On Ternary Integral Recurrences

by

A. SCHINZEL

Summary. We prove that if a, b, c, d, e, m are integers, $m>0$ and $(m, a c)=1$, then there exist infinitely many positive integers n such that $m \mid(a n+b) c^{n}-d e^{n}$. Hence we derive a similar conclusion for ternary integral recurrences.

An integral recurrence of order k is given by the formula

$$
u_{n}=c_{1} u_{n-1}+c_{2} u_{n-2}+\cdots+c_{k} u_{n-k},
$$

where c_{i} and $u_{i}(1 \leq i \leq k)$ are integers.
The aim of this paper is to prove
Theorem. For every essentially ternary integral recurrence sequence u_{n} the companion polynomial of which has a double zero, there exists an integer $D>0$ such that for all integers m prime to D infinitely many terms u_{n} are divisible by m.

For simple integral recurrence sequences u_{n} of any order, there is a conjecture of Skolem [3] (see also Skolem [4, p. 56] and Schinzel [1) that if for every integer $m>0$ there is u_{n} divisible by m, then there is n with $u_{n}=0$. It follows from the above theorem that a similar assertion is false for non-simple integral recurrences, e.g. for $u_{n}=n+2^{n}$.

The proof of the Theorem is based on four lemmas. In the course of the proofs p denotes a prime, \mathbb{Z}_{p} and \mathbb{Q}_{p} the ring of p-adic integers and the field of p-adic numbers, respectively, $e_{p}=\max \{1,4-p\}$, and if $z \in \mathbb{Q}_{p} \backslash\{0\}$, then $\operatorname{ord}_{p} z=\max \left\{\alpha \in \mathbb{Z}: p^{-\alpha} z \in \mathbb{Z}_{p}\right\}$.

Lemma 1. If $z, w \in \mathbb{Q}_{p}, \min \left\{\operatorname{ord}_{p}(z-1) \operatorname{ord}_{p}(w-1)\right\} \geq e_{p}$ and $\log _{p} z$ is the p-adic logarithm of z, then

$$
\begin{equation*}
\operatorname{ord}_{p}(z-w)=\operatorname{ord}_{p}\left(\log _{p} z-\log _{p} w\right) . \tag{1}
\end{equation*}
$$

2010 Mathematics Subject Classification: Primary 11B37.
Key words and phrases: ternary recurrence, p-adic logarithm.

Proof. From the power series expansion we have

$$
\operatorname{ord}_{p}\left(\log _{p} z-\log _{p} w\right)=\operatorname{ord}_{p}\left(\log _{p} \frac{z}{w}\right)=\operatorname{ord}_{p}\left(\frac{z}{w}-1\right)=\operatorname{ord}_{p}(z-w),
$$

hence (1) follows.
Lemma 2. If $z \in \mathbb{Z}_{p}, \operatorname{ord}_{p} z \geq e_{p}-1$ and

$$
F_{n}(z)=\sum_{i=1}^{n}(-1)^{i-1} \frac{z^{i}}{i},
$$

then

$$
\operatorname{ord}_{p}\left(\log _{p}(1+p z)-F_{n}(p z)\right) \geq(n+1)\left(1-\frac{2-e_{p}}{p-1}\right) .
$$

Proof. We have

$$
\log _{p}(1+p z)=F_{n}(p z)+\sum_{i=n+1}^{\infty}(-1)^{i-1} \frac{p^{i}}{i} z^{i},
$$

and the lemma follows from the estimate, valid for $i \geq n+1$,

$$
\operatorname{ord}_{p} \frac{p^{i} z^{i}}{i}>i e_{p}-\frac{i}{p-1} \geq(n+1)\left(1-\frac{2-e_{p}}{p-1}\right) .
$$

Lemma 3. For all integers a, b, c, d, e, f, p such that $p \nmid a c$ and every nonnegative integer α, there exists an integer g such that if $n \geq \alpha$ and

$$
n \equiv f(\bmod (p-1)), \quad n \equiv g\left(\bmod p^{\alpha}\right),
$$

then

$$
\begin{equation*}
(a n+b) c^{n}-d e^{n} \equiv 0\left(\bmod p^{\alpha}\right) . \tag{2}
\end{equation*}
$$

Proof. If $p \mid e$, we take g such that $a g+b \equiv 0\left(\bmod p^{\alpha}\right)$. If $p \nmid e$, let $d=p^{\gamma} d_{1}$, where $d_{1} \in \mathbb{Z}, p \nmid d_{1}$. If $p=2$ and $\alpha=1$, we take $g=d-b$, thus for $p=2$ we assume $\alpha \geq 2$. Set

$$
f_{p}= \begin{cases}d-b & \text { if } p=2,2 \nmid e, \\ f & \text { otherwise }\end{cases}
$$

and let h be an integer such that $(a h+b) c^{f_{p}} \equiv d e^{f_{p}}\left(\bmod p^{\alpha}\right)$. We have $h \equiv f_{2}(\bmod 2)$ if $p=2,2 \nmid e$. Taking $n=h+p^{\gamma+e_{p}} z, z \in \mathbb{Z}_{p}$, by Lemma 1 we obtain

$$
\begin{align*}
& \operatorname{ord}_{p}\left((a n+b) c^{f_{p}} c^{n-f_{p}}-d e^{f_{p}} e^{n-f_{p}}\right) \tag{3}\\
\geq & \gamma+\min \left\{\alpha-\gamma, \operatorname{ord}_{p}\left(1+p^{e_{p}} a c^{f_{p}} d_{1}^{-1} e^{-f_{p}} z-\left(\frac{e}{c}\right)^{n-f_{p}}\right)\right\} \\
= & \gamma+\min \left\{\alpha-\gamma, \operatorname{ord}_{p}\left(\log _{p}\left(1+p^{e_{p}} a c^{f_{p}} d_{1}^{-1} e^{-f_{p}} z\right)-\frac{n-f_{p}}{p^{e_{p}-1}(p-1)} \beta\right)\right\},
\end{align*}
$$

where

$$
\beta=\log _{p} \frac{e^{p^{e_{p}-1}(p-1)}}{c^{p^{e_{p}-1}(p-1)}}, \quad \operatorname{ord}_{p} \beta \geq 2 e_{p}-1
$$

By Lemma 2 ,

$$
\begin{align*}
& \operatorname{ord}_{p}\left(\log _{p}\left(1+p^{e_{p}} a c^{f_{p}} d_{1}^{-1} e^{-f_{p}} z\right)-\frac{h+p^{\gamma+e_{p}} z-f_{p}}{p^{e_{p}-1}(p-1)} \beta\right) \tag{4}\\
& \quad \geq \min \left\{\alpha, \operatorname{ord}_{p}\left(F_{\alpha_{1}}\left(p^{e_{p}} a c^{f_{p}} d_{1}^{-1} e^{-f_{p}} z\right)-\frac{h+p^{\gamma+e_{p}} z-f_{p}}{p^{e_{p}-1}(p-1)} \beta\right)\right\}
\end{align*}
$$

where

$$
\alpha_{1}=\left\lfloor\frac{\alpha}{1-\frac{2-e_{p}}{p-1}}\right\rfloor
$$

We now apply Hensel's lemma to the polynomial

$$
\mathcal{G}(z)=\frac{1}{p^{e_{p}}} F_{\alpha_{1}}\left(p^{e_{p}} a c^{f_{p}} d_{1}^{-1} e^{-f_{p}} z\right)-\frac{h+p^{\gamma+e_{p}} z-f_{p}}{p^{2 e_{p}-1}(p-1)} \beta .
$$

We have

$$
\mathcal{G}^{\prime}(z) \equiv a c^{f_{p}} d_{1}^{-1} e^{-f_{p}}-\frac{p^{\gamma}}{p-1} \cdot \frac{\beta}{p^{e_{p}-1}} \equiv a c^{f_{p}} d_{1}^{-1} e^{-f_{p}} \not \equiv 0(\bmod p)
$$

There exists $z_{0} \in \mathbb{Z}_{p}$ such that $\mathcal{G}(0)-z_{0} \mathcal{G}^{\prime}(0)=0$. Then $\mathcal{G}\left(z_{0}\right) \equiv 0(\bmod p)$. Thus there exists $z_{1} \in \mathbb{Z}_{p}$ such that

$$
F_{\alpha_{1}}\left(p^{e_{p}} a c^{f_{p}} d_{1}^{-1} e^{f_{p}} z_{1}\right)-\frac{h+p^{\gamma+e_{p}} z_{1}-f_{p}}{p^{e_{p}-1}(p-1)} \beta=0
$$

and taking for g the residue of $h+p^{\gamma+e_{p}} z_{1}\left(\bmod p^{\alpha}\right)$ we obtain (2) from (3) and (4). Note that for $p \nmid c e, ~(2)$ depends only on the residue of $n \bmod p^{\alpha}(p-1)$.

Lemma 4. If a, b, c, d, e, m are integers with $m>0$ and $(m, a c)=1$, then there exist infinitely many positive integers n such that $m \mid(a n+b) c^{n}-d e^{n}$.

Proof. We proceed by induction on $\omega(m)$, the number of distinct prime factors of m. If $\omega(m)=1$, Lemma 4 is contained in Lemma 3 .

Suppose now that the lemma is true for $\omega(m)=k-1 \geq 1$, that $\omega(m)=k$ and that p is the greatest prime factor of m. Thus $p>2$. Let $\operatorname{ord}_{p} m=\alpha$, $m p^{-\alpha}=m_{0}$. Since $\omega\left(m_{0}\right)=k-1$, by the inductive assumption there exist infinitely many positive integers n such that $m_{0} \mid(a n+b) c^{n}-d e^{n}$. Let $n_{0} \geq$ $\max \left\{m_{0}, \alpha\right\}$ be one of these. By Lemma 3 there exists an integer g such that if $n \equiv n_{0}(\bmod p-1), n \equiv g\left(\bmod p^{\alpha}\right), n \geq \alpha$, then $p^{\alpha} \mid(a n+b) c^{n}-d e^{n}$. However, if $n \equiv n_{0}\left(\bmod \left[m_{0}, \varphi\left(m_{0}\right)\right]\right)$ and $n \geq m_{0}$, then $m_{0} \mid(a n+b) c^{n}-d e^{n}$. The congruences $n \equiv n_{0}\left(\bmod \left[m_{0}, \varphi\left(m_{0}\right), p-1\right]\right)$ and $n \equiv g\left(\bmod p^{\alpha}\right)$ are compatible, since $p \nmid m_{0} \varphi\left(m_{0}\right)(p-1)$, thus there exist infinitely many
positive integers n satisfying both of them. For these $n \geq \max \left\{m_{0}, \alpha\right\}$ we have $m \mid(a n+b) c^{n}-d e^{n}$.

Corollary 1. For every positive integer m there exist infinitely many positive integers n such that $m \mid n+2^{n}$.

Proof. It suffices to take in Lemma 4a $a=1, b=0, c=1, d=-1$, $e=2$.

Corollary 2. For every prime p there exist infinitely many positive integers n such that $p \mid n+2^{n+2^{n}}$.

Proof. It suffices to take for $p=2$, arbitrary even n, and for $p>2$, $n \equiv-1(\bmod p)$, and if $p-1 \mid n_{0}+2^{n_{0}}, n_{0} \geq \operatorname{ord}_{2}(p-1)\left(n_{0}\right.$ exists by Corollary 11, then we take $n \equiv n_{0}\left(\bmod \left[p-1, \varphi\left(\frac{p-1}{2 \operatorname{orrd}_{2}(p-1)}\right)\right]\right)$.

Corollary 3. For every odd m and every $\varepsilon \in\{1,-1\}$ there exist infinitely many integers n such that $m \mid 2^{n} n+\varepsilon$.

Proof. It suffices to take in Lemma 4: $a=1, b=0, c=2, d=-\varepsilon$, $e=1$.

Proof of the Theorem. A ternary integral recurrence sequence with the companion polynomial $(x-c)^{2}(x-e)(c \neq e)$ is

$$
f_{1}(n) c^{n}-f_{2}(n) e^{n},
$$

where f_{i} are polynomials of degree at most $2-i(i=1,2), f_{i} \in \mathbb{Q}(a, c)[z]$ (see [2, p. 33, Theorem C.1]). Since the companion polynomial is monic with integral coefficients, c and e are integers and $f_{i} \in \mathbb{Q}[z](i=1,2)$. Since the recurrence sequence is not binary, $\operatorname{deg} f_{i}=2-i(i=1,2)$ and ace $\neq 0$. Let

$$
f_{1}=\frac{a z+b}{D_{0}}, \quad f_{2}=\frac{d}{D_{0}}, \quad \text { where } a, b, d, D_{0} \in \mathbb{Z}, D_{0}>0
$$

It is enough to take $D=|a c| D_{0}$ and apply Lemma 4 .
Acknowledgments. A. Paszkiewicz has verified using a computer that for $m \leq 20000$ there exist positive integers n satisfying the condition in Corollary 1, and found for each m the least n. W. Bednarek asked in a letter about the truth of Corollary 2.

References

[1] A. Schinzel, Abelian binomials, power residues and exponential congruences, Acta Arith. 32 (1977), 245-274; Addendum, ibid. 36 (1980), 101-104; also Selecta, Vol. 2, 939-970.
[2] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Math. 87, Cambridge Univ. Press, Cambridge, 1997.
[3] T. Skolem, Anwendung exponentieller Kongruenzen zum Beweis der Unlösbarkeit gewisser diophantischer Gleichungen, Vid. Akad. Avh. Oslo I, 1937, no. 12.
[4] T. Skolem, Diophantische Gleichungen, Springer, 1938; reprint Chelsea, 1950.

A. Schinzel
Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-656 Warszawa, Poland
E-mail: schinzel@impan.pl

Received February 7, 2015;
received in final form June 12, 2015

