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STATIONARY SOLUTIONS OF AEROTAXIS EQUATIONS

Abstract. We study the existence and uniqueness of the steady state in
a model describing the evolution of density of bacteria and oxygen dissolved
in water filling a capillary. The steady state is a stationary solution of a
nonlinear and nonlocal problem which depends on the energy function and
contains two parameters: the total mass of the colony of bacteria and the
concentration (or flux) of oxygen at the end of the capillary. The existence
and uniqueness of solutions depend on relations between these parameters
and the maximum of the energy function.

1. Introduction. We study a modification of the model of aerotaxis
introduced in [MZM].

A colony of bacteria lives in a capillary filled with oxygen dissolved
in water. The metabolism of the bacteria depends on the concentration
of oxygen, which plays the role of both an attractant (at moderate con-
centrations) and a repellent (at high and low concentrations). Aerotaxis is
the movement of bacteria toward the concentration of oxygen optimal for
their growth [T], [B], [G]. We denote by u(x, t) and p(x, t) respectively the
density of bacteria and oxygen at a point x in the capillary, at time t.
To describe the evolution of u and p we introduce the energy function
E(p), which has a maximum at a point po of optimal concentration of
oxygen.

We make the following assumptions on E:

(i) E is a non-negative C1 function on R with bounded first derivative,
(ii) E(p) ≡ 0 for p ≤ 0 and E(p) > 0 for p > 0,
(iii) E has only one local maximum at a point po,
(iv) limp→∞E(p) = 0.
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The evolution of the density u(x, t) of bacteria is given by the following
one-dimensional drift-diffusion equation:

(1.1) ut = uxx − (u(E(p))x)x.

The diffusion term uxx is responsible for the random walk of bacteria, and
the drift term (u(E(p))x)x for their tendency to achieve the optimal con-
centration of oxygen. The assumptions on E and the form of the drift term
describe the impact of oxygen concentration on bacteria movement, namely
bacteria escape from regions with too high (too low respectively) concentra-
tions of oxygen and move to the optimal one.

Oxygen diffuses in the water filling the capillary and is consumed by
the cells of bacteria at a rate proportional to the density of bacteria and
the energy function for a given density of oxygen. Thus the evolution of the
oxygen density p(x, t) is described by the equation

(1.2) pt = pxx − E(p)u.

Assume that the colony lives in a capillary of unit length. This means
that equations (1.1) and (1.2) are considered in the interval [0, 1]. The density
u(x, t) satisfies the no-flux boundary condition, i.e.

(1.3) ux(0, t)− u(0, t)(E(p))x(0, t) = ux(1, t)− u(1, t)(E(p))x(1, t) = 0,

which guarantees that the total mass of bacteria is conserved. The left end
of the capillary is closed. Hence at x = 0 we impose the no-flux condition

(1.4) px(0, t) = 0.

At x = 1 we may consider two distinct boundary value conditions: either
a constant level of oxygen at the right end of the capillary:

(1.5) the Dirichlet condition p(1, t) = p,

or a constant flow of the oxygen across the right end of the capillary:

(1.6) the Neumann condition px(1, t) = p.

Here p is a given positive constant.
Equations (1.1), (1.2) are supplemented with the initial density of bac-

teria

(1.7) u(x, 0) = u0(x)

and the initial density of oxygen

(1.8) p(x, 0) = p0(x).

Here u0(x), p0(x) are given continuous functions on [0, 1].
Equations (1.1), (1.2) together with the boundary data (1.3)–(1.5), (1.6)

and initial data (1.7), (1.8) describe the evolution of the density of bacteria
and of oxygen.
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Similar problems for various chemotaxis systems, even in one space di-
mension, lead to interesting and rich asymptotic phenomena: see e.g. [CL],
[HP], [OY]. For the classical Keller–Segel model of chemotaxis the existence
of global solutions in the two-dimensional case and existence or nonexistence
of stationary solutions depend on one parameter, the total mass of the popu-
lation of microorganisms [Bi]. In our case an analogous phenomenon occurs,
but the existence of steady states depends on more parameters. Nonexistence
of steady states (see Remark 2.5) suggests that a solution of the evolution
problem blows up (compare [BHN]). The nonuniqueness of stationary solu-
tions (see Th. 2.7) leads to the question of their stability and asymptotic
behaviour of solutions of the evolution problem.

2. Stationary solutions. This section is devoted to the existence and
uniqueness of stationary states of the model proposed in the Introduction.

The stationary density of bacteria, U(x), and of oxygen, P (x), satisfy
the system of equations

U ′′ − (U(E(P ))′)′ = 0,(2.1)
P ′′ − E(P )U = 0,(2.2)

the boundary conditions

(2.3) U ′(0)− U(0)(E(P ))′(0) = U ′(1)− U(1)(E(P ))′(1) = 0,

and either

(2.4) P ′(0) = 0, P (1) = p

for the Dirichlet condition, or

(2.5) P ′(0) = 0, P ′(1) = p

for the Neumann condition. Multiplying (2.1) by Ue−E(P ) and integrating
by parts we get

1�

0

(U ′(x)− U(x)(E(P (x))′)2e−E(P (x)) dx = 0.

Hence U ′(x)−U(x)(E(P (x)))′ = 0, so the stationary density of bacteria has
the form U(x) = CeE(P (x)), where C is a constant. Assuming that M is the
total mass of the colony of bacteria, we have the following relation for the
stationary densities U and P :

(2.6) U(x) = M
eE(P (x))

	1
0 e

E(P (s)) ds
.

Putting (2.6) into (2.2) we obtain a nonlocal equation for the stationary
density P of oxygen:

(2.7) P ′′(x) = Mµ[P ]E(P (x))eE(P (x)),
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where

µ[P ] =
(1�

0

eE(P (s)) ds
)−1

.

We call equation (2.7) with the boundary conditions (2.4) the Dirichlet
problem, and with the conditions (2.5) the Neumann problem. The nonlo-
cal equation (2.7) is similar to the Poisson–Boltzmann equation which was
studied in numerous papers [KN], [BN], [BHN].

2.1. Dirichlet problem. Note that the Dirichlet problem (2.7), (2.4)
is nonlinear and nonlocal, so the existence and uniqueness of solutions are
nontrivial questions.

First, we describe some properties of solutions of (2.7), (2.4).

Lemma 2.1. Each solution of (2.7), (2.4) is a convex, nondecreasing and
positive function.

Proof. The convexity of a solution of (2.7) follows from condition (ii)
on E. Integrating (2.7) over [0, x] we get

P ′(x) = M

x�

0

µ[P ]E(P (s))eE(P (s)) ds ≥ 0.

Hence P ′ is positive, so P is nondecreasing.
Assume that P is negative on some interval (0, a). Condition (ii) implies

that P ′′ = 0 on (0, a). Thus we get

(2.8) P ′(0) = P (0) = 0.

It follows from assumption (i) that P ≡ 0 is the unique solution of the initial
value problem (2.7), (2.8), so condition (2.4) is not satisfied, a contradic-
tion.

To apply topological methods to prove existence of solutions of the Dirich-
let problem, we transform it into an integral equation. Obviously, a solution
of the Dirichlet problem is a fixed point of the following integral operator
defined for u ∈ C0[0, 1]:

(2.9) A(u) = p−
1�

x

y�

0

Mµ[u]E(u(s))eE(u(s)) ds dy.

For u ∈ C0([0, 1]) we denote |u|∞ = sup{u(x) : x ∈ [0, 1]} and u∗ =
inf{u(x) : x ∈ [0, 1]}.

To apply the Leray–Schauder theorem or the Banach fixed point theorem
for the operator (2.9), we need an auxiliary lemma.

Lemma 2.2. For any u, v ∈ C0[0, 1],

(2.10) |A(u)−A(v)|∞ ≤ML(u, v)|u− v|∞,
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where

L(u, v) = (1 + 2E(po))e
2E(po) sup{|E′(p)| : p ∈ [min(u∗, v∗),max(u∞, v∞)]}

and

(2.11) (A(u))′(x) ≤ME(po)e
E(po).

Proof. The elementary inequalities

(2.12) 1/eE(po) ≤ µ[w] ≤ 1, E(w)eE(w) ≤ E(po)e
E(po)

hold for every w ∈ C0([0, 1]). They lead to

|A(u)−A(v)| ≤M
1�

x

y�

0

|µ[u]E(u(s))eE(u(s)) − µ[v]E(v(s))eE(v(s))| ds dy

≤M
1�

x

y�

0

(
µ[u]|E(u(s))eE(u(s)) − E(v(s))eE(v(s))|

+ E(v(s))eE(v(s))|µ[u]− µ[v]|
)
ds dy

≤M
1�

0

(
|E(u(s))eE(u(s)) − E(v(s))eE(v(s))|+ E(po)e

E(po)|µ[u]− µ[v]|
)
ds

≤M
1�

0

(
|E(u(s))eE(u(s)) − E(v(s))eE(v(s))|

+ E(po)e
E(po)µ[u]µ[v]

1�

0

|eE(v(z)) − eE(u(z))| dz
)
ds

≤ML(u, v)|v − u|∞.
Now inequality (2.11) follows from (2.12).

An application of the Leray–Schauder theorem gives the existence of
solutions of the Dirichlet boundary problem.

Theorem 2.3. Problem (2.7), (2.4) has a solution.

Proof. Consider the family of equations

(2.13) P = λA(P ), λ ∈ [0, 1],

where P ∈ C0([0, 1]) is an unknown function and λ is a parameter. Lem-
ma 2.2 implies that λA is a family of continuous and compact operators on
C0([0, 1]). To apply the Leray–Schauder theorem [E], it is enough to note
that the inequality |Pλ|∞ = Pλ(1) ≤ p̄ gives an a priori estimate on all
solutions of (2.13).

The problem of uniqueness of solutions of the Dirichlet problem is settled
in
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Theorem 2.4.

(i) For a sufficiently small M the solution of (2.7), (2.4) is unique.
(ii) For each M there exists p̃ such that for p > p̃ problem (2.7), (2.4)

has a unique solution.
(iii) For p ∈ [0, po] ∩ {p : E(p) < 1} =: J the solution of problem (2.7),

(2.4) is unique.

Proof. (i) is a simple consequence of the Banach fixed point theorem. In
fact, the derivative E′ is bounded, hence sup{L(u, v) : u, v ∈ C0([0, 1])} =:
L <∞ and (2.10) gives

|A(u)−A(v)|∞ ≤ML|u− v|∞.
Thus for M < 1/L the operator A is a contraction on C0([0, 1]).

From (2.11) we see that for any solution P ,

(2.14) p̄− P (0) = P (1)− P (0) ≤ME(po)e
E(po).

It follows from conditions (iii) and (iv) on E that limp→∞E
′(p) = 0.

Hence, there exists p̃ such that for any two solutions P1, P2 of (2.7), (2.4)
satisfying P1(1) = P2(1) = p̄ > p̃ we have L(P1, P2) < 1/M . This implies
that inequality (2.10) for u = P1 and v = P2 takes the form |P1 − P2|∞ <
ML(P1, P2)|P1−P2|∞ < λ|P1−P2|∞ for some λ < 1. Hence P1 = P2 follows.

The proof of (iii) is based on an idea used in [KN].
Let Pi, i = 1, 2, satisfy

(2.15) P ′′i (x) = MµiE(Pi(x))eE(Pi(x))

with boundary condition (2.4), where µi = (
	1
0 e

E(Pi(x)) dx)−1 and p ∈ J . We
distinguish two cases: µ = µ1 = µ2 and µ1 6= µ2. In the first case assume
that (2.15), (2.4) has two solutions P1, P2. Then

(2.16) (P1(x)− P2(x))′′ = Mµ(E(P1(x))eE(P1(x)) − E(P2(x))eE(P2(x))).

Multiply (2.16) by P1(x)− P2(x) and integrate by parts to get

(2.17) −
1�

0

(P1(x)− P2(x))′2 dx

=

1�

0

Mµ
(
E(P1(x))eE(P1(x)) − E(P2(x))eE(P2(x))

)
(P1(x)− P2(x)) dx.

The function E(p)eE(p) is increasing on J . Hence the right hand side of (2.17)
is nonnegative. Thus

1�

0

((P1(x)− P2(x))′)2 dx = 0,

and consequently P1(x) = P2(x).
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Now consider the case µ1 > µ2. It follows from Lemma 2.10 (see Ap-
pendix) that P1 < P2 in (0, 1). Hence P ′1(1) ≥ P ′2(1).

First, we prove that P ′1(1) ≤ P ′2(1). Note that this inequality can be
rewritten in the form

1�

0

1�

0

(
E(P2(x))eE(P2(x))+E(P1(y)) − E(P1(x))eE(P1(x))+E(P2(y))

)
dx dy

=
1

2

1�

0

1�

0

(
(E(P2(x))− E(P1(y)))eE(P2(x))+E(P1(y))

+ (E(P2(y))− E(P1(x)))eE(P1(x))+E(P2(y))
)
dx dy ≥ 0.

We choose x < y and set a = E(P2(x)), b = E(P1(y)), c = E(P2(y)),
d = E(P1(x)). To prove the last displayed inequality it is enough to show
that

(a− b)ea+b + (c− d)ec+d ≥ 0

for 0 < d < a < b < c < 1. We postpone the proof of this elementary
inequality to Lemma 2.9 (see Appendix). Thus we have

(2.18) (P1 − P2)
′(1) = 0.

It follows from the inequality µ1 > µ2 that (P1 − P2)
′′ > 0 on an interval

(1− ε, 1]. Hence (P1 − P2)
′ < 0 and so P1 > P2 on this interval, contrary to

Lemma 2.10.

2.2. Neumann problem. This section is devoted to the Neumann
problem (2.7), (2.5).

Integrating (2.7) on (0, 1) we obtain

(2.19) p = P ′(1) =

1�

0

Mµ[P ]E(P (x))eE(P (x)) dx.

Hence p ≤ME(po), which implies:

Remark 2.5. If p > ME(po) then there exists no solution of (2.7), (2.5).

To prove the existence of solutions of (2.7), (2.5) we consider the auxiliary
problem

(2.20) P ′′b (x) = Mµ[Pb]E(Pb(x))eE(Pb(x)), P ′(0) = 0, P (0) = b ≥ 0.

Note that if Pb is a solution of (2.20) and satisfies

(2.21) p =

1�

0

Mµ[Pb]E(Pb(x))eE(Pb(x)) dx,

then P = Pb is a solution of (2.7), (2.5).
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Integrating (2.20) we get

(2.22) P ′b(x) =

x�

0

µ[Pb]E(Pb(s))e
E(Pb(s)) ds,

which implies that for b > 0 the solution Pb of (2.20) is a convex increasing
function.

Integrating (2.22) we obtain the integral form of problem (2.20):

(2.23) Pb(x) = b+

x�

0

y�

0

Mµ[Pb]E(Pb(s))e
E(Pb(s)) ds dy.

The inequality Pb ≥ b follows immediately from (2.23).
The Banach fixed point theorem applied to (2.23) shows that for suffi-

ciently small M the solution exists and is unique. For this range of M we
consider the function

H(b) =

1�

0

Mµ[Pb]E(Pb(x))eE(Pb(x)) dx.

Lemma 2.6. The function H(b) is continuous and not injective.

Proof. We need to show that the solution Pb(x) depends continuously
on b. Let {bn}n∈N be a sequence of real numbers converging to b. Since
supn |Pbn(·)|∞ ≤ supn |bn|+ME(po) and |P ′bn(·)|∞ ≤ME(po), it follows that
{Pbn(·)}n∈N is uniformly bounded and equicontinuous. The Arzelà–Ascoli
theorem implies that the sequence {Pbn(·)}n∈N is precompact in C0([0, 1]).
Hence we can choose a subsequence {Pbnk (·)}k∈N converging in C0([0, 1])
to a function ϕ(·). Using the Lebesgue dominated convergence theorem we
obtain

ϕ(x) = b+

x�

0

y�

0

Mµ[ϕ]E(ϕ(s))eE(ϕ(s)) ds dy.

The uniqueness of solution of (2.20) for the range of M in question gives
ϕ(x) ≡ Pb(x), and continuous dependence of Pb on b follows. Since b ≤
Pb(x) ≤ b + ME(po), by the Lebesgue dominated convergence theorem we
get

(2.24) lim
b→∞

H(b) = lim
b→∞

1�

0

Mµ[Pb]E(Pb(x))eE(Pb(x)) dx = 0.

Note that H(0) = 0 and (2.24) imply that H(b) is not injective.

We are ready to prove

Theorem 2.7. For sufficiently small M and p ∈ [0, supbH(b)], problem
(2.7), (2.5) has a solution. If p ∈ [0, supbH(b)) then this solution is not
unique.
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Proof. As we proved above, for sufficiently smallM the functionH is well
defined and not injective. If we choose p ∈ [0, supbH(b)) then the equation
p = H(b) has at least two solutions, so nonuniqueness follows.

The above theorem partially solves the problem of existence of solutions
of the Neumann problem. To make our presentation more complete we state
the next theorem.

Theorem 2.8. If p/M is sufficiently small, then problem (2.7), (2.5)
has a solution.

Proof. For given nonnegative parameters µ and b we consider the follow-
ing local initial value problem:

(2.25) P ′′µ,b(x) = MµE(Pµ,b(x))eE(Pµ,b(x)), P ′µ,b(0) = 0, Pµ,b(0) = b ≥ 0.

This problem has a unique solution Pµ,b(·), which is a C1 function of the
parameters µ and b ([H]). We define the functions

T (µ, b) =
1	1

0 e
E(Pµ,b(s)) ds

, G(µ, b) = T (µ, b)− µ.

To prove the existence of solution of the nonlocal problem (2.7), (2.5) we
need to show the existence of µ and b such that G(µ, b) = 0. Differentiating
T (µ, b) with respect to µ we get

(2.26) Tµ(µ, b)

=
(1�

0

exp(E(Pµ,b(s))) ds
)−2 1�

0

exp(E(Pµ,b(s)))E
′(Pµ,b(s))(Pµ,b(s))µ ds.

Note that (Pµ,b(s))µ(1, 0) = 0. Hence Tµ(1, 0) = 0. Thus, by the implicit
function theorem there exists a continuous function µ(·) defined in some
open neighbourhood V0 of 0 such that µ(0) = 1 and G(µ(b), b) = 0. Hence
Pµ(b),b is a solution of (2.20). To solve (2.7), (2.5) we have to check that

(2.27) H∗(b) := P ′µ(b),b(1) =

1�

0

µ(b)E(Pµ(b),b(x))eE(Pµ(b),b(x)) dx =
p

M
.

The function H∗(b) is positive for b > 0, continuous and H(0) = 0. Hence if
we choose p/M sufficiently small, then condition (2.27) is fulfilled.

The last theorem says that for an arbitrary p the Neumann problem has
a solution if the mass of the bacteria is large enough.

2.3. Appendix

Lemma 2.9. If 0 < d < a < b < c < 1, then

(2.28) (a− b)ea+b + (c− d)ec+d ≥ 0.
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Proof. Let
A = b− a, B = c− d.

We have 0 < A < B < 1. The inequality (2.28) can be written in the form
−Ae−A +BeB−2(b−d) ≥ 0. The function xe−x is increasing on [0, 1], hence

−Ae−A +BeB−2(b−d) ≥ −Ae−A +BeB−2B = −Ae−A +Be−B ≥ 0.

Lemma 2.10. Let F be an increasing function and Pi be the solutions of
the boundary value problem

P ′′i = λiF (Pi), P ′i (0) = 0, Pi(1) = p > 0, for i = 1, 2,

where λ1, λ2 are real parameters. If λ1 < λ2, then P1(x) > P2(x) for x ∈
(0, 1).

Proof. Assume that there exists x0 ∈ [0, 1) such that P (x) := P1(x) −
P2(x) attains a nonpositive minimum at x0. If x0 ∈ (0, 1) then P ′′(x0) =
λ1F (P1(x0))− λ2F (P2(x0)) < 0, a contradiction.

Consider the case x0 = 0. At the point x := inf{x ∈ [0, 1] : P (x) = 0}
we have P ′(x) ≥ 0 and P (x) < 0 for [0, x). Hence λ1F (P1(x)) < λ2F (P2(x))

for [0, x) and P ′(x) =
	x
0(λ1F (P1(s))− λ2F (P2(s))) ds < 0, which leads to a

contradiction.
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