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A CORSON COMPACT L-SPACE FROM A SUSLIN TREE

BY

PETER NYIKOS (Columbia, SC)

Abstract. The completion of a Suslin tree is shown to be a consistent example of a
Corson compact L-space when endowed with the coarse wedge topology. The example has
the further properties of being zero-dimensional and monotonically normal.

1. Introduction. In this paper, the coarse wedge topology on trees is
used to construct what may be the first consistent example of a Corson
compact L-space that is monotonically normal. It is considerably simpler
and easier to (roughly!) visualize than the CH example of a Corson compact
L-space produced by Kunen [4], or the Corson compact L-space produced
by Kunen and van Mill [5] under the hypothesis that 2ω1 with the product
measure is the union of a family of ℵ1 nullsets such that every nullset is
contained in some member of the family.

Corson compact L-spaces cannot be constructed in ZFC alone, because
MAω1 implies there are no compact L-spaces at all. This is one of the earliest
applications of MAω1 to set-theoretic topology, and one of the few that uses
its topological characterization, viz., that a compact ccc space cannot be
the union of ℵ1 nowhere dense sets [3], [9, 6.2], [10, p. 16].

Recall that a Corson compact space is a compact Hausdorff space that
can be embedded in the Σ-product of real lines, viz., a subspace of the
product space RΓ (for some set Γ ) consisting of all points which differ
from the zero element in only countably many coordinates. Corson compact
spaces play a role in functional analysis, especially through their spaces of
continuous functions, the Banach space 〈C(K), ‖·‖∞〉, and the space Cp(X)
of real-valued continuous functions with the relative product topology.

Recall that a topological space is separable if it has a countable dense
subset, and Lindelöf if every open cover has a countable subcover. The
following terminology is now standard:
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Definition 1.1. An L-space is a regular, hereditarily Lindelöf space
which has a nonseparable subspace.

For over four decades, one of the best known unsolved problems of set-
theoretic topology was whether there is a ZFC example of an L-space. This
was solved in an unexpected manner by Justin Tatch Moore, who con-
structed one with the help of a deep analysis of walks on ordinals [6]. The
following problem, motivated by our main example, may still be unsolved:

Problem 1.2. Is there a ZFC example of an L-space which embeds as
a closed subspace in a Σ-product of real lines?

Definition 1.3. A space X is monotonically normal if there is a func-
tion U(E,F ) defined on pairs of disjoint closed sets 〈E,F 〉 such that: (1)
U(E,F ) is an open set; (2) E ⊂ U(E,F ) and U(E,F ) ∩ U(F,E) = ∅; and
(3) if E ⊂ E′ and F ⊃ F ′, then U(E,F ) ⊂ U(E′, F ′).

A neat feature of our main example is that, being monotonically normal,
it is the continuous image of a compact orderable space [11]—and yet ev-
ery linearly orderable Corson compact space is metrizable [1]. One natural
question is whether the main example is actually the continuous image of a
compact orderable L-space: such spaces exist iff there is a Suslin tree/line.
A much more general pair of contrasting questions is open:

Problem 1.4. Is the existence of a monotonically normal L-space equiv-
alent to the existence of a Suslin tree?

Problem 1.5. Is there a ZFC example of a monotonically normal
L-space?

2. Trees and the coarse wedge topology. The purpose of this sec-
tion is to make this paper as self-contained as reasonable, and to show that
trees with the coarse wedge topology have a property even stronger than
being monotonically normal. Readers familiar with the coarse wedge topol-
ogy might try omitting this section on a first reading. Others with a good
understanding of trees might try picking up the reading at Definition 2.6
below.

Definition 2.1. A tree is a partially ordered set in which the predeces-
sors of any element are well-ordered. [Given two elements x < y of a poset,
we say x is a predecessor of y and y is a successor of x.]

Definition 2.2. If a tree has only one minimal member, it is said to be
rooted and the minimal member is called the root of the tree. A chain in a
poset is a totally ordered subset. An antichain in a tree is a set of pairwise
incomparable elements. Maximal members (if any) of a tree are called leaves,
and maximal chains are called branches.
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Definition 2.3. If T is a tree, then T (0) is its set of minimal members.
Given an ordinal α, if T (β) has been defined for all β < α, then T �α =⋃
{T (β) : β < α}, while T (α) is the set of minimal members of T \ T �α.

The set T (α) is called the αth level of T . The height or level of t ∈ T is the
unique α for which t ∈ T (α), and it is denoted `(t). The height of T is the
least α such that T (α) = ∅.

The following example illustrates some fine points of associating ordinals
with trees and their elements.

Example 2.4. The full ω-ary tree of height ω + 1 is the set T of all
sequences of nonnegative integers that are either finite or have domain ω,
and in which the order is end extension. Each chain of order type ω consists
of finite sequences whose union is an ω-sequence on level ω. Since this is the
last nonempty level of the tree, the tree itself is of height ω+ 1. The subtree
T �ω is the full ω-ary tree of height ω.

Definition 2.5. A tree is chain-complete [resp. Dedekind complete] if
every chain [resp. chain that is bounded above] has a least upper bound. A
tree is complete if it is rooted and chain-complete.

Definition 2.6. For each t in a tree T we let Vt denote the wedge
{s ∈ T : t ≤ s}. The coarse wedge topology on a tree T is the one whose
subbase is the set of all wedges Vt and their complements, where t is either
miminal or on a successor level.

Because of the way trees are structured, the nonempty finite intersections
of members of the subbase are “notched wedges” of the form

WF
t = Vt \

⋃
{Vs : s ∈ F} = Vt \ VF

where F is a finite set of successors of t.
If t is minimal or on a successor level, then a local base at t is formed by

the sets WF
t such that F is a finite set of immediate successors of t. If, on

the other hand, t is on a limit level, then a local base is formed by the WF
s

such that s is on a successor level below t.
A corollary of the following theorem is that every complete tree is com-

pact Hausdorff in the coarse wedge topology.

Theorem 2.7 ([7, Corollary 3.5]). A tree is compact Hausdorff in the
coarse wedge topology iff it is chain-complete and has only finitely many
minimal elements.

Theorem 2.8. A complete tree is Corson compact in the coarse wedge
topology iff every chain is countable.

Proof. A necessary and sufficient condition for a compact space being
Corson compact is that it have a point-countable T0-separating cover by co-
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zero sets—equivalently, open Fσ-sets [1]. If a complete tree has an uncount-
able chain, then it has a copy of ω1+1 which does not have a point-countable
T0-separating open cover of any kind, thanks in part to the Pressing-Down
Lemma (Fodor’s Lemma).

Conversely, if every chain is countable, then the clopen sets of the form
Vt clearly form a T0-separating, point-countable cover.

Hausdorff trees with the coarse wedge topology have a property even
stronger than monotone normality; it is the property that results if “clopen”
is substituted for “open” in Definition 1.3:

Definition 2.9. A space X is monotonically ultranormal if there is a
function U(E,F ) defined on pairs of disjoint closed sets 〈E,F 〉 such that:
(1) U(E,F ) is a clopen set; (2) E ⊂ U(E,F ) and U(E,F ) ∩ U(F,E) = ∅;
and (3) if E ⊂ E′ and F ⊃ F ′, then U(E,F ) ⊂ U(E′, F ′).

The property in the following theorem is named with the Borges criterion
(see below) for monotone normality in mind.

Theorem 2.10 ([8, Theorem 2.2]). Every Hausdorff space satisfying the
following property is monotonically ultranormal:

Property B+: To each pair 〈G, x〉 where G is an open set and x ∈ G, it is
possible to assign an open set Gx such that x ∈ Gx ⊂ G so that Gx∩Hy 6= ∅
implies either x ∈ Hy or y ∈ Gx.

The Borges criterion puts H for Hy and G for Gx in the part of Prop-
erty B+ after “implies”.

The question of whether every monotonically ultranormal space satisfies
Property B+ was posed in [8] and is still open.

Theorem 2.11. Every tree with the coarse wedge topology has Prop-
erty B+.

Proof. For each point t and each open neighborhood G of t, there exists
s ≤ t for which there is a basic clopen set WF

s such that t ⊂ WF
s ⊂ G, and

for which F ⊂ Vt. [If t is on a successor level we can let s = t, while if t is
on a limit level we first find some s < t on a successor level and some finite
F ′ ⊂ Vs for which t ⊂ WF ′

s ; then let F = F ′ ∩ Vt and choose s′ such that
s ≤ s′ < t and all elements of F ′ \ F are incomparable with s′.]

Now for each x ∈ F let x′ be the immediate successor of t below x and
let F ∗ = {x′ : x ∈ F}.

Claim. Letting Gt = WF ∗
s for all t, G as above produces an assignment

witnessing Property B+.

Proof. The notched wedges WF
t clearly have the property that the in-

tersection of any two contains the minimum point of one of them. Let
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Gx ∩ Hy 6= ∅. Assume that the minimum point t of Gx is in Hy; in par-
ticular, t ≥ s. Let Hy = WF ∗

s .

Case 1: y < t. Then Gx ⊂ Vt ⊂ Hy, because t is not in Vz′ for any
z′ ∈ F ∗.

Case 2: y and t are incomparable. Then t > s, and we again have
Gx ⊂ Vt ⊂ Hy.

Case 3: t ≤ y. Then if x and y are incomparable, we clearly have
s < x ∈ Hy. This also holds if x ≤ y. Finally, if x > y, we must have y ∈ Gx.

This proves the Claim and hence the theorem.

Corollary 2.12. Every Hausdorff tree is monotonically normal in the
coarse wedge topology.

3. The main example. The following construction is utilized in the
main example of this paper.

Example 3.1. For any tree T , we call a tree a completion of T if it is
formed by adding a supremum to each downwards closed chain that does
not already have one. Formally, we define the completion T̂ of T as follows.
If T is not rooted, we let T̂ be the collection of downwards closed chains
(called “paths” by Todorčević), ordered by inclusion. If T is rooted, we only
put the nonempty paths in T̂ .

We identify each t ∈ T with the path Pt = {s ∈ T : s ≤ t}. Completeness
of T̂ follows from rootedness of T̂ and from the easy fact that the supremum
of a chain C of T̂ is the same as the supremum of C ∩ T . In particular, if C
is a path in T̂ then C ∩ T is downwards closed in T .

Todorčević called the set of characteristic functions of the paths of T the
path space of T when it is endowed with the relative topology as a subspace
of 2T with the product topology. Gruenhage [2] showed that this topology
is the coarse wedge topology of T̂ .

Recall that a Suslin tree is an uncountable tree in which every chain and
antichain is countable. Let us call a tree uniformly ω-ary if every nonmaxi-
mal point has denumerably many immediate successors. (For instance, the
tree in Example 2.4 is uniformly ω-ary.)

As is well known, every Suslin tree has a subtree T in which every point
has more than one successor at every level above it. Thus every point of T
has denumerably many successors on the next limit level above it. And so, a
uniformly ω-ary Suslin tree results when we take the subtree S of all points
on limit levels of T .

Theorem 3.2. The completion Ŝ of a uniformly ω-ary Suslin tree S is
an L-space in the coarse wedge topology.
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Proof. Since Ŝ�(α + 1) is closed for all α < ω1, we see that Ŝ is not
separable. In the proof that Ŝ is hereditarily Lindelöf, uniform ω-arity plays
a key role: if the tree were finitary, every point on a successor level would
be isolated.

We make use of the elementary fact that a space is hereditarily Lindelöf
if (and only if) every open subspace is Lindelöf. Let W be an open subspace
of Ŝ, and let W0 be the set of points t ∈ W such that Vt ⊂ W . If t ∈ W0 is
on a limit level, there is also s < t such that Vs is clopen and s ∈ W0: see
the first paragraph in the proof of Theorem 2.11, and note that here, F = ∅.
Let A = {a ∈ W0 : a is minimal in W0}. Then W0 is the disjoint union of
the clopen wedges Vα (a ∈ A), and A is countable by the Suslin property.

If x ∈W \W0, then there is a basic clopen subset of W of the form WF
t

where F 6= ∅ and F ⊂ Vx: see the first paragraph in the proof of 2.11 again.
There are no more than n immediate successors of x below some element
of F , and if s is one of the other immediate successors of x, then Vs ⊂ Vx\VF ,
so s ∈ W0. But then s ∈ A also, since any Vz containing Vs properly must
also contain x, contradicting x ∈ W \W0. So W \W0 is countable, and we
have countably many basic clopen sets whose union is W .

The following is now immediate from 2.8, 2.12, and 3.2.

Corollary 3.3. If there is a Suslin tree, then there is a Corson com-
pact, monotonically normal L-space.
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