw(t, x), Dxw(t, x)) and

|Dw(t, x)| = max{|Dtw(t, x)|, |Dxw(t, x)|}.

Let w : Et,x → R, w̄ : Et̄,x̄ → R and ε > 0. Then

distε(w, w̄) = sup
(s,y)∈Et,x, (s̄,ȳ)∈Et̄,x̄, |s−s̄|≤ε, |y−ȳ|≤ε

|w(s, y)− w(s̄, ȳ)|.

Theorem 3.4. Suppose that:

(a) a ∈ C1(E) and a(t, x) > 0 for (t, x) ∈ E.
(b) For every x0 ∈ R there are K > 0 and continuous functionsMf , Nf :

[0, T ] × R+ → R+ such that Mf (t, 0) = Nf (t, 0) = 0 for t ∈ [0, T ],
Mf , Nf are nondecreasing with respect to the second variable, for
every constant C > 0, the map

[0, T ]× R+ 3 (t, r) 7→Mf (t, r) + Cr

is a Perron function, and

|f(t, x, w)− f(t, x̄, w̄)|
≤ Nf (t,distK|x−x̄|(w, w̄)) +Mf (t,distK|x−x̄|(Dw,Dw̄))

for all (t, x), (t, x̄) ∈ ET,x0, w ∈W 1,∞(Et,x), w̄ ∈W 1,∞(Et,x̄).
(c) There is a nonnegative function L ∈ C(E) such that

|f(t, x, w)| ≤ L(t, x)(1 + ‖w‖W 1,∞(Et,x))

for (t, x) ∈ E, w ∈W 1,∞(E).

Then there exists a solution of problem (3.1) in the class W 1,∞
loc (E).

3.3. Applications. Based on Theorem 3.2, we investigate the local
existence of solutions of the Cauchy problem{

Dttu(t, x)− (u(t, x) + 1)2Dxxu(t, x) = f(t, x, u|Et,x) for (t, x) ∈ E,
u(0, x) = 0, Dtu(0, x) = 0 for x ∈ R.

(3.3)

The nonlinear telegraph equation is our motivation for studying the above
differential-functional problem. The coefficient (u + 1)2 can be replaced by
any regular function g : E × R → R such that g(t, x, 0) > 0 for (t, x) ∈ E.
The Cauchy problem (3.3) is equivalent to the integral fixed-point equation
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u(t, x) =
1

2

t�

0

θt,x(s)�

ηt,x(s)

f(s, y, u|Es,y)

B(s, y, t, x)
dy ds

− 1

2

t�

0

θt,x(s)�

ηt,x(s)

[Dtu(s, y) + (u(s, y) + 1)Dxu(s, y)]Dxu(s, y)

B(s, y, t, x)
dy ds,

where η, θ depend on u and satisfy the ODE’s

η′(s) = u(s, η(s)) + 1, η(t) = x,

θ′(s) = −u(s, θ(s))− 1, θ(t) = x,

and

B(s, y, t, x) = (u(τ, θt,x(τ)) + 1) exp
( s�
τ

u2(z, ητ,θ
t,x(τ)(z)) dz

)
.

Theorem 3.5. Suppose that:

(a) f(·, ·, 0) : E → R is continuous, bounded and f(t, x, ·) : W 1,∞(Et,x)
→ R for (t, x) ∈ E.

(b) There is a constant L such that

|f(t, x, w)− f(t, x, v)| ≤ L‖w − v‖W 1,∞(Et,x) for (t, x) ∈ E.

Then there exists exactly one solution of (3.3) in the class W 1,∞([0, t0]×R)
for some t0 ∈ [0, T ].

4. Proofs of theorems. We present the proofs of the theorems from
Section 3. Since the integrand of the right-hand side of (3.2) contains the
derivative Dxu and possibly Dtu, we have to consider an extended system
of integral equations

u(t, x) = (Su)(t, x) :=

t�

0

θt,x(s)�

ηt,x(s)

F0(s, y, t, x, u) dy ds,

Dtu(t, x) = (Su)1(t, x) :=

t�

0

G1(s, t, x, u) ds

−
t�

0

θt,x(s)�

ηt,x(s)

F1(s, y, t, x, u) dy ds,(4.1)

Dxu(t, x) = (Su)2(t, x) :=

t�

0

G2(s, t, x, u) ds

−
t�

0

θt,x(s)�

ηt,x(s)

F2(s, y, t, x, u|Es,y) dy ds,
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where

F0(s, y, t, x, u) =
1

2

f(s, y, u|Es,y)−A(s, y)Dxu(s, y)

B(s, y, t, x)
,

F1(s, y, t, x, u) =
1

2

f(s, y, u|Es,y)−A(s, y)Dxu(s, y)

B2(s, y, t, x)

∂B

∂t
(s, y, t, x),

F2(s, y, t, x, u) =
1

2

f(s, y, u|Es,y)−A(s, y)Dxu(s, y)

B2(s, y, t, x)

∂B

∂x
(s, y, t, x),

G1(s, t, x, u) =
1

2

f(s, y, u|Es,y)−A(s, y)Dxu(s, y)

B(s, y, t, x)
θ2(s; t, x)

∣∣∣∣
y=θt,x(s)

− 1

2

f(s, y, u|Es,y)−A(s, y)Dxu(s, y)

B(s, y, t, x)
η2(s; t, x)

∣∣∣∣
y=ηt,x(s)

,

G2(s, t, x, u) =
1

2

f(s, y, u|Es,y)−A(s, y)Dxu(s, y)

B(s, y, t, x)
θ3(s; t, x)

∣∣∣∣
y=θt,x(s)

− 1

2

f(s, y, u|Es,y)−A(s, y)Dxu(s, y)

B(s, y, t, x)
η3(s; t, x)

∣∣∣∣
y=ηt,x(s)

.

Proof of Theorem 3.2. Consider the sequences un, Dtu
n, Dxu

n given by
u0(t, x) = 0, Dxu

0(t, x) = 0, Dtu
0(t, x) = 0 and

(4.2)


un+1(t, x) = (Sun)(t, x),

Dtu
n+1(t, x) = (Sun)1(t, x),

Dxu
n+1(t, x) = (Sun)2(t, x).

We show that they converge to u, Dtu, Dxu, respectively, where u is the so-
lution of problem (3.1). For an arbitrary point (t0, x0) ∈ E define seminorms
‖ · ‖0t by the formula

‖v‖0t = sup
(s,y)∈Et0,x0

s≤t

‖v‖W 1,∞(Es,y).

We know that

(4.3) θt,x(s)− ηt,x(s) =

t�

s

[a(z, θt,x(z)) + a(z, ηt,x(z))] dz.

From (4.3) and continuity of a(·), it is seen that there is a positive constant
C0 depending on t0, x0 such that

θt,x(s)− ηt,x(s) ≤ C0(t− s) for 0 ≤ s ≤ t and (t, x) ∈ Et0,x0 .

Since a(t, x) > 0, it follows that θt,x(s) − ηt,x(s) ≥ 0 for 0 ≤ s ≤ t. Fix
(t0, x0) ∈ E. Then the continuous functions a, a1 and a2 are bounded on the
bounded set Et0,x0 . Suppose that (t, x) ∈ Et0,x0 , or equivalently Et,x ⊂ Et0,x0

and k = 1, 2, . . . . Then



64 A. Karpowicz and H. Leszczyński

|uk+1(t, x)− uk(t, x)| = |(Suk)(t, x)− (Suk−1)(t, x)|

≤ 1

2

t�

0

θt,x(s)�

ηt,x(s)

[ |f(s, y, uk|Es,y)− f(s, y, uk−1
|Es,y)|

|B(s, y, t, x)|

+
|A(s, y)| · |Dxu

k(s, y)−Dxu
k−1(s, y)|

|B(s, y, t, x)|

]
dy ds

≤ 1

2

t�

0

θt,x(s)�

ηt,x(s)

[
L(s, y)‖uk − uk−1‖W 1,∞(Es,y)

|B(s, y, t, x)|

+
|A(s, y)| · |Dxu

k(s, y)−Dxu
k−1(s, y)|

|B(s, y, t, x)|

]
dy ds

≤
t�

0

K1‖uk − uk−1‖0s ds,

where

K1 = K1(t0, x0) = C0 sup
Es,y⊂Et,x⊂Et0,x0

L(s, y) + |A(s, y)|
2|B(s, y, t, x)|

.

Moreover

|Dtu
k+1(t, x)−Dtu

k(t, x)|

≤ 1

2

t�

0

[ |f(s, y, uk|Es,y)− f(s, y, uk−1
|Es,y)|

|B(s, y, t, x)|

+
|A(s, y)| · |Dxu

k(s, y)−Dxu
k−1(s, y)|

|B(s, y, t, x)|

]
|θ2(s; t, x)|

∣∣∣∣
y=θt,x(s)

ds

+
1

2

t�

0

[ |f(s, y, uk|Es,y)− f(s, y, uk−1
|Es,y)|

|B(s, y, t, x)|

+
|A(s, y)| · |Dxu

k(s, y)−Dxu
k−1(s, y)|

|B(s, y, t, x)|

]
|η2(s; t, x)|

∣∣∣∣
y=ηt,x(s)

ds

+
1

2

t�

0

θt,x(s)�

ηt,x(s)

[ |f(s, y, uk|Es,y)− f(s, y, uk−1
|Es,y)|

|B(s, y, t, x)|

∣∣∣∣∂B∂t (s, y, t, x)

∣∣∣∣ dy ds
+
|A(s, y)| · |Dxu

k(s, y)−Dxu
k−1(s, y)|

|B(s, y, t, x)|

]∣∣∣∣∂B∂t (s, y, t, x)

∣∣∣∣ dy ds
≤

t�

0

K2‖uk − uk−1‖0s ds,

where
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K2 = K2(t0, x0)

= sup
Es,y⊂Et,x⊂Et0,x0

L(s, y) + |A(s, y)|
2|B(s, y, t, x)|

(
C0

∣∣∣∣∂B∂t (s, y, t, x)

∣∣∣∣
+ |θ2(s; t, x)|+ |η2(s; t, x)|

)
.

In the same manner we see that

|Dxu
k+1(t, x)−Dxu

k(t, x)| ≤
t�

0

K3‖uk − uk−1‖0s ds,

where

K3 = K3(t0, x0)

= sup
Es,y⊂Et,x⊂Et0,x0

L(s, y) + |A(s, y)|
2|B(s, y, t, x)|

(
C0

∣∣∣∣∂B∂x (s, y, t, x)

∣∣∣∣
+ |θ3(s; t, x)|+ |η3(s; t, x)|

)
.

Let K = K1 +K2 +K3. By the above inequalities, we get

‖uk+1 − uk‖0t ≤
t�

0

K‖uk − uk−1‖0s ds.(4.4)

If we apply induction to (4.4), we see that

‖uk+1 − uk‖0t ≤
C̃

k!
(tK)k,

where C̃ = ‖u1 − u0‖W 1,∞(Et0,x0 ). Thus

‖uk+1 − uk‖W 1,∞(Et0,x0 ) ≤
C̃(t0K)k

k!
.

Consequently, un, Dtu
n and Dxu

n converge uniformly on Et0,x0 . Taking
n→∞ in (4.2) we get

un → u, Dtu
n → Dtu and Dxu

n → Dxu on Et0,x0 ,

where u is the solution of (3.1). We claim that the solution exists on E.
Indeed, the solution exists on ET,x for each x ∈ R. The function η is in-
creasing and θ is decreasing, hence the set ET,x1 ∩ET,x2 is not empty if the
distance between x1 and x2 is small enough. By uniqueness, there is only
one solution on ET,x1 ∩ET,x2 . Thus we get the unique global solution on E.

This completes the proof of Theorem 3.2.

Proof of Theorem 3.4. Let u1 = Dtu and u2 = Dxu. Problem (3.1)
is equivalent to the fixed-point equation u = Su where the operator S is
defined by (4.1). Fix (t0, x0) ∈ E and consider the set Ω0

ρ,ω containing all

functions u ∈W 1,∞(Et0,x0) satisfying the inequalities
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|u(t, x)| ≤ ρ(t), |u1(t, x)| ≤ ρ(t), |u2(t, x)| ≤ ρ(t),

|u1(t+ ε, x)− u1(t, x)| ≤ ω(t, ε), |u2(t+ ε, x)− u2(t, x)| ≤ ω(t, ε),

|u1(t, x+ ε)− u1(t, x)| ≤ ω(t, ε), |u2(t, x+ ε)− u2(t, x)| ≤ ω(t, ε),

for (t, x), (t+ ε, x), (t, x+ ε) ∈ Et0,x0 with ε ≥ 0. Here ρ and ω are functions
which will be specified later. The set Ω0

ρ,ω is closed and convex.

We choose ρ (for all u ∈ Ω0
ρ,ω) to satisfy the following inequalities:

|(Su)(t, x)| ≤
t�

0

θt,x(s)�

ηt,x(s)

|F0(s, y, t, x, u)| dy ds

≤
t�

0

θt,x(s)�

ηt,x(s)

L+ |A(s, y)|
2B(s, y, t, x)

(1 + 4ρ(s)) ds dy ds

≤ K
t�

0

C0(t− s)(1 + 4ρ(s)) ds ≤ r(t),

|(S1u)(t, x)| ≤
t�

0

|G1(s, t, x, u)| ds+

t�

0

θt,x(s)�

ηt,x(s)

|F1(s, y, t, x, u)| dy ds

≤ 2K

t�

0

(1 + 4ρ(s)) ds+KC0T

t�

0

(1 + 4ρ(s)) ds ≤ ρ(t),

|(S2u)(t, x)| ≤ ρ(t).

With an appropriate choice of ω, we prove that the operator S maps the set
Ω0
ρ,ω into itself. For this purpose, we estimate increments of the functions

S1u and S2u:

|(S1u)(t, x+ ε)− (S1u)(t, x)|

≤
t�

0

|G1(s, t, x+ ε, u)−G1(s, t, x, u)| ds

+
∣∣∣ t�

0

θt,x+ε(s)�

ηt,x+ε(s)

F1(s, y, t, x+ ε, u) dy ds−
t�

0

θt,x(s)�

ηt,x(s)

F1(s, y, t, x, u) dy ds
∣∣∣.

We estimate the first term of the above sum:

t�

0

|G1(s, t, x+ ε, u)−G1(s, t, x, u)| ds

≤
t�

0

∣∣∣∣f(s, y, u|Es,y)−A(s, y)Dxu(s, y)

B(s, y, t, x+ ε)
θ2(s; t, x+ ε)

∣∣∣∣
y=θt,x+ε(s)
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−
f(s, y, u|Es,y)−A(s, y)Dxu(s, y)

B(s, y, t, x)
θ2(s; t, x)

∣∣∣∣
y=θt,x(s)

∣∣∣∣ ds
+

t�

0

∣∣∣∣f(s, y, u|Es,y)−A(s, y)Dxu(s, y)

B(s, y, t, x+ ε)
η2(s; t, x+ ε)

∣∣∣∣
y=ηt,x+ε(s)

−
f(s, y, u|Es,y)−A(s, y)Dxu(s, y)

B(s, y, t, x)
η2(s; t, x)

∣∣∣∣
y=ηt,x(s)

∣∣∣∣ ds
≤

t�

0

(
Kδ2(ε) +KNf (s, distK|θt,x+ε(s)−θt,x(s)|(u|Es,θt,x+ε(s)

, u|Es,θt,x(s)
))

+KMf (s, distK|θt,x+ε(s)−θt,x(s)|(Du|Es,θt,x+ε(s)
, Du|Es,θt,x(s)

))

+Kω(s, |θt,x+ε(s)− θt,x(s)|) +Kδ3(ε)
)
ds

+

t�

0

(
Kδ4(ε) +KNf (s, distK|ηt,x+ε(s)−ηt,x(s)|(u|Es,ηt,x+ε(s)

, u|Es,ηt,x(s)
))

+KMf (s, distK|ηt,x+ε(s)−ηt,x(s)|(Du|Es,ηt,x+ε(s)
, Du|Es,ηt,x(s)

))

+Kω(s, |ηt,x+ε(s)− ηt,x(s)|) +Kδ5(ε)
)
ds.

Using the elementary calculus we get

|u(t1, x1)− u(t2, x2)| = |Dtu(ξ1, x1)| · |t1 − t2|+ |Dxu(t2, ξ2)| · |x1 − x2|
≤ C(|t1 − t2|+ |x1 − x2|)

(t1 ≤ ξ1 ≤ t2, x1 ≤ ξ2 ≤ x2)

|θt,x+ε(s)− θt,x(s)| ≤ εeLa(t−s),

|ηt,x+ε(s)− ηt,x(s)| ≤ εeLa(t−s),

where La is the Lipschitz constant of the function a(t, x) and

dist|θt,x+ε(s)−θt,x(s)|(u|Es,θt,x+ε(s)
, u|Es,θt,x(s)

) ≤MεeLat,

dist|ηt,x+ε(s)−ηt,x(s)|(u|Es,ηt,x+ε(s)
, u|Es,ηt,x(s)

) ≤MεeLat.

Moreover, we have

dist|θt,x+ε(s)−θt,x(s)|(Du|Es,θt,x+ε(s)
, Du|Es,θt,x(s)

) ≤ ω(s,KεeLat),

dist|ηt,x+ε(s)−ηt,x(s)|(Du|Es,ηt,x+ε(s)
, Du|Es,ηt,x(s)

) ≤ ω(s,KεeLat).

From the above inequalities we get

(4.5)

t�

0

∣∣G1(s, t, x+ ε, u|Et,θt,x+ε(s)
, u|Et,ηt,x+ε(s)

)

−G1(s, t, x, u|Et,θt,x(s)
, u|Et,ηt,x(s)

)
∣∣ ds
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≤ M̃ δ̃(ε) + C

t�

0

[Nf (s,KεeLat) +Mf (s, ω(s,KεeLat)) + ω(s, εeLat)] ds

≤Mδ(ε) + C

t�

0

[Mf (s, ω(s,KεeLat)) + ω(s, εeLat)] ds.

We can show that there is a modulus of continuity δ̃ such that

(4.6)

∣∣∣∣ t�
0

θt,x+ε(s)�

ηt,x+ε(s)

F1(s, y, t, x+ ε, u) dy ds

−
t�

0

θt,x(s)�

ηt,x(s)

F1(s, y, t, x, u) dy ds

∣∣∣∣ ≤ δ̃(ε).
From (4.5) and (4.6), there is a constant M > 0 and a modulus of continuity
δ such that

|(S1ũ)(t, x+ ε)− (S1ũ)(t, x)|

≤Mδ(ε) +M

t�

0

[Mf (s, ω(s,KεeLat)) + ω(s, εeLat)] ds.

Similarly, we get

|(S2ũ)(t, x+ ε)− (S2ũ)(t, x)|

≤Mδ(ε) +M

t�

0

[Mf (s, ω(s,KεeLat)) + ω(s, εeLat)] ds.

Note that

(4.7) |(S1u)(t+ ε, x)− (S1u)(t, x)| ≤
t+ε�

t

|G1(s, t+ ε, x, u)| ds

+

t�

0

|G1(s, t+ ε, x, u)−G1(s, t, x, u|Es,θt,x(s)
, u)| ds

+
∣∣∣ t+ε�

0

θt+ε,x(s)�

ηt+ε,x(s)

F1(s, y, t+ ε, x, u|Es,y) dy ds

−
t�

0

θt,x(s)�

ηt,x(s)

F1(s, y, t, x, u) dy ds
∣∣∣.
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There is a modulus of continuity δ̃ such that∣∣∣ t+ε�
0

θt+ε,x(s)�

ηt+ε,x(s)

F1(s, y, t+ ε, x, u) dy ds−
t�

0

θt,x(s)�

ηt,x(s)

F1(s, y, t, x, u) dy ds
∣∣∣ ≤ δ̃(ε).

As before, we get

t�

0

|G1(s, t+ ε, x, u)−G1(s, t, x, u)| ds

≤Mδ(ε) +M

t�

0

[Mf (s, ω(s, CεeLat)) + ω(s, CεeLat)] ds.

There is a constant M > 0 such that

t+ε�

t

|G1(s, t+ ε, x, u)| ds ≤Mε.

By the above reasoning, we get

|(S1u)(t+ ε, x)− (S1u)(t, x)|

≤Mδ(ε) +M

t�

0

[Mf (s, ω(s, CεeLat)) + ω(s, CεeLat)] ds.

Summarizing, the operator S maps the set Ω0
ρ,ω into itself if ω satisfies

the integral inequality

ω(t, ε) ≥Mδ(ε) +M

t�

0

[Mf (s, ω(s, Cε)) + ω(s, Cε)] ds.

Now ω is defined as the maximal solution of the integral equation

ω(t, ε) = Mδ(ε) +M

t�

0

[Mf (s, ω(s, Cε)) + ω(s, Cε)] ds.(4.8)

This solution is a modulus of continuity, i.e. it is the unique maximal solution
and limε→0 ω(t, ε) = 0 (see Lemma 4.1).

Lemma 4.1. Let Mf satisfy assumption (b) of Theorem 3.4. Then there
is a unique maximal solution ω(t, ε) of the integral equation (4.8) and

lim
ε→0

ω(t, ε) = 0 for t ∈ [0, t0] and ε ≥ 0.

Proof. Let M̃f (t, r) = M [Mf (t, r) + r] for (t, r) ∈ [0, t0]×R+ and δ̃(ε) =

Mδ(ε). There is no loss of generality in assuming that the function δ̃ is
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bounded and M̃f is sublinear, i.e.

M̃(t, r) ≤ A+Br for all (t, r) ∈ [0, t0]× R+,

δ̃(ε) ≤ Cδ for all ε ∈ R+.

We define a functional sequence {ωk(t, ε)} by the recurrence formulas

ω0(t, ε) = (Cδ +At0)eBt,

ωk+1(t, ε) = δ̃(ε) +
1

2k
+

t�

0

M̃f (s, ωk(s, Cε)) ds, k = 0, 1, . . . .

It is seen that ω1(t, ε) ≤ ω0(t, ε), and by induction we have

ωk+1(t, ε) = δ̃(ε) +

t�

0

M̃f (s, ωk(s, Cε)) ds

≤ δ̃(ε) +

t�

0

M̃f (s, ωk−1(s, Cε)) ds = ωk(s, ε).

Thus ωk+1(t, ε) ≤ ωk(t, ε) for all k ∈ N. The monotone sequence {ωk(·, ε)}
is convergent. The function ω(t, ε) = limk→∞ ωk(t, ε) is the unique maximal

solution of (4.8). Set ε = 0. Because M̃f (t, 0) = δ̃(0) = 0 and M̃f (t, r) is the
Perron function, we see that ω(t, 0) = 0 is the unique solution of the integral
equation (4.8) with ε = 0.

This completes the proof of Lemma 4.1 and of Theorem 3.4.

Proof of Theorem 3.5. We consider the sequence of successive approxi-
mations un defined by u0(t, x) = 0 and

Dttu
n+1(t, x)− (un(t, x) + 1)2Dxxu

n+1(t, x) = f(t, x, un+1
|Et,x)

for (t, x) ∈ E,
un+1(0, x) = 0, Dtu

n+1(0, x) = 0 for x ∈ R.
(4.9)

We define bicharacteristics ηn, θn of the hyperbolic equation (4.9):

η′n(s) = un(s, ηn(s)) + 1, ηn(t) = x,

θ′n(s) = −un(s, θn(s))− 1, θn(t) = x.

The existence and uniqueness of solutions of (4.9) follows from Theorem 3.2
with a(t, x) = un(t, x) + 1.

The Cauchy problem (4.9) is equivalent to the integral fixed-point equa-
tion
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(4.10) un+1(t, x) =
1

2

t�

0

θt,xn (s)�

ηt,xn (s)

f(s, y, un|Es,y)

Bn(s, y, t, x)
dy ds

− 1

2

t�

0

θt,xn (s)�

ηt,xn (s)

[Dtu
n(s, y) + (un(s, y) + 1)Dxu

n(s, y)]Dn+1
x u(s, y)

Bn(s, y, t, x)
dy ds,

where

Bn(s, y, t, x) =
(
un(τ, θt,xn (τ)) + 1

)
exp
(s�
τ

Dxu
n(z, ητ,θ

t,x
n (τ)

n (z)) dz
)
.

We can use Theorem 3.2 as far as un(t, x)+1 > 0. So, there exists a solution
of equation (4.9) on some set [0, t0] × R, where t0 > 0 is sufficiently small
(see Lemma 4.2).

Define increments en(t, x) = un+1(t, x)− un(t, x). Since the bicharacter-
istics strongly depend on the solution, we have to derive W 1,∞ estimates
which are global with respect to x. One works out the following estimates
by induction on n:

‖e0‖W 1,∞(Et,x) ≤ Ct,

‖en‖W 1,∞(Et,x) ≤ C
t�

0

‖en−1‖W 1,∞(Es) ds.

As a result we get the following estimate of the increments en:

‖en‖W 1,∞(Et0,x0 ) ≤
(Ct0)n+1

(n+ 1)!
.

At each step of the demonstration of these estimates it is important to make
sure that the function a(t, x, u) = u + 1 is strictly positive, which follows
from the inequality ‖un‖W 1,∞(Et0,x0 ) ≤ eCt0−1, hence un+1 ≥ 1+(eCt0−1).

So, if we take t0 ∈ (0, T ] so small that eCt0 < 2, then the solution of (3.3)
exists on the set [0, t0]× R.

Lemma 4.2. Let f satisfy the assumptions of Theorem 3.5 and let u in
W 1,∞([0, t0] × R) be such that u + 1 ≥ K1 and ‖u‖W 1,∞([0,t0]×R) ≤ K2 for
some K1 ∈ (0, 1) and K2 > 0. Then the solution of the problem

Dttv(t, x)− (u(t, x) + 1)2Dxxv(t, x) = f(t, x, v|Et,x)

for (t, x) ∈ [0, t0]× R,
v(0, x) = 0, Dtv(0, x) = 0 for x ∈ R,

(4.11)

is such that v + 1 ≥ K1 and ‖v‖W 1,∞([0,t0]×R) ≤ K2.

Proof. The Cauchy problem (4.11) is equivalent to the integral fixed-
point equations
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(4.12)

v(t, x) =

t�

0

θt,x(s)�

ηt,x(s)

F0(s, y, t, x, v) dy ds,

Dxv(t, x) =

t�

0

G2(s, t, x, v) ds−
t�

0

θt,x(s)�

ηt,x(s)

F2(s, y, t, x, v|Es,y) dy ds,

where

F0(s, y, t, x, v) =
1

2

f(s, y, v|Es,y)−A(s, y)Dxv(s, y)

B(s, y, t, x)
,

F2(s, y, t, x, v) =
1

2

f(s, y, v|Es,y)−A(s, y)Dxv(s, y)

B2(s, y, t, x)

∂B

∂x
(s, y, t, x),

G2(s, t, x, v) =
1

2

f(s, y, v|Es,y)−A(s, y)Dxv(s, y)

B(s, y, t, x)
θ3(s; t, x)

∣∣∣∣
y=θt,x(s)

− 1

2

f(s, y, v|Es,y)−A(s, y)Dxv(s, y)

B(s, y, t, x)
η3(s; t, x)

∣∣∣∣
y=ηt,x(s)

,

A(s, y) = Dtu(s, y) + (u(s, y) + 1)Dxu(s, y),

B(s, y, t, x) = (u(τ, θt,x(τ)) + 1) exp
( s�
τ

u2(z, ητ,θ
t,x(τ)(z)) dz

)
,

η′(s) = u(s, η(s)) + 1, η(t) = x,

θ′(s) = −u(s, θ(s))− 1, θ(t) = x.

From the assumptions of the lemma and from (4.12), we deduce that there
exists A > 0 such that

|v(t, x)| ≤
t�

0

θt,x(s)�

ηt,x(s)

A(1 + |Dxv(s, y)|) dy ds,

|Dxv(t, x)| ≤
t�

0

A
(

1 + sup
y∈[ηt,x(s),θt,x(s)]

|Dxv(s, y)|
)
ds

+

t�

0

θt,x(s)�

ηt,x(s)

A(1 + |Dxv(s, y)|) dy ds.

It is easy to show that there is B > 0 such that |θt,x(s) − ηt,x(s)| < B. So
there exists C > 0 such that

|v(t, x)|+ |Dxv(t, x)| ≤
t�

0

C
(

1 + sup
y∈[ηt,x(s),θt,x(s)]

|Dxv(s, y)|
)
ds.(4.13)
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Therefore we get the inequality

sup
x∈R
|Dxv(t, x)| ≤

t�

0

C
(

1 + sup
x∈R
|Dxv(s, x)|

)
ds.

Now Gronwall’s lemma tells us that

sup
x∈R
|Dxv(t, x)| ≤ Ct0eCt.(4.14)

From (4.13) and (4.14) we get

sup
x∈R
|v(t, x)| ≤ Ct0eCt.

We may choose t0 > 0 such that v(t, x) + 1 ≥ 1 − Ct0eMt0 ≥ K1 (because
K1 ∈ (0, 1)) and ‖v‖W 1,∞([0,t0]×R) ≤ K2.

This completes the proof of Lemma 4.2 and of Theorem 3.5.
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