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On Ternary Integral Recurrences
by

A. SCHINZEL

Summary. We prove that if a, b, c, d, e,m are integers, m > 0 and (m,ac) = 1, then there
exist infinitely many positive integers n such that m | (an + b)cn − den. Hence we derive
a similar conclusion for ternary integral recurrences.

An integral recurrence of order k is given by the formula

un = c1un−1 + c2un−2 + · · ·+ ckun−k,

where ci and ui (1 ≤ i ≤ k) are integers.

The aim of this paper is to prove

Theorem. For every essentially ternary integral recurrence sequence un
the companion polynomial of which has a double zero, there exists an integer
D > 0 such that for all integers m prime to D infinitely many terms un are
divisible by m.

For simple integral recurrence sequences un of any order, there is a con-
jecture of Skolem [3] (see also Skolem [4, p. 56] and Schinzel [1]) that if
for every integer m > 0 there is un divisible by m, then there is n with
un = 0. It follows from the above theorem that a similar assertion is false
for non-simple integral recurrences, e.g. for un = n+ 2n.

The proof of the Theorem is based on four lemmas. In the course of the
proofs p denotes a prime, Zp and Qp the ring of p-adic integers and the field
of p-adic numbers, respectively, ep = max{1, 4−p}, and if z ∈ Qp \{0}, then
ordp z = max{α ∈ Z : p−αz ∈ Zp}.

Lemma 1. If z, w ∈ Qp, min{ordp(z − 1), ordp(w − 1)} ≥ ep and logp z
is the p-adic logarithm of z, then

(1) ordp(z − w) = ordp(logp z − logpw).
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Proof. From the power series expansion we have

ordp(logp z − logpw) = ordp

(
logp

z

w

)
= ordp

(
z

w
− 1

)
= ordp(z − w),

hence (1) follows.

Lemma 2. If z ∈ Zp, ordp z ≥ ep − 1 and

Fn(z) =

n∑
i=1

(−1)i−1
zi

i
,

then

ordp
(
logp(1 + pz)− Fn(pz)

)
≥ (n+ 1)

(
1− 2− ep

p− 1

)
.

Proof. We have

logp(1 + pz) = Fn(pz) +

∞∑
i=n+1

(−1)i−1
pi

i
zi,

and the lemma follows from the estimate, valid for i ≥ n+ 1,

ordp
pizi

i
> iep −

i

p− 1
≥ (n+ 1)

(
1− 2− ep

p− 1

)
.

Lemma 3. For all integers a, b, c, d, e, f, p such that p - ac and every non-
negative integer α, there exists an integer g such that if n ≥ α and

n ≡ f (mod (p− 1)), n ≡ g (mod pα),

then

(2) (an+ b)cn − den ≡ 0 (mod pα).

Proof. If p | e, we take g such that ag + b ≡ 0 (mod pα). If p - e, let
d = pγd1, where d1 ∈ Z, p - d1. If p = 2 and α = 1, we take g = d − b, thus
for p = 2 we assume α ≥ 2. Set

fp =

{
d− b if p = 2, 2 - e,
f otherwise,

and let h be an integer such that (ah + b)cfp ≡ defp (mod pα). We have
h ≡ f2 (mod 2) if p = 2, 2 - e. Taking n = h+ pγ+epz, z ∈ Zp, by Lemma 1
we obtain

(3) ordp
(
(an+ b)cfpcn−fp − defpen−fp

)
≥ γ + min

{
α− γ, ordp

(
1 + pepacfpd−11 e−fpz −

(
e

c

)n−fp)}
= γ + min

{
α− γ, ordp

(
logp(1 + pepacfpd−11 e−fpz)− n− fp

pep−1(p− 1)
β

)}
,
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where

β = logp
ep

ep−1(p−1)

cp
ep−1(p−1)

, ordp β ≥ 2ep − 1.

By Lemma 2,

(4) ordp

(
logp(1 + pepacfpd−11 e−fpz)− h+ pγ+epz − fp

pep−1(p− 1)
β

)
≥ min

{
α, ordp

(
Fα1(pepacfpd−11 e−fpz)− h+ pγ+epz − fp

pep−1(p− 1)
β

)}
,

where

α1 =

⌊
α

1− 2−ep
p−1

⌋
.

We now apply Hensel’s lemma to the polynomial

G(z) =
1

pep
Fα1(pepacfpd−11 e−fpz)− h+ pγ+epz − fp

p2ep−1(p− 1)
β.

We have

G′(z) ≡ acfpd−11 e−fp − pγ

p− 1
· β

pep−1
≡ acfpd−11 e−fp 6≡ 0 (mod p).

There exists z0 ∈ Zp such that G(0)− z0G′(0) = 0. Then G(z0) ≡ 0 (mod p).
Thus there exists z1 ∈ Zp such that

Fα1(pepacfpd−11 efpz1)−
h+ pγ+epz1 − fp
pep−1(p− 1)

β = 0,

and taking for g the residue of h + pγ+epz1 (mod pα) we obtain (2)
from (3) and (4). Note that for p - ce, (2) depends only on the residue of
n mod pα(p− 1).

Lemma 4. If a, b, c, d, e,m are integers with m > 0 and (m, ac) = 1, then
there exist infinitely many positive integers n such that m | (an+ b)cn−den.

Proof. We proceed by induction on ω(m), the number of distinct prime
factors of m. If ω(m) = 1, Lemma 4 is contained in Lemma 3.

Suppose now that the lemma is true for ω(m) = k−1 ≥ 1, that ω(m) = k
and that p is the greatest prime factor of m. Thus p > 2. Let ordpm = α,
mp−α = m0. Since ω(m0) = k − 1, by the inductive assumption there exist
infinitely many positive integers n such that m0 | (an+ b)cn− den. Let n0 ≥
max{m0, α} be one of these. By Lemma 3 there exists an integer g such that
if n ≡ n0 (mod p − 1), n ≡ g (mod pα), n ≥ α, then pα | (an + b)cn − den.
However, if n ≡ n0 (mod [m0, ϕ(m0)]) and n ≥ m0, thenm0 | (an+b)cn−den.
The congruences n ≡ n0 (mod [m0, ϕ(m0), p − 1]) and n ≡ g (mod pα)
are compatible, since p -m0ϕ(m0)(p − 1), thus there exist infinitely many
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positive integers n satisfying both of them. For these n ≥ max{m0, α} we
have m | (an+ b)cn − den.

Corollary 1. For every positive integer m there exist infinitely many
positive integers n such that m |n+ 2n.

Proof. It suffices to take in Lemma 4: a = 1, b = 0, c = 1, d = −1,
e = 2.

Corollary 2. For every prime p there exist infinitely many positive
integers n such that p |n+ 2n+2n.

Proof. It suffices to take for p = 2, arbitrary even n, and for p > 2,
n ≡ −1 (mod p), and if p − 1 |n0 + 2n0 , n0 ≥ ord2(p − 1) (n0 exists by
Corollary 1), then we take n ≡ n0

(
mod

[
p− 1, ϕ

( p−1
2ord2(p−1)

)])
.

Corollary 3. For every odd m and every ε ∈ {1,−1} there exist in-
finitely many integers n such that m | 2nn+ ε.

Proof. It suffices to take in Lemma 4: a = 1, b = 0, c = 2, d = −ε,
e = 1.

Proof of the Theorem. A ternary integral recurrence sequence with the
companion polynomial (x− c)2(x− e) (c 6= e) is

f1(n)cn − f2(n)en,

where fi are polynomials of degree at most 2 − i (i = 1, 2), fi ∈ Q(a, c)[z]
(see [2, p. 33, Theorem C.1]). Since the companion polynomial is monic with
integral coefficients, c and e are integers and fi ∈ Q[z] (i = 1, 2). Since the
recurrence sequence is not binary, deg fi = 2− i (i = 1, 2) and ace 6= 0. Let

f1 =
az + b

D0
, f2 =

d

D0
, where a, b, d,D0 ∈ Z, D0 > 0.

It is enough to take D = |ac|D0 and apply Lemma 4.

Acknowledgments. A. Paszkiewicz has verified using a computer that
for m ≤ 20000 there exist positive integers n satisfying the condition in
Corollary 1, and found for each m the least n. W. Bednarek asked in a
letter about the truth of Corollary 2.
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