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On the lattice of polynomials with integer coefficients:
the covering radius in Lp(0, 1)

by Wojciech Banaszczyk and Artur Lipnicki (Łódź)

Abstract. The paper deals with the approximation by polynomials with integer co-
efficients in Lp(0, 1), 1 ≤ p ≤ ∞. Let P n,r be the space of polynomials of degree ≤ n
which are divisible by the polynomial xr(1−x)r, r ≥ 0, and let P Z

n,r ⊂ P n,r be the set of
polynomials with integer coefficients. Let µ(P Z

n,r;Lp) be the maximal distance of elements
of P n,r from P Z

n,r in Lp(0, 1). We give rather precise quantitative estimates of µ(P Z
n,r;L2)

for n & 6r. Then we obtain similar, somewhat less precise, estimates of µ(P Z
n,r;Lp) for

p 6= 2. It follows that µ(P Z
n,r;Lp) � n−2r−2/p as n → ∞. The results partially improve

those of Trigub [Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962)].

1. Introduction. Notation and results. In the present paper we con-
sider the following question: how well can a polynomial of degree ≤ n be ap-
proximated in Lp(0, 1) by integer polynomials of degree ≤ n? By an integer
polynomial we mean a polynomial with integer coefficients. For the first time
this question (in the more general case of Lp(a, b), b − a < 4) appeared in
the papers by Aparicio [A] and Gel’fond [G].

Let X be a real normed space. By a lattice in X we mean a non-zero
finite-dimensional discrete additive subgroup of X. Every lattice Λ in X may
be represented in the form

Λ = {k1x1 + · · ·+ knxn : k1, . . . , kn ∈ Z},
where n = dim spanΛ and x1, . . . , xn is a system of linearly independent
vectors; any such system is then called a basis of Λ.

Let Λ be a lattice in X. We denote by µ(Λ;X) the covering radius of Λ:

µ(Λ;X) := max{d(x,Λ) : x ∈ spanΛ},
where d(x,Λ) is the distance of x from Λ. In other words, when we ap-
proximate vectors in spanΛ by elements of Λ, then µ(Λ;X) is the maximal
error.
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Throughout the paper, m,n, r are non-negative integers.
Let P be the space of polynomials with real coefficients and let P n be

the subspace of polynomials of degree ≤ n. If L is a finite-dimensional linear
subspace of P , then we denote by LZ the lattice in L consisting of integer
polynomials.

We denote by M r, r ≥ 0, the subspace of P consisting of polynomials
divisible by the polynomial xr(1− x)r. Thus M0 := P ,

M1 := {P ∈ P : P (0) = P (1) = 0}
and, for r ≥ 2,

M r := {P ∈ P : P (k)(0) = P (k)(1) = 0 for k = 0, 1, . . . , r − 1}.
For n, r ≥ 0 we denote P n,r := P n ∩M r. We assume here that n ≥ 2r;

otherwise P n ∩M r = {0}.
Let [a, b] be an interval with b− a < 4. If p ∈ [1,∞), then

(∗) every function f ∈ Lp(a, b) can be approximated in Lp(a, b) by inte-
ger polynomials.

This was proved by Aparicio [A] for p = 2, and by Gel’fond [G] for an
arbitrary p <∞. The case p =∞ is more complicated: a continuous function
f can be uniformly approximated on [a, b] by integer polynomials if and only
if f satisfies certain additional conditions; see [HZ].

Since polynomials are dense in Lp(a, b), to prove (∗) it is enough to show
that every polynomial can be approximated in Lp(a, b) by integer polynomi-
als. This, in turn, is a consequence of the fact that µ(P Z

n;Lp(a, b)) → 0 as
n→∞.

The proofs of (∗) given in [A] and [G] were based on estimates which
may be written in the form µ(P Z

n;Lp(a, b)) = O(n−1/kp) as n→∞, where k
is a positive integer which depends only on the interval [a, b]. The estimates
obtained by Trigub [Tr1, Sec. 4] show that k may be replaced by 1.

We shall restrict ourselves to the special case [a, b] = [0, 1]. The space
Lp(0, 1), 1 ≤ p ≤ ∞, will be denoted by Lp. We denote by ‖ · ‖p the usual
norm in Lp, and dp(f,A) denotes the corresponding distance of a function
f ∈ Lp from a subset A ⊂ Lp.

It is a standard fact that

(∗∗) a continuous function f on [0, 1] can be uniformly approximated by
integer polynomials if and only if f(0), f(1) ∈ Z

(see e.g. Ferguson [F2]). Naturally, it is enough to prove that every poly-
nomial P with P (0), P (1) ∈ Z can be uniformly approximated on [0, 1]
by integer polynomials. This, in turn, is a consequence of the fact that
µ(P Z

n,1;L∞) → 0 as n → ∞. The proof of (∗∗) given by Kantorovich [K]
used the fact that the polynomials xk(1−x)n−k, where 1 ≤ k ≤ n−1, form a
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basis of the lattice P Z
n,1, and was based on an estimate which may be written

in the form

µ(P Z
n,1;L∞) ≤ 1

2
max
0≤x≤1

n−1∑
k=1

xk(1− x)n−k < 1

2n
.

The same argument shows that

µ(P Z
n,r;L∞) ≤ 1

2
max
0≤x≤1

n−r∑
k=r

xk(1− x)n−k < 1

2

(
n

r

)−1
, r = 2, 3, . . . .

It is also not hard to see that

(1.1) µ(P Z
n,0;L∞) =

1

2
, n = 0, 1, 2, . . . .

The estimates obtained in [Tr1, Sec. 2] yield µ(P Z
n,1;L∞) = O(n−2). Lip-

nicki [Li], applying a similar method, proved that µ(P Z
n,r;L∞) ≤ crr2rn−2r

for r ≥ 1 and n ≥ 6r, where c is a numerical constant. An analysis of the
proof shows that

(1.2) µ(P Z
n,r;L∞) ≤ r2r

n2r
(1 +O(n−1)) as n→∞.

Trigub [Tr1, Sec. 4] made a remark which implies that if p < ∞, then
µ(P Z

n;Lp) = O(n−2/p), and that this estimate cannot be improved. It seems
that the proof was never published.

More information on the subject is given in the survey article [Tr2]. His-
torical and bibliographical information on approximation by polynomials
with integer coefficients can be found in Ferguson [F1].

The aim of this paper is to give quantitative estimates of µ(P Z
n,r;Lp),

1 ≤ p ≤ ∞. Before formulating the results we will introduce some more
notation.

Notation. We write E (resp. F ) for the subspace of P consisting of
polynomials P such that P (x) = P (1 − x) (resp. P (x) = −P (1 − x)) for
x ∈ [0, 1]. Every polynomial P can be written in the form E + F , where
E ∈ E and F ∈ F are given by

E(x) =
P (x) + P (1− x)

2
, F (x) =

P (x)− P (1− x)
2

.

Thus P is the direct sum of E and F (it is clear that E ∩F = {0}). Notice
that E and F are orthogonal subspaces of L2(0, 1).

Let Ur, Vr, Sr and Tr, where r ≥ 0, be the polynomials given by

Ur(x) = xr(1− x)r, Vr(x) = (2x− 1)xr(1− x)r,
Sr(x) = xr+1(1− x)r, Tr(x) = xr(1− x)r+1.

Notice that Ur ∈ E and Vr ∈ F .
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Let 0 ≤ r ≤ m. We denote

Em,r := E ∩ P 2m,r = span{Ur, . . . , Um},(1.3)
Fm,r := F ∩ P 2m+1,r = span{Vr, . . . , Vm}.(1.4)

It is not hard to see that Ur, . . . , Um is a basis of the lattice EZ
m,r. Sim-

ilarly, Vr, . . . , Vm is a basis of F Z
m,r. Next, Sr, Tr, . . . , Sm, Tm is a basis of

the lattice P Z
2m+1,r, while Sr, Tr, . . . , Sm−1, Tm−1, Um is a basis of P Z

2m,r

(P Z
2m,m ≡ EZ

m,m is the 1-dimensional lattice generated by Um). By defini-
tion we have

Ur = Sr + Tr, Vr = Sr − Tr, Sr =
Ur + Vr

2
, Tr =

Ur − Vr
2

.

Hence it follows that

EZ
m,r + F Z

m,r ( P Z
2m+1,r ( 1

2(E
Z
m,r + F Z

m,r), 0 ≤ r ≤ m,(1.5)

EZ
m,r + F Z

m−1,r ( P Z
2m,r ( 1

2(E
Z
m,r + F Z

m−1,r), 0 ≤ r ≤ m− 1.(1.6)

We will denote

Cr :=
√
2(2r)!(2r + 1)!, r = 0, 1, 2, . . . ,(1.7)

Kr = C2
s , r even, r = 2s,(1.8)

Kr = CsCs+1, r odd, r = 2s+ 1.(1.9)

Next, we will write

am,r := C2
r

(2m− 2r)!

(2m+ 2r + 2)!
, 0 ≤ r ≤ m,(1.10)

bm,r := C2
r

(2m− 2r + 1)!

(2m+ 2r + 3)!
, 0 ≤ r ≤ m,(1.11)

cn,r :=
n+ 1

2
C2
r

(n− 2r − 1)!

(n+ 2r + 2)!
, r ≥ 0, n ≥ 2r + 1.(1.12)

Thus

cn,r =
am,r + bm,r

4
, n = 2m+ 1, 0 ≤ r ≤ m,(1.13)

cn,r =
am,r + bm−1,r

4
, n = 2m, 0 ≤ r ≤ m− 1.(1.14)

The results. The most precise estimates of µ(P Z
n,r;Lp) are obtained for

p = 2:

Theorem 1.1. Let r ≥ 0 and n ≥ 6r + 7. Then

c
1/2
n,r

2
≤ µ(P Z

n,r;L2) < 1.014 c1/2n,r .
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Theorem 1.2. Let r ≥ 0. Then

(1.15)
√
2

4
· Cr

n2r+1
(1 +O(n−1)) ≤ µ(P Z

n,r;L2) ≤
√
2

2
· Cr

n2r+1
(1 +O(n−1))

as n→∞.

A more precise analysis shows that

µ(P Z
n,r;L2) =

1

2
· Cr

n2r+1
(1 +O(n−1))

as n→∞. The proof will be given in a separate paper.
The proofs of Theorems 1.1 and 1.2 are given in Section 3. The problem

is reduced to the corresponding estimates for the lattices Em,r and Fm,r.
These, in turn, are consequences of certain inequalities connected with the
behaviour of the quantities d2(Ur,Em,r+1) and d2(Vr,Fm,r+1).

For p 6= 2 the estimates obtained are less precise:

Theorem 1.3. Let r ≥ 0 and 1 ≤ p < 2. Then

(1.16) 2−3/2
Cr

n2r+2/p
(1 +O(n−1)) ≤ µ(P Z

n,r;Lp) ≤
22r+2Kr

n2r+2/p
(1 +O(n−1))

as n→∞.

Theorem 1.4. Let r ≥ 0 and 2 < p ≤ ∞. Then

(1.17) µ(P Z
n,r;Lp) ≤ 2−1/2

Cr

n2r+2/p
(1 +O(n−1)) as n→∞.

Proposition 1.5. Let r ≥ 0 and n ≥ 2r, n ≥ 1. Then

µ(P Z
n,r;Lp) ≥ 6−1/2

(2r)!

22r+1
· 1

n2r+2/p
, 2 < p <∞,(1.18)

µ(P Z
n,r;L∞) ≥ (2r)!

22r+1
· 1

n2r
.(1.19)

The proofs are given in Section 4. Theorems 1.3 and 1.4 are consequences
of the corresponding results for p = 2 and the Markov–Nikol’skĭı inequalities
between Lp norms in P n. Proposition 1.5 is an easy consequence of standard
facts.

From Theorem 1.4 it follows in particular that

µ(P Z
n,r;L∞) ≤ 2−1/2

Cr

n2r
(1 +O(n−1)) as n→∞.

For r ≥ 6 this estimate is better than (1.2).
As an immediate consequence of Theorems 1.2–1.4 and Proposition 1.5

we obtain the following result:

Theorem 1.6. Let r ≥ 0 and 1 ≤ p ≤ ∞. Then

µ(P Z
n,r;Lp) �

1

n2r+2/p
as n→∞.
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In particular, for r = 0 we get µ(P Z
n;Lp) � n−2/p, the above-mentioned

result announced by Trigub.

2. Estimates for d2(Ur,Em,r+1) and d2(Vr,Fm,r+1). We denote by
Γ (Q1, . . . , Qn) the Gram determinant of the polynomials Q1, . . . , Qn in
L2(0, 1).

Lemma 2.1. Let 0 ≤ r ≤ m. Then

(2.1) Γ (Ur, . . . , Um) = (m+ r)!
2m∏
i=2r

i!
m−r∏
i=0

(2i)!
/ 2m∏
i=m+r

(2i+ 1)!.

Proof. We have Γ (Ur, . . . , Um) = det [(Ui|Uj)]
m
i,j=r, where

(Ui|Uj) =

1�

0

Ui(x)Uj(x) dx =

1�

0

xi+j(1− x)i+j dx =
(i+ j)!(i+ j)!

(2i+ 2j + 1)!
.

So, it remains to show that

det

[
(i+ j)!(i+ j)!

(2i+ 2j + 1)!

]r
i,j=1

= (m+ r)!
2m∏
i=2r

i!
m−r∏
i=0

(2i)!
/ 2m∏
i=m+r

(2i+ 1)!,

which is a standard exercise.

Lemma 2.2. Let m ≥ 0. Then ‖Um‖2 = a
1/2
m,m and

d2(Ur,Em,r+1) = a1/2m,r, 0 ≤ r ≤ m− 1.

Proof. Setting r = m in (2.1) we get

‖Um‖2 =
(2m)!(2m)!

(4m+ 1)!
=

2(2m)!(2m+ 1)!

(4m+ 2)!

(1.7)
=

C2
m

(4m+ 2)!

(1.10)
= am,m.

Now, let r ≤ m− 1. Replacing r by r + 1 in (1.3) we may write

(2.2) d2(Ur,Em,r+1) = d2(Ur, span{Ur+1, . . . , Um}).

Next we have

(2.3) [d2(Ur, span{Ur+1, . . . , Um})]2 =
Γ (Ur, Ur+1, . . . , Um)

Γ (Ur+1, . . . , Um)
.

Replacing r by r + 1 in (2.1) we get

(2.4) Γ (Ur+1, . . . , Um) =

m+r+1∏
i=2r+2

i!

2m∏
i=m+r+1

i!

m−r−1∏
i=0

(2i)!
/ 2m∏
i=m+r+1

(2i+ 1)!.
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Finally, from (2.2)–(2.4) and (2.1) we obtain

[d2(Ur,Em,r+1)]
2 =

(2r)!(2r + 1)!(2m− 2r)!

(m+ r + 1)(2m+ 2r + 1)!

=
2(2r)!(2r + 1)!(2m− 2r)!

(2m+ 2r + 2)!

(1.7)
= C2

r

(2m− 2r)!

(2m+ 2r + 2)!

(1.10)
= am,r.

Lemma 2.3. Let 0 ≤ r ≤ m. Then

(2.5) Γ (Vr, . . . , Vm) = 2m−r+1
2m+1∏
i=2r

i!
m−r∏
i=0

(2i+ 1)!
/ 2m∏
i=m+r

(2i+ 3)!.

Proof. We have Γ (Vr, . . . , Vm) = det[(Vi|Vj)]mi,j=r, where

(Vi|Vj) =
1�

0

Vi(x)Vj(x) dx =

1�

0

(2x− 1)2xi+j(1− x)i+j dx

=
2(i+ j)!(i+ j + 1)!

(2i+ 2j + 3)!
.

So, it remains to show that

det

[
(i+ j)!(i+ j + 1)!

(2i+ 2j + 3)!

]r
i,j=1

=
2m+1∏
i=2r

i!
m−r∏
i=0

(2i+ 1)!
/ 2m∏
i=m+r

(2i+ 3)!,

which is a standard exercise.

Lemma 2.4. Let m ≥ 0. Then ‖Vm‖2 = b
1/2
m,m and

d2(Vr,Fm,r+1) = b1/2m,r, 0 ≤ r ≤ m− 1.

The proof is analogous to that of Lemma 2.2. It is enough to replace (2.1)
by (2.5), and (1.3) by (1.4).

Lemma 2.5. Let 1 ≤ k ≤ m. Then

(2.6)
am,k

am,k−1
=

(2k − 1)(2k)2(2k + 1)

(2m− 2k + 1)(2m− 2k + 2)(2m+ 2k + 1)(2m+ 2k + 2)
.

Hence

(2.7)
am,k

am,k−1
<

k4

[(m+ 1/2)2 − k2]2
.

Consequently, if k/m ≤ ϑ < 1, then

am,k

am,k−1
<

(
ϑ2

1− ϑ2

)2

.
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Proof. According to the definition of am,k (see (1.10) and (1.7)), we may
write

am,k

am,k−1
=

2(2k)!(2k + 1)!

2(2k − 2)!(2k − 1)!
· (2m− 2k)!

(2m− 2k + 2)!
· (2m+ 2k)!

(2m+ 2k + 2)!

=
(2k − 1)(2k)2(2k + 1)

(2m− 2k + 1)(2m− 2k + 2)(2m+ 2k + 1)(2m+ 2k + 2)
.

This proves (2.6). Next, it is clear that (2k − 1)(2k)2(2k + 1) < (2k)4, and
it is not hard to see that

(2m−2k+1)(2m−2k+2)(2m+2k+1)(2m+2k+2) > [(2m+1)2−(2k)2]2.

Hence, by (2.6),

am,k

am,k−1
<

(2k)4

[(2m+ 1)2 − (2k)2]2
=

k4

[(m+ 1/2)2 − k2]2
.

This proves (2.7). Finally, if k/m ≤ ϑ < 1, then, by (2.7),

am,k

am,k−1
<

k4

(m2 − k2)2
=

[
(k/m)2

1− (k/m)2

]2
≤
(

ϑ2

1− ϑ2

)2

,

because the function x2/(1− x2) is increasing on (0, 1).

Lemma 2.6. Let 1 ≤ k ≤ m. Then
bm,k

bm,k−1
=

(2k − 1)(2k)2(2k + 1)

(2m− 2k + 2)(2m− 2k + 3)(2m+ 2k + 2)(2m+ 2k + 3)
.

Hence

(2.8)
bm,k

bm,k−1
<

k4

[(m+ 1)2 − k2]2
.

Consequently, if k/m ≤ ϑ < 1, then

bm,k

bm,k−1
<

(
ϑ2

1− ϑ2

)2

.

The proof is analogous to that of Lemma 2.5.

Lemma 2.7. For each integer s ≥ 10 one has

us :=
s!(s+ 1)!(2s)!

(4s+ 2)!
· (6s+ 2)!

(3s)!(3s+ 1)!
>

18

5
.

Proof. One can verify directly that u10 > 18/5, so it remains to show
that the sequence (us) is increasing. After standard simplifications, we obtain

us+1

us
=

4

3
· (s+ 2)(2s+ 1)(6s+ 3)(6s+ 5)(6s+ 7)

(3s+ 1)(3s+ 2)(4s+ 3)(4s+ 5)(4s+ 6)

=
1728s5 + 8640s4 + 15936s3 + 13680s2 + 5508s+ 840

1728s5 + 7776s4 + 13236s3 + 10578s2 + 3942s+ 540
> 1.
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Lemma 2.8. For all integers r ≥ 5 and m ≥ 3r one has

(2.9) am,m <
5

18
am,r.

Proof. According to the definition of am,m and am,r (see (1.10) and (1.7)),
inequality (2.9) may be written in the form

2(2m)!(2m+ 1)!

(4m+ 2)!
<

5

18
· 2(2r)!(2r + 1)!(2m− 2r)!

(2m+ 2r + 2)!
.

Set n = 2m and s = 2r. It is enough to show that

vn :=
s!(s+ 1)!(n− s)!

(n+ s+ 2)!
· (2n+ 2)!

n!(n+ 1)!
>

18

5
, n ≥ 3s, s ≥ 10.

Lemma 2.7 says that v3s > 18/5 for s ≥ 10, so it remains to prove that the
sequence (vn)n≥3s is increasing. After standard simplifications, we obtain

vn+1

vn
= 2 · (2n+ 3)(n− s+ 1)

(n+ 1)(n+ s+ 3)
> 4 · n− s+ 1

n+ s+ 3
.

It is clear that the right-hand side is greater than 1, at least for n ≥ 3s.

Lemma 2.9. Let m ≥ 1 and p := bm/3c. Then

(2.10)
m∑

k=p+1

am,k <
290

429
am,p < 0.676 am,p.

Proof. For m = 1, . . . , 14 inequality (2.10) can be verified directly (the
numbers am,k, defined by (1.10) and (1.7), can be easily computed; the co-
efficient 290/429 is attained for m = 3 and p = 1). Assume in what follows
that m ≥ 15.

We deduce from Lemma 2.5 that am,k/am,k−1 is an increasing function
of k (the numerator of the right-hand side of (2.6) is increasing; the de-
nominator is decreasing). Lemma 2.5 also implies that am,k+1/am,k < 1 if
(k + 1)/m <

√
2/2. Setting k = m in (2.6) we get

(2.11)
am,m

am,m−1
=

2m− 1

4m+ 1
m2 ≥ 29

61
m2,

because m ≥ 15. Hence it follows that the sequence (am,k)
m
k=1 initially de-

creases, attains its minimum at some point k0 such that

(2.12)
k0 + 1

m
>

√
2

2
,

and finally increases. Let q := bm/2c. We may write

(2.13)
m∑

k=p+1

am,k =

q∑
k=p+1

am,k +

k0∑
k=q+1

am,k +
m∑

k=k0+1

am,k.
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We shall separately estimate each of the three components on the right-hand
side.

It follows from Lemma 2.5 that am,k/am,k−1 < 1/9 if k/m ≤ 1/2. Hence

(2.14) am,k <
am,p

9k−p
, k = p+ 1, . . . , q.

In particular, for k = q we have

(2.15) am,q <
am,p

9q−p
.

From (2.14) we get

(2.16)
q∑

k=p+1

am,k <

q∑
k=p+1

am,p

9k−p
<

1

8
am,p.

Now we shall estimate the second component in (2.13). We may write
k0∑

k=q+1

am,k < (k0 − q)am,q+1 <
m

2
· am,q

(2.15)
<

m

2
· am,p

9q−p
≤ m

2 · 9(m−3)/6
am,p,

because q − p = bm/2c − bm/3c ≥ (m− 3)/6. As m ≥ 15, we have
m

2 · 9(m−3)/6
≤ 5

54
,

whence

(2.17)
k0∑

k=q+1

am,k <
5

54
am,p.

To estimate the third component in (2.13), we may write

(2.18)
m∑

k=k0+1

am,k =

m−1∑
k=k0+1

am,k + am,m < (m− k0 − 1)am,m−1 + am,m.

From (2.12) we get m− k0 − 1 < (1−
√
2/2)m, and (2.11) yields

am,m−1 ≤
61

29m2
am,m.

Hence

(m− k0 − 1)am,m−1 <
61

29

(
1−
√
2

2

)
1

m
am,m <

0.62

m
am,m ≤ 0.05am,m,

because m ≥ 15. Thus

(2.19) (m− k0 − 1)am,m−1 + am,m < 1.05am,m.

From Lemma 2.8 it follows that am,m < 5
18am,p. So, by (2.18) and (2.19), we
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get

(2.20)
m∑

k=k0+1

am,k < 1.05 · 5
18
am,p < 0.3am,p.

Finally, from (2.13), (2.16), (2.17) and (2.20) we obtain
m∑

k=p+1

am,k <
1

8
am,p +

5

54
am,p + 0.3am,p < 0.52am,p <

290

429
am,p.

Lemma 2.10. Let m ≥ 1 and p := bm/3c. Then
m∑

k=p+1

bm,k <
2

13
bm,p < 0.154bm,p.

The proof is similar to the preceding one; analogues of Lemmas 2.7 and
2.8 are needed. The coefficient 2/13 is attained for m = 3 and p = 1.

Lemma 2.11. Let r ≥ 0 and m ≥ 3r + 3. Then
m∑

k=r+1

am,k < 0.027am,r.

Proof. Let p := bm/3c. We may write

(2.21)
m∑

k=r+1

am,k =

p∑
k=r+1

am,k +
m∑

k=p+1

am,k.

From Lemma 2.5 it follows that am,k/am,k−1 < 1/64 if k/m ≤ 1/3. Hence

(2.22) am,k <
am,r

64k−r
, k = r + 1, . . . , p,

and therefore

(2.23)
p∑

k=r+1

am,k <

p∑
k=r+1

am,r

64k−r
<

1

63
am,r.

Setting k = p in (2.22) we get

am,p <
am,r

64p−r
≤ 1

64
am,r,

because

p− r =
⌊
m

3

⌋
− r ≥

⌊
3r + 3

3

⌋
− r = 1.

Hence, Lemma 2.9 yields

(2.24)
m∑

k=p+1

am,k < 0.676am,p <
0.676

64
am,r < 0.011am,r.
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From (2.21), (2.23) and (2.24), we finally obtain
m∑

k=r+1

am,k <
1

63
am,r + 0.011am,r < 0.027am,r.

Lemma 2.12. Let r ≥ 0 and m ≥ 3r + 6. Then

a−1m,r

m∑
k=r+1

am,k < 1.027
(r + 1)4

[(m+ 1/2)2 − (r + 1)2]2
.

Proof. Replacing r by r + 1 in Lemma 2.11 we get
m∑

k=r+2

am,k < 0.027am,r+1.

Hence

a−1m,r

m∑
k=r+1

am,k = a−1m,r

(
am,r+1 +

m∑
k=r+2

am,k

)
< 1.027

am,r+1

am,r
.

Next, replacing k by r + 1 in (2.7), we obtain

am,r+1

am,r
<

(r + 1)4

[(m+ 1/2)2 − (r + 1)2]2
.

Lemma 2.13. Let r ≥ 0 and m ≥ 3r + 3. Then
m∑

k=r+1

bm,k < 0.019bm,r.

Proof. Let p := bm/3c. We may write

(2.25)
m∑

k=r+1

bm,k =

p∑
k=r+1

bm,k +

m∑
k=p+1

bm,k.

By repeating the corresponding part of the proof of Lemma 2.11, with am,k

replaced by bm,k, we obtain
p∑

k=r+1

bm,k <
1

63
bm,r,(2.26)

bm,p <
1

64
bm,r.(2.27)

By Lemma 2.10, we have

(2.28)
m∑

k=p+1

bm,k < 0.154bm,p

(2.27)
<

0.154

64
bm,r < 0.003bm,r.
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From (2.25), (2.26) and (2.28), we finally obtain
m∑

k=r+1

bm,k <
1

63
bm,r + 0.003bm,r < 0.019bm,r.

Lemma 2.14. Let r ≥ 0 and m ≥ 3r + 6. Then

b−1m,r

m∑
k=r+1

bm,k < 1.019
(r + 1)4

[(m+ 1)2 − (r + 1)2]2
.

The proof is similar to that of Lemma 2.12; Lemma 2.11 should be re-
placed by Lemma 2.13, and (2.7) by (2.8).

3. The covering radius in the L2 norm

Lemma 3.1. Let x0, x1, . . . , xk be a sequence of linearly independent vec-
tors in L2(0, 1) and let Λ be the lattice generated by x0, x1, . . . , xk. Let
h0 := ‖x0‖2 and let

hi := d2(xi, span{x0, x1, . . . , xi−1}), i = 1, . . . , k.

Then

(3.1)
hk
2
≤ µ(Λ;L2) ≤

1

2

( k∑
i=0

h2i

)1/2
=
hk
2

(
1 + h−2k

k−1∑
i=0

h2i

)1/2
.

Proof. Let Λ̃ be the lattice generated by x0, x1, . . . , xk−1. Let

M := span{x0, x1, . . . , xk}, M̃ := span{x0, x1, . . . , xk−1}.
To prove the first inequality in (3.1) it is enough to observe that Λ =
Λ̃+ Zxk ⊂ M̃ + Zxk, whence

µ(Λ;L2) ≥ d2
(
1
2xk, Λ

)
≥ d2

(
1
2xk, M̃ + Zxk

)
= d2(

1
2xk, M̃) = 1

2hk.

Let u0, u1, . . . , uk be the orthogonalization of x0, x1, . . . , xk. Then ‖ui‖ =
hi for i = 0, 1, . . . , k. Let

P := {t0u0 + t1u1 + · · ·+ tkuk : −1/2 < t0, t1, . . . , tk ≤ 1/2}.
It is easily seen that the parallelepipeds P+x, x ∈ Λ, form a disjoint covering
of M . Let % := (

∑k
i=0 h

2
i )

1/2 and let B be the closed unit ball in M . It is
clear that P ⊂ 1

2%B. So, the balls 1
2%B + x, x ∈ Λ, cover M , which means

that µ(Λ;L2) ≤ 1
2%.

Let us denote

αm,r := a−1m,r

m∑
j=r+1

am,j , r ≥ 0, m ≥ r + 1.

Lemma 2.11 says that if m ≥ 3r + 3, then

(3.2) αm,r < 0.027.



136 W. Banaszczyk and A. Lipnicki

Proposition 3.2. Let r ≥ 0 and m ≥ 3r + 3. Then

(3.3)
a
1/2
m,r

2
≤ µ(EZ

m,r;L2) ≤
a
1/2
m,r

2
(1 + αm,r)

1/2 < 1.014
a
1/2
m,r

2
.

Proof. Let k := m−r and xi := Um−i for i = 0, 1, . . . , k. Let h0, h1, . . . , hk
and Λ be defined as in Lemma 3.1. Then

Λ = Zxk + Zxk−1 + · · ·+ Zx0 = ZUr + ZUr+1 + · · ·+ ZUm = EZ
m,r

because Ur, . . . , Um is a basis of EZ
m,r. We will prove that

(3.4) hi = a
1/2
m,m−i, i = 0, 1, . . . , k.

Suppose first that i ≥ 1. Replacing r by m − i + 1 in (1.3) we get
span{Um−i+1, . . . , Um} = Em,m−i+1. Hence

hi = d2(xi, span{x0, x1, . . . , xi−1})
= d2(Um−i, span{Um, Um−1, . . . , Um−i+1})

= d2(Um−i,Em,m−i+1) = a
1/2
m,m−i,

according to Lemma 2.2. For i = 0 the proof is even simpler: h0 = ‖x0‖ =
‖Um‖2 = a

1/2
m,m.

From (3.4) it follows that hk = a
1/2
m,m−k = a

1/2
m,r and

h−2k

k−1∑
i=0

h2i = a−1m,r

k−1∑
i=0

am,m−i = a−1m,r

m∑
j=r+1

am,j = αm,r.

It is now enough to apply Lemma 3.1. The last inequality in (3.3) follows
from (3.2).

If m ≥ 3r + 6, then, according to Lemma 2.12, inequality (3.2) may be
strengthened to

αm,r < 1.027
(r + 1)4

[(m+ 1/2)2 − (r + 1)2]2
.

This, in turn, allows one to replace (3.3) by

(3.5)
a
1/2
m,r

2
≤ µ(EZ

m,r;L2) <
a
1/2
m,r

2

[
1 + 0.52

(r + 1)4

[(m+ 1/2)2 − (r + 1)2]2

]
.

Proposition 3.3. Let r ≥ 0. Then

µ(EZ
m,r;L2) =

a
1/2
m,r

2
(1 +O(m−4)) =

Cr

2(2m)2r+1
(1 +O(m−1))

as m→∞.
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Proof. The first equality follows directly from (3.5). To obtain the second
one, it is enough to observe that

am,r
(1.10)
= C2

r

(2m− 2r)!

(2m+ 2r + 2)!
=

C2
r

(2m)4r+2
(1 +O(m−1)).

Let us denote

βm,r := b−1m,r

m∑
j=r+1

bm,j , r ≥ 0, m ≥ r + 1.

Lemma 2.13 says that if m ≥ 3r + 3, then

(3.6) βm,r < 0.019.

Proposition 3.4. Let r ≥ 0 and m ≥ 3r + 3. Then

(3.7)
b
1/2
m,r

2
≤ µ(F Z

m,r;L2) ≤
b
1/2
m,r

2
(1 + βm,r)

1/2 < 1.010
b
1/2
m,r

2
.

Proof. The proof is analogous to that of Proposition 3.2. It is enough
to replace Um−i, EZ

m,r and am,m−i by Vm−i, F Z
m,r and bm,m−i, respectively;

(3.2) should be replaced by (3.6).

If m ≥ 3r + 6, then, according to Lemma 2.14, inequality (3.6) may be
strengthened to

βm,r < 1.019
(r + 1)4

[(m+ 1)2 − (r + 1)2]2
.

This, in turn, allows one to replace (3.7) by

(3.8)
b
1/2
m,r

2
≤ µ(F Z

m,r;L2) <
b
1/2
m,r

2

[
1 + 0.51

(r + 1)4

[(m+ 1)2 − (r + 1)2]2

]
.

Proposition 3.5. Let r ≥ 0. Then

µ(F Z
m,r;L2) =

b
1/2
m,r

2
(1 +O(m−4)) =

Cr

2(2m)2r+1
(1 +O(m−1))

as m→∞.

Proof. The first equality follows directly from (3.8). To obtain the second
one, it is enough to observe that

bm,r
(1.11)
= C2

r

(2m− 2r + 1)!

(2m+ 2r + 3)!
=

C2
r

(2m)4r+2
(1 +O(m−1)).

Let us denote

QZ
n,r := EZ

m,r + F Z
m,r, n = 2m+ 1, 0 ≤ r ≤ m,

QZ
n,r := EZ

m,r + F Z
m−1,r, n = 2m, 0 ≤ r ≤ m− 1.

Then (1.5) and (1.6) may be written jointly as

QZ
n,r ( P Z

n,r ( 1
2Q

Z
n,r, r ≥ 0, n ≥ 2r + 1,
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which implies that

(3.9) 1
2µ(Q

Z
n,r;L2) ≤ µ(P Z

n,r;L2) ≤ µ(QZ
n,r;L2).

As E and F are mutually orthogonal, it is clear that

µ(QZ
n,r;L2)

2 = µ(EZ
m,r;L2)

2 + µ(F Z
m,r;L2)

2, n = 2m+ 1,(3.10)

µ(QZ
n,r;L2)

2 = µ(EZ
m,r;L2)

2 + µ(F Z
m−1,r;L2)

2, n = 2m.(3.11)

Proof of Theorem 1.1. In view of (3.9) it is enough to prove that

(3.12) c1/2n,r ≤ µ(QZ
n,r;L2) < 1.014c1/2n,r .

Suppose first that n is odd, n = 2m+ 1, m ≥ 3r + 3. From Propositions
3.2 and 3.4 we obtain respectively

am,r

4
≤ µ(EZ

m,r;L2)
2 ≤ (1 + αm,r)

am,r

4

(3.2)
< 1.027

am,r

4
,(3.13)

bm,r

4
≤ µ(F Z

m,r;L2)
2 ≤ (1 + βm,r)

bm,r

4

(3.6)
< 1.019

bm,r

4
.(3.14)

Consequently
am,r

4
+
bm,r

4
≤ µ(EZ

m,r;L2)
2 + µ(F Z

m,r;L2)
2 < 1.027

(
am,r

4
+
bm,r

4

)
,

which means that

(3.15) cn,r ≤ µ(QZ
n,r;L2)

2 < 1.027cn,r

according to (1.13) and (3.10). This yields (3.12).
If n is even, n = 2m, m ≥ 3r + 4, then the proof is analogous: replacing

m by m− 1 in (3.14), we obtain

am,r

4
+
bm−1,r

4
≤ µ(EZ

m,r;L2)
2 + µ(F Z

m−1,r;L2)
2 < 1.027

(
am,r

4
+
bm−1,r

4

)
,

which means that (3.15) is true also in this case (here we use (1.14) and
(3.11)).

Proof of Theorem 1.2. From (3.10), (3.11) and Propositions 3.3 and 3.5
it follows directly that

µ(QZ
n,r;L2) =

√
2

2
· Cr

n2r+1
(1 +O(n−1))

as n→∞. Hence, by (3.9), we obtain (1.15).

4. The covering radius in the Lp norm. Let k, s be non-negative
integers, 0 ≤ s ≤ k. If s ≤ k − 1, then we denote by Uk,s the shortest (in
the L2 norm) polynomial in the hyperplane Ek,s+1 + Us. It is clear that
‖Uk,s‖2 = d2(Us,Ek,s+1). If s = k, then we define Uk,k := Uk. From Lemma
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2.2 and (1.10) it follows that

(4.1) ‖Uk,s‖2 = Cs

[
(2k − 2s)!

(2k + 2s+ 2)!

]1/2
.

It is easily seen that if 0 ≤ s1 ≤ k1 and 0 ≤ s2 ≤ k2, then

Uk1,s1 · Uk2,s2 ∈ Ek1+k2,s1+s2+1 + Us1+s2 .

Let 0 ≤ r ≤ m− 1. We denote

(4.2) gm,r := Kr

[
(m− r − 1)!(m− r + 1)!

(m+ r + 1)!(m+ r + 3)!

]1/2
.

Lemma 4.1. Let r ≥ 0 and m ≥ r + 1. There is a polynomial Qm,r in
Em,r+1 + Ur with ‖Qm,r‖1 ≤ gm,r.

Proof. We will consider four cases.

Case 1: m even, m = 2k; r even, r = 2s. Let Qm,r := U2
k,s. Then

Qm,r ∈ E2k,2s+1 + U2s = Em,r+1 + Ur and

‖Qm,r‖1 = ‖Uk,s‖22
(4.1)
= C2

s

(2k − 2s)!

(2k + 2s+ 2)!

(1.8)
= Kr

(m− r)!
(m+ r + 2)!

,

which, as easily checked, is less than gm,r.

Case 2: m odd, m = 2k + 1; r even, r = 2s. Let Qm,r := Uk,s · Uk+1,s.
Then Qm,r ∈ E2k+1,2s+1+U2s = Em,r+1+Ur and, by the Schwarz inequality,

‖Qm,r‖1 ≤ ‖Uk,s‖2 · ‖Uk+1,s‖2(4.3)

(i)
= C2

s

[
(2k − 2s)!

(2k + 2s+ 2)!
· (2k − 2s+ 2)!

(2k + 2s+ 4)!

]1/2
(1.8)
= Kr

[
(m− r − 1)!(m− r + 1)!

(m+ r + 1)!(m+ r + 3)!

]1/2
= gm,r.

To obtain equality (i) we use (4.1), and then (4.1) with k replaced by k+1.

Case 3: m even, m = 2k; r odd, r = 2s + 1. Let Qm,r := Uk,s · Uk,s+1.
Then Qm,r ∈ E2k,2s+2 + U2s+1 = Em,r+1 + Ur and

‖Qm,r‖1 ≤ ‖Uk,s‖2 · ‖Uk,s+1‖2(4.4)

(ii)
= CsCs+1

[
(2k − 2s)!

(2k + 2s+ 2)!
· (2k − 2s− 2)!

(2k + 2s+ 4)!

]1/2
(1.9)
= Kr

[
(m− r + 1)!(m− r − 1)!

(m+ r + 1)!(m+ r + 3)!

]1/2
= gm,r.

To obtain equality (ii) we use (4.1), and then (4.1) with s replaced by s+1.
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Case 4:m odd,m = 2k+1; r odd, r = 2s+1. LetQm,r := Uk,s·Uk+1,s+1.
Then Qm,r ∈ E2k+1,2s+2 + U2s+1 = Em,r+1 + Ur and

‖Qm,r‖1 ≤ ‖Uk,s‖2 · ‖Uk+1,s+1‖2(4.5)

(iii)
= CsCs+1

[
(2k − 2s)!

(2k + 2s+ 2)!
· (2k − 2s)!

(2k + 2s+ 6)!

]1/2
(1.9)
= Kr

[
(m− r)!(m− r)!

(m+ r)!(m+ r + 4)!

]1/2
,

which is easily checked to be less than gm,r. To obtain equality (iii) we use
(4.1), and then (4.1) with k replaced by k + 1 and s replaced by s+ 1.

Lemma 4.2. Let r ≥ 0 and m ≥ r + 1. There is a polynomial Rm,r in
Fm,r+1 + Vr with ‖Rm,r‖1 < gm,r.

Proof. LetQm,r be the polynomial from Lemma 4.1. Set Rm,r = Qm,r ·V0,
where V0(x) = 2x− 1. It is easily seen that Rm,r ∈ Fm,r+1 + Vr. It remains
to observe that

‖Rm,r‖1 = ‖Qm,r · V0‖1 < ‖Qm,r‖1 · ‖V0‖∞ = ‖Qm,r‖1 ≤ gm,r.

Lemma 4.3. Let r ≥ 0 and m ≥ 3r + 6. Then

µ(EZ
m,r;L1) < 2−1gm,r + 2−1/2a

1/2
m,r+1,(4.6)

µ(F Z
m,r;L1) < 2−1gm,r + 2−1/2b

1/2
m,r+1.(4.7)

Proof. The lattice EZ
m,r (resp. E

Z
m,r+1) is generated by Ur, . . . , Um (resp.

by Ur+1, . . . , Um); we may write

Em,r = Em,r+1 + RUr, EZ
m,r = EZ

m,r+1 + ZUr.

Let B be the closed unit ball in L1. According to the definition of µ(EZ
m,r;L1)

we have
Em,r+1 ⊂ EZ

m,r+1 + µ(EZ
m,r+1;L1)B,

and it is not hard to see that

Em,r ⊂ Em,r+1 + ZUr +
1
2d1(Ur,Em,r+1)B.

Hence

Em,r ⊂ EZ
m,r+1 + ZUr +

1
2d1(Ur,Em,r+1)B + µ(EZ

m,r+1;L1)B

= EZ
m,r+1 +

[
1
2d1(Ur,Em,r+1) + µ(EZ

m,r+1;L1)
]
B,

which means that

(4.8) µ(EZ
m,r;L1) ≤ 1

2d1(Ur,Em,r+1) + µ(EZ
m,r+1;L1).

Lemma 4.1 says that

(4.9) d1(Ur,Em,r+1) ≤ gm,r.
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As ‖ · ‖1 ≤ ‖ · ‖2, we have

(4.10) µ(EZ
m,r+1;L1) ≤ µ(EZ

m,r+1;L2).

Finally, Proposition 3.2 (with r replaced by r + 1) implies that

(4.11) µ(EZ
m,r+1;L2) < 2−1/2a

1/2
m,r+1.

From (4.8)–(4.11) we obtain (4.6).
The proof of (4.7) is analogous; it is enough to replace E by F , the

polynomial Ur by Vr, Lemma 4.1 by Lemma 4.2, and Proposition 3.2 by
Proposition 3.4.

Let us denote

hn,r := gm,r, n = 2m+ 1, 0 ≤ r ≤ m− 1,

hn,r :=
gm,r + gm−1,r

2
, n = 2m, 0 ≤ r ≤ m− 2.

Lemma 4.4. Let r ≥ 0 and n ≥ 6r + 14. Then

µ(P Z
n,r;L1) < hn,r + 2c

1/2
n,r+1.

Proof. Suppose that n is even, n = 2m. Then m ≥ 3r + 7. From (1.6)
it follows that µ(P Z

n,r;L1) ≤ µ(EZ
m,r;L1) + µ(F Z

m−1,r;L1). Next, by Lemma
4.3,

µ(EZ
m,r;L1) + µ(F Z

m−1,r;L1) <
gm,r + gm−1,r

2
+ 2−1/2(a

1/2
m,r+1 + b

1/2
m−1,r+1)

≤ hn,r + (am,r+1 + bm−1,r+1)
1/2 (1.14)

= hn,r + 2c
1/2
n,r+1.

The proof for n odd is analogous.

Corollary 4.5. Let r ≥ 0. Then

(4.12) µ(P Z
n,r;L1) ≤

22r+2Kr

n2r+2
(1 +O(n−1)) as n→∞.

Proof. It follows directly from (4.2) that

gm,r =
Kr

m2r+2
(1 +O(m−1)) as m→∞.

Hence, by the definition of hn,r, we have

(4.13) hn,r =
22r+2Kr

n2r+2
(1 +O(n−1)) as n→∞.

From (1.12), with r replaced by r + 1, it follows that

(4.14) c
1/2
n,r+1 = O(n−2r−3) =

1

n2r+2
O(n−1) as n→∞.

Combining Lemma 4.4, (4.13) and (4.14) we obtain (4.12).
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Lemma 4.6. Let 0 6= f ∈ L∞(0, 1). Then

‖f‖p
‖f‖1

≤
(
‖f‖∞
‖f‖2

)2−2/p
, 1 ≤ p ≤ ∞,(4.15)

‖f‖p
‖f‖2

≤
(
‖f‖∞
‖f‖2

)1−2/p
, 2 ≤ p ≤ ∞,(4.16)

‖f‖2
‖f‖p

≤
(
‖f‖∞
‖f‖2

)2/p−1
, 1 ≤ p ≤ 2.(4.17)

These inequalities follow easily from basic properties of Lp norms.

Lemma 4.7. Let P ∈ P n, where n ≥ 0. Then

(4.18) ‖P‖∞ ≤ (n+ 1)‖P‖2.

This is an easy consequence of elementary properties of Legendre poly-
nomials on [0, 1]; see e.g. Labelle [La].

Lemma 4.8. Let 1 ≤ p ≤ q ≤ ∞ and let P ∈ P n, where n ≥ 1. Then

(4.19) ‖P‖q ≤ [2(p+ 1)]1/p−1/qn2/p−2/q‖P‖p.

This is a standard fact; see e.g. [T, Sec. 4.9.6].

Lemma 4.9. Let P ∈ P n, where n ≥ 0. Then

‖P‖p ≤ (n+ 1)2−2/p‖P‖1, 1 ≤ p ≤ 2,(4.20)

‖P‖p ≤ (n+ 1)1−2/p‖P‖2, 2 ≤ p ≤ ∞,(4.21)

‖P‖2 ≤ (n+ 1)2/p−1‖P‖p, 1 ≤ p ≤ 2,(4.22)

‖P‖∞ ≤ 61/2n2/p‖P‖p, 2 < p <∞, n ≥ 1.(4.23)

Proof. Inequalities (4.20)–(4.22) follow from (4.15)–(4.17), respectively,
and (4.18). Inequality (4.23) follows from (4.19) (for q =∞).

Corollary 4.10. Let r ≥ 0 and n ≥ 2r. Then

µ(P Z
n,r;Lp) ≤ (n+ 1)2−2/pµ(P Z

n,r;L1), 1 ≤ p ≤ 2,(4.24)

µ(P Z
n,r;Lp) ≤ (n+ 1)1−2/pµ(P Z

n,r;L2), 2 ≤ p ≤ ∞,(4.25)

µ(P Z
n,r;Lp) ≥ (n+ 1)1−2/pµ(P Z

n,r;L2), 1 ≤ p ≤ 2,(4.26)

µ(P Z
n,r;Lp) ≥ 6−1/2 n−2/pµ(P Z

n,r;L∞), 2 < p <∞, n ≥ 1.(4.27)

Proof of Theorem 1.3. The first inequality in (1.16) follows from (4.26)
and the first inequality in (1.15). The second inequality in (1.16) follows from
(4.24) and (4.12).

Proof of Theorem 1.4. Inequality (1.17) follows from (4.25) and the sec-
ond inequality in (1.15).
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Proof of Proposition 1.5. Inequality (1.18) is an immediate consequence
of (1.19) and (4.27). We will prove (1.19).

Let f be the linear functional on (P n, ‖·‖∞) given by f(P ) = P (r)(0)/r!.
We have f(P Z

n) = Z and f(Ur) = 1. For any P ∈ P Z
n we may write

1
2 ≤

∣∣f(12Ur

)
− f(P )

∣∣ ≤ ‖f‖ · ∥∥1
2Ur − P

∥∥
∞.

Hence

(4.28) µ(P Z
n,r;L∞) ≥ d∞

(
1
2Ur,P

Z
n,r

)
≥ 1

2‖f‖
−1.

If r = 0, then, obviously, ‖f‖ = 1, whence µ(P Z
n,0;L∞) ≥ 1/2 (in fact, one

has equality here; see (1.1)). So, assume that r ≥ 1.
If P ∈ P n, then, by the Markov inequality,

|P (r)(0)| ≤ ‖P (r)‖∞ ≤ 2r
n2(n2 − 12) . . . (n2 − (r − 1)2)

1 · 3 . . . (2r − 1)
‖P‖∞.

Thus

‖f‖ ≤ 2r

r!
· n

2(n2 − 12) . . . (n2 − (r − 1)2)

1 · 3 . . . (2r − 1)
.

We may write n2(n2 − 12) . . . (n2 − (r − 1)2) ≤ n2r and 1 · 3 . . . (2r − 1) =
(2r)!/2rr!. Consequently, ‖f‖ ≤ 22rn2r/(2r)!. Hence, (4.28) leads to (1.19).
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