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SINGULARITY CATEGORIES OF SKEWED-GENTLE ALGEBRAS

BY

XINHONG CHEN and MING LU (Chengdu)

Abstract. Let K be an algebraically closed field. Let (Q,Sp, I) be a skewed-gentle
triple, and let (Qsg, Isg) and (Qg, Ig) be the corresponding skewed-gentle pair and the
associated gentle pair, respectively. We prove that the skewed-gentle algebra KQsg/〈Isg〉
is singularity equivalent to KQ/〈I〉. Moreover, we use (Q,Sp, I) to describe the singularity
category of KQg/〈Ig〉. As a corollary, we find that gldimKQsg/〈Isg〉 < ∞ if and only if
gldimKQ/〈I〉 <∞ if and only if gldimKQg/〈Ig〉 <∞.

1. Introduction. The singularity category of an algebra is defined to
be the Verdier quotient of the bounded derived category with respect to
the thick subcategory formed by complexes isomorphic to bounded com-
plexes of finitely generated projective modules ([7], see also [13]). Recently,
Orlov’s global version [17] attracted a lot of interest in algebraic geome-
try and theoretical physics. In particular, the singularity category measures
the homological singularity of an algebra [13]: the algebra has finite global
dimension if and only if its singularity category is trivial.

A fundamental result of Buchweitz [7] and Happel [13] states that for a
Gorenstein algebra A, the singularity category is triangle equivalent to the
stable category of (maximal) Cohen–Macaulay (also called Gorenstein pro-
jective) A-modules, which generalizes Rickard’s result [19] on self-injective
algebras.

As an important class of Gorenstein algebras [12], gentle algebras were
introduced in [2] as an appropriate context for the investigation of algebras
derived equivalent to hereditary algebras of type Ãn. Moreover, many im-
portant algebras are gentle, such as tilted algebras of type An, algebras
derived equivalent to An-configurations of projective lines [8], and also the
cluster-tilted algebras of type An, Ãn [1]. As a generalization of gentle al-
gebras, skewed-gentle algebras were introduced by Geiß and de la Peña [11],
who also proved that a skewed-gentle algebra is Morita equivalent to a skew-
group algebra of a gentle algebra (which is called the associated gentle algebra
in this note) with a group of order two. In this way, skewed-gentle algebras
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and gentle algebras share many common properties, such as the Gorenstein
property [12]. Moreover, the indecomposable objects in the derived cate-
gories of gentle algebras and skewed-gentle algebras are described in [5, 4].
Kalck [14] determined the singularity categories of gentle algebras in terms
of finite products of n-cluster categories of type A1.

The aim of this note is to describe the singularity categories for skewed-
gentle algebras, following Kalck’s work [14]. In order to state our main re-
sults, we need to introduce some notation. Let (Q,Sp, I) be a skewed-gentle
triple, (Qsg, Isg) the corresponding skewed-gentle pair, and (Qg, Ig) the as-
sociated gentle pair. Inspired by [9], which shows that a certain homolog-
ical epimorphism between two algebras induces a triangle equivalence be-
tween their singularity categories, we prove that there is a morphism of this
type between the skewed-gentle algebra KQsg/〈Isg〉 and the gentle algebra
KQ/〈I〉, and so they are singularity equivalent (Theorem 3.5). Moreover,
with the help of [14], we also use (Q,Sp, I) to describe the singularity cat-
egory of the associated gentle algebra KQg/〈Ig〉, and then get a relation
between it and the singularity category of KQsg/〈Isg〉 (Theorem 4.4). As a
direct corollary, the global dimension of KQsg/〈Isg〉 is finite if and only if
the global dimension of KQg/〈Ig〉 is finite, if and only if the global dimen-
sion of KQ/〈I〉 is finite, without any restriction on the characteristic of the
field K (Corollary 4.5).

2. Preliminaries. Throughout this note, we always assume that K
is an algebraically closed field. For any finite set S, we denote by ](S) the
number of elements in S. For any algebra A, we denote by gldimA its global
dimension.

Let Q be a quiver and 〈I〉 an admissible ideal in the path algebra KQ
which is generated by a set I of relations. Denote by (Q, I) the associated
bound quiver. For any arrow α in Q, we denote by s(α) its starting vertex
and by t(α) its ending vertex. An oriented path (or path for short) p in
Q is a sequence p = α1 . . . αr of arrows αi such that t(αi) = s(αi−1) for
all i = 2, . . . , r. For any two paths p1, p2 in (Q, I), we write p1 ∼ p2 if
p1 − p2 ∈ 〈I〉.

2.1. Gentle algebras. We first recall the definition of special biserial
algebras and of gentle algebras.

Definition 2.1 ([20]). The pair (Q, I) is called special biserial if:

• Each vertex of Q is the starting point of at most two arrows, and the
end point of at most two arrows.
• For each arrow α in Q there is at most one arrow β such that αβ /∈ I,

and at most one arrow γ such that γα /∈ I.
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Definition 2.2 ([2]). The pair (Q, I) is called gentle if it is special
biserial and:

• The set I is generated by zero relations of length 2.
• For each arrow α in Q there is at most one arrow β with t(β) = s(α)

such that αβ ∈ I, and at most one arrow γ with s(γ) = t(α) such that
γα ∈ I.

A finite-dimensional algebra A is called special biserial (resp. gentle) if
it has a presentation A = KQ/〈I〉 where (Q, I) is special biserial (resp.
gentle).

2.2. Skewed-gentle algebras. Skewed-gentle algebras were introduced
in [11]; here we mostly follow [4].

Let (Q, I) be a gentle pair. Let Sp be a subset of vertices of the quiver Q
whose elements are called special vertices; the remaining vertices are called
ordinary.

For a triple (Q,Sp, I), set Qsp0 := Q0, Q
sp
1 := Q1 ∪ {αi | i ∈ Sp, s(αi) =

t(αi) = i} and Isp := I ∪ {α2
i | i ∈ Sp}.

Definition 2.3. A triple (Q,Sp, I) as above is called skewed-gentle if
the pair (Qsp, Isp) is gentle.

For any vertex in a quiver Q, its valency is defined as the number of
arrows attached to it, i.e. the number of incoming arrows plus the number
of outgoing arrows (note that in particular any loop contributes twice to the
valency).

In fact, Bessenrodt and Holm [6] pointed out that the admissibility of
the set Sp of special vertices is both a local and a global condition. Let v
be a vertex in the gentle quiver (Q, I); then we can only add a loop at v if
v is of valency 1 or 0, or if it is of valency 2 with a zero relation, but not
one coming from a loop. Furthermore, for the choice of an admissible set of
special vertices we also have to take care of the global condition that after
adding all loops, the pair (Qsp, Isp) still does not have paths of arbitrary
lengths.

Example 2.4. (a) Let (Q, I) be the bound quiver as in the diagram
below. Then (Q, I) is gentle. In order to have (Q,Sp, I) skewed-gentle, the
set Sp can only be {1}, {2} or the empty set.

◦1
α // ◦2
β
oo I = {αβ, βα}

(b) Let (Q, I) be the bound quiver as in the diagram below. Then (Q, I)
is gentle. In order to have (Q,Sp, I) skewed-gentle, Sp can only be {1}, {2},
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{3}, {1, 2}, {2, 3}, {1, 3} or the empty set.

◦3
γ

��
◦1 α

// ◦2

β
__

I = {αγ, βα, γβ}

Let (Q,Sp, I) be a skewed-gentle triple. We associate to each vertex
i ∈ Q0 a set, denoted by Q0(i), in the following way: If i is an ordinary
vertex then Q0(i) = {i}; if i is special then Q0(i) = {i−, i+}. We denote by
(Qsg, Isg) the pair defined as follows:

Qsg0 :=
⋃
i∈Q0

Q0(i),

Qsg1 [a, b] := {(a, α, b) | α ∈ Q1, a ∈ Q0(s(α)), b ∈ Q0(t(α))},

Isg :=
{ ∑
b∈Q0(s(α))

λb(b, α, c)(a, β, b)
∣∣∣ αβ ∈ I, a ∈ Q0(s(β)), c ∈ Q0(t(α))

}
,

where λb = −1 if b = i− for some i ∈ Q0, and λb = 1 otherwise.

Note that the relations in Isg are zero relations or commutativity rela-
tions.

Definition 2.5 ([11]). A K-algebra A is called skewed-gentle if it is
Morita equivalent to a factor algebra KQsg/〈Isg〉, where the triple (Q,Sp, I)
is skewed-gentle. The corresponding pair (Qsg, Isg) is also said to be skewed-
gentle.

Example 2.6.

(a) In the notation of Example 2.4(a), if Sp = {2} then (Qsg, Isg) is as
shown below.

◦2−
β− // ◦1

α+
//

α−
oo ◦2+

β+
oo Isg = {α±β±, β+α+ − β−α−}

(b) In the notation of Example 2.4(b), if Sp = {3} then (Qsg, Isg) is as
shown below.

◦3+

γ+

~~
◦1 α

// ◦2

β+

``

β−~~

Isg = {αγ±, β±α, γ+β+ − γ−β−}

◦3−
γ−

``
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2.3. Skew-group algebras. It follows from Geiß and de la Peña [11]
that for any skewed-gentle triple (Q,Sp, I), the corresponding skewed-gentle
algebra KQsg/〈Isg〉 is Morita equivalent to a skew-group algebra BG in the
case of charK 6= 2, where B is a gentle algebra and G is a finite group (see
also [4]). We now give some details.

Let A be a K-algebra, and G a finite group acting on A via K-linear
automorphisms. The skew-group algebra AG is the vector space

⊕
g∈GA[g]

with multiplication induced by

a[g]b[h] := ag(b)[gh].

Let (Q,Sp, I) be a skewed-gentle triple. For a given special (resp. ordi-
nary) vertex i, denote by Q0[i] the set {i} (resp. {i−, i+}). Consider the pair
(Qg, Ig), where Qg0 :=

⋃
i∈Q0

Q0[i], Q
g
1 := {α+, α− | α ∈ Q1},

s(α±) :=

{
s(α)± if s(α) /∈ Sp,
s(α) if s(α) ∈ Sp,

t(α±) :=

{
t(α)± if t(α) /∈ Sp,
t(α) if t(α) ∈ Sp,

and

Ig :={β+α+, β−α− | βα∈I, t(α) /∈Sp} ∪ {β+α−, β−α+ | βα∈I, t(α)∈Sp}.
It follows from [11] that the algebra B := KQg/〈Ig〉 is gentle. We call
(Qg, Ig) (resp. KQg/〈Ig〉) the associated gentle pair (resp. associated gentle
algebra) of (Q,Sp, I) or KQsg/〈Isg〉.

Consider the group G = {e, g | g2 = e} which acts on B by the rule

g(i±) := i∓, g(j) := j, g(α±) := α∓,

for all i ∈ Q0 \Sp, j ∈ Sp and α ∈ Q1. Then we get the skew-group algebra
BG.

Example 2.7. (a) In the notation of Example 2.6(a), if Sp = {2} then
(Qg, Ig) is as shown below.

◦1+
α+
// ◦2

β− //

β+
oo ◦1−

α−
oo Ig = {α+β+, α−β−, β+α−, β−α+}

(b) In the notation of Example 2.6(b), if Sp = {3} then (Qg, Ig) is as
shown below.

◦1− α− // ◦2−

β−~~
◦3

γ+

~~

γ−
``

Ig = {α+γ+, α−γ−, β+α+, β−α−, γ−β+, γ+β−}

◦1+
α+

// ◦2+

β+

``
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2.4. Singularity categories and Gorenstein algebras. Let Γ be a
finite-dimensional K-algebra. Let modΓ be the category of finitely gener-
ated left Γ -modules. We denote by D = HomK(−,K) the standard duality
with respect to the ground field. Then ΓD(ΓΓ ) is an injective cogenerator
for modΓ . For an arbitrary Γ -module ΓX, we denote by proj.dim ΓX (resp.
inj.dim ΓX) the projective dimension (resp. the injective dimension) of the
module ΓX. A Γ -module G is Gorenstein projective [10] if there is an exact
sequence

P • : · · · → P−1 → P 0 d0−→ P 1 → · · ·
of projective Γ -modules which stays exact after taking HomΓ (−, Γ ), and
G ∼= Ker d0. We denote by Gproj(Γ ) the subcategory of Gorenstein projec-
tive Γ -modules.

Definition 2.8 ([3, 13]). A finite-dimensional algebra Γ is called a
Gorenstein algebra if Γ satisfies proj.dim ΓD(ΓΓ )<∞ and inj.dim ΓΓ <∞.

For an algebra Γ , the singularity category of Γ is defined to be the quo-
tient category Db

sg(Γ ) := Db(Γ )/Kb(projΓ ) [7, 13, 17]. Note that Db
sg(Γ ) is

zero if and only if gldimΓ <∞ [13]. For any two algebras, if their singularity
categories are equivalent, then we call them singularity equivalent.

Theorem 2.9 ([7, 13]). Let Γ be a Gorenstein algebra. Then Gproj(Γ )
is a Frobenius category with the projective modules as the projective-injective
objects. The stable category Gproj(Γ ) is triangle equivalent to the singularity

category Db
sg(Γ ) of Γ .

Geiß and Reiten [12] have shown that gentle algebras are Gorenstein
algebras. Since the property of being Gorenstein is also preserved under the
skew-group ring construction with a finite group whose order is invertible
in K (see [18, 3]), Geiß and Reiten [12] also pointed out that skewed-gentle
algebras are Gorenstein algebras in the case of charK 6= 2.

3. The first main theorem. In order to prove the first main result,
we describe a construction of matrix algebras given by X.-W. Chen [9] (see
also [16, Section 4]). Let A be a finite-dimensional algebra over a field K.
Let AM and NA be a left and a right A-module, respectively. Then M⊗KN
becomes an A-A-bimodule. Consider an A-A-bimodule monomorphism φ :
M⊗KN → A such that Imφ vanishes on bothM andN . Note that Imφ ⊆ A
is an ideal. Then the matrix Γ =

(
A M
N K

)
becomes an associative algebra via

the following multiplication:(
a m

n λ

)(
a′ m′

n′ λ′

)
=

(
aa′ + φ(m⊗ n) am′ + λ′m

na′ + λn′ λλ′

)
.
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Proposition 3.1 ([9]). Under the notation and assumptions as above,
there is a triangle equivalence Db

sg(Γ ) ' Db
sg(A/Imφ).

Note that the above construction contains as special cases the one-point
extension and one-point coextension of algebras, where M or N is zero.

The following two lemmas are crucial to the proof of our first main
theorem.

Lemma 3.2. Let (Q,Sp, I) be a skewed-gentle triple and (Qsg, Isg) its
corresponding skewed-gentle pair. Then for any paths p1 = α1 . . . αn and
p2 = αn+1 . . . αn+m with p1, p2, αnαn+1 /∈ 〈Isg〉, we have p1p2 /∈ 〈Isg〉.

Proof. The following diagram shows the path p1p2:

◦a1 α1←− ◦a2 α2←− · · · αn←−− ◦an+1
αn+1←−−− ◦an+2

αn+2←−−− · · · αn+m←−−−− ◦an+m+1 .

Note that p1, p2, αnαn+1 /∈ 〈Isg〉. Moreover, αiαi+1 /∈ Isg for any 1 ≤ i ≤
n + m − 1. We define an operator Φ on p1p2 as follows: For any 2 ≤ s ≤
n + m, if as comes from a special vertex bs ∈ Sp, then there exist two
arrows β1, β2 with s(β1) = t(β2) such that as ∈ {b+s , b−s } and {αs−1, α′s−1} =
{(as, β1, as−1), (a′s, β1, as−1)}, {αs, α′s}={(as+1, β2, as), (as+1, β2, a

′
s)}, where

a′s is the vertex such that {as, a′s} = {b+s , b−s }, by the definition of Isg. Set
p′1 = α′1 . . . α

′
n and p′2 = α′n+1 . . . α

′
n+m, where α′i = αi for i /∈ {s − 1, s}.

Then p1p2 ∼ p′1p′2 and we define Φ(p1p2) := p′1p
′
2.

If α′iα
′
i+1 ∈ Isg for some 1 ≤ i ≤ n + m − 1, then i = s − 2, s − 1 or s,

since α′iα
′
i+1 = αiαi+1 /∈ Isg for any i 6= s − 2, s − 1, s. However, it is easy

to see that α′s−1α
′
s /∈ Isg from α′s−1α

′
s ∼ αs−1αs. So i = s − 2 or s, and we

have αs−2α
′
s−1 ∈ Isg or α′sαs+1 ∈ Isg, by the definition of (Qsg, Isg), which

implies that αs−2αs−1 ∈ Isg or αsαs+1 ∈ Isg, respectively, a contradiction.
So α′iα

′
i+1 /∈ Isg for any 1 ≤ i ≤ n+m− 1.

Suppose p1p2 ∈ 〈Isg〉. Since p1, p2, αnαn+1 /∈ 〈Isg〉 and the relations in
Isg are either zero relations or commutativity relations, there must be a
finite sequence of operations

p1p2
Φ1−→ p′1p

′
2
Φ2−→ · · · Φr−→ p

(r)
1 p

(r)
2 ,

where p
(i)
1 = α

(i)
1 . . . α

(i)
n is a path of length n and p

(i)
2 = α

(i)
n+1 . . . α

(i)
n+m is a

path of length m for any 1 ≤ i ≤ r, and Φj is the operator defined for some

special vertex in p
(j−1)
1 p

(j−1)
2 for any 1 ≤ j ≤ r, such that α

(r)
k α

(r)
k+1 ∈ I

sg for
some 1 ≤ k ≤ n+m− 1. By the property of Φ1 and since αiαi+1 /∈ Isg for
any 1 ≤ i ≤ n+m−1, we know that α′iα

′
i+1 /∈ Isg for any 1 ≤ i ≤ n+m−1,

and discussing Φj recursively, we find that α
(j)
i α

(j)
i+1 /∈ Isg for any 1 ≤ j ≤ r

and 1 ≤ i ≤ n+m− 1, which contradicts α
(r)
k α

(r)
k+1 ∈ I

sg for some 1 ≤ k ≤
n+m− 1. So p1p2 /∈ 〈Isg〉.
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Remark 3.3. The above lemma is not true for any finite-dimensional
algebra KQ/〈I〉 with the relations in I being zero relations or commutativity
relations. Here is an example. Let (Q, I) be as in the following diagram:

◦3
γ1

��
◦1 ◦2

β1

__

β2��

◦5αoo I = {γ1β1 − γ2β2, β2α}

◦4
γ2

__

Then γ1β1, β1α /∈ 〈I〉, but γ1β1α ∼ γ2β2α ∈ 〈I〉.

Lemma 3.4. Let (Q,Sp, I) be a skewed-gentle triple and (Qsg, Isg) the
corresponding skewed-gentle pair. For any oriented cycle α2α3 . . . αnα1

in Qsg, we have either α1α2 ∈ 〈Isg〉, or α2α3 . . . αnα1 ∈ 〈Isg〉.

Proof. Suppose α1α2 /∈ 〈Isg〉 and α2α3 . . . αnα1 /∈ 〈Isg〉. Then Lemma
3.2 implies

(α2α3 . . . αnα1)
n /∈ 〈Isg〉

for any n > 0, and so KQsg/〈Isg〉 is infinite-dimensional, a contradic-
tion.

Let Q be any quiver. For any path c = α1 . . . αn in Q, say that c passes
through a vertex b if b = t(αj) for some 2 ≤ j ≤ n.

The following theorem is the first main result of this paper.

Theorem 3.5. Let (Q,Sp, I) be a skewed-gentle triple. Then the corre-
sponding skewed-gentle algebra KQsg/〈Isg〉 is singularity equivalent to the
gentle algebra KQ/〈I〉.

Proof. For any vertex a ∈ Sp, there are two vertices a+, a− in Qsg.
We denote by ea− the primitive idempotent corresponding to a−. Set Γ =
KQsg/〈Isg〉 and Γ ′ = Γ/Γea−Γ . The quiver of Γ ′ is obtained from Qsg

by removing the vertex a− and the adjacent arrows α+, α−. Then Γ ′ is a
skewed-gentle algebra, in fact, it is the skewed-gentle algebra corresponding
to the skewed-gentle triple (Q,Sp′ = Sp \ {a}, I). We consider the following
three cases.

Case (a). If the valency of a is 0, then KQsg/〈Isg〉 = Γ ′ ⊕K, and it is
easy to see that Db

sg(KQ
sg/〈Isg〉) ' Db

sg(Γ
′).

Case (b). If the valency of a is 1, then KQsg/〈Isg〉 is a one-point ex-
tension or a one-point coextension of Γ ′, so Db

sg(KQ
sg/〈Isg〉) ' Db

sg(Γ
′) by

Proposition 3.1.
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Case (c). If the valency of a is 2, then there exist only two arrows α1, α2

in Q such that s(α1) = a = t(α2), and α1α2 ∈ I. Set b = s(α2) and c = t(α1).
We do not exclude b = c. Then there are four subcases.

Case (c1). If b, c /∈ Sp, then the quiver of Qsg is as in Case (c1) of
Figure 1. Then α+

1 α
+
2 − α

−
1 α
−
2 ∈ Isg.

s

s
s s

HH
HHHHj

���
����

��
�����

HHH
HHHj

b

c

a+ a−
α+
2

α+
1

α−2

α−1

Q′

Case (c1)

s

s
ss sPPPPPPq

������)

HHH
HHHj
����

���

��
�����

HHH
HHHj

b+

b−

c

a+ a−

β1

γ1

β3 β4

β2

γ2
Q′

Case (c2)

s

ss
s sPPPPPPq

������)

H
HHH

HHj
��

�����

�
���

���
HH
HHHHj

b

c−

c+

a+ a−

β1

γ1

γ3 γ4

β2

γ2

Q′

Case (c3)

s

ss
s sPPPPPPq

������)

H
HHH

HHj
��

�����

�
���

���
HH

HHHHj

b+

c−

c+

a+ a−

β1

γ1

γ3 γ4

β2

γ2

Q′

s
β3 β4

b−
PPPPPPq

������)

Case (c4)

Fig. 1. The quiver Qsg in Case (c)

We fix some notation. Let A = (1− ea−)Γ (1− ea−),

M := SpanK{p a path in (Qsg, Isg) | p = p1α
−
1 for some path p1},

N := SpanK{p a path in (Qsg, Isg) | p = α−2 p2 for some path p2}.
Then M is naturally a left A-module, and N is a right A-module. Note that
M and N are finite-dimensional vector spaces since Γ is finite-dimensional.
Furthermore, we define an A-A-bimodule morphism φ : M ⊗K N → A by

φ(p1α
−
1 ⊗ α

−
2 p2) = p1α

−
1 α
−
2 p2.

We claim that φ is injective. We define

T1 := {p a path in (Qsg, Isg) | p = p1α
−
1 for some path p1

which passes through e+ for no special vertex e},
T2 := {p a path in (Qsg, Isg) | p = α−2 p2 for some path p2

which passes through e+ for no special vertex e},
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where α+
1 = (a+, α1, c) and α+

2 = (b, α2, a
+). By the definition of (Qsg, Isg),

it is easy to see that M = SpanK T1 and N = SpanK T2.
Let I1 = {βα ∈ I | t(α) /∈ Sp} and Λ = KQ/〈I1〉. We also define

S1 := {p a path in (Q, I1) | p = p1α1 for some path p1},
S2 := {p a path in (Q, I1) | p = α2p2 for some path p2},
M ′ := SpanK S1, N ′ := SpanK S2.

In fact, M ′ (resp. N ′) is a left (resp. right) Λ-module which is isomorphic
to the radical of the indecomposable left (resp. right) projective module Pa
corresponding to the vertex a. Note that Λ is the algebra KQ/〈I1〉 with the
ideal generated by zero relations of length two. So S1 (resp. S2) is a basis of
M ′ (resp. N ′). Set S1 = {u1, . . . , um}, S2 = {v1, . . . , vn}. By the definition
of (Qsg, Isg), we get

dimKM = dimKM
′ + ]{ui | t(ui) ∈ Sp} = ](T1),

dimK N = dimK N
′ + ]{vi | s(vi) ∈ Sp} = ](T2),

which implies that T1 and T2 are bases of the linear spaces M and N over K,
respectively.

Similarly, the set

TA := {p a path in (Qsg, Isg) | p passes through e+

for no special vertex e, and s(p), t(p) 6= a−}
is a basis of A over K. Note that

φ(p1α
−
1 ⊗ α

−
2 p2) = p1α

−
1 α
−
2 p2

for any p1α
−
1 ∈ T1 and α−2 p2 ∈ T2. Set T := {ui ⊗ vj | ui ∈ T1, vj ∈ T2}.

Then T is a basis of M ⊗KN . Lemma 3.2 implies that p1α
−
1 α
−
2 p2 is nonzero

in A, which is in TA. It is easy to see that φ induces an injective map from
T to TA, which means that φ itself is injective.

It follows from Lemma 3.4 that ea−Γea− is isomorphic to K. We identify
Γ with

(
A M
N K

)
, where the K is identified with ea−Γea− . Note that A/Imφ

= Γ ′. Then Proposition 3.1 yields a triangle equivalence

Db
sg(Γ ) ' Db

sg(Γ
′).

Case (c2). If b ∈ Sp, c /∈ Sp, then the quiver Qsg is as in Case (c2) of
Figure 1. Then γ1β1−γ2β2, γ1β3−γ2β4 ∈ Isg. Let A = (1− ea−)Γ (1− ea−),

M := SpanK{p a path in (Qsg, Isg) | p = p1γ2 for some path p1},
N := SpanK{p a path in (Qsg, Isg) | p = β2p2 or β4p2 for some path p2}.

The remaining situation is similar to Case (c1); we omit the proof.
Case (c3). If b /∈ Sp and c ∈ Sp, then the quiver Qsg is as in Case (c3)

of Figure 1. This case is similar to Case (c2); we omit the proof.
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Case (c4). If b, c ∈ Sp, then the quiver Qsg is as in Case (c4) of Figure 1.
Then γ1β1 − γ2β2, γ1β3 − γ2β4, γ3β1 − γ4β2, γ3β3 − γ4β4 ∈ Isg. Let A :=
(1− ea−)Γ (1− ea−),

M := SpanK{p a path in (Qsg, Isg) | p = p1γ2 or p1γ4 for some path p1},
N := SpanK{p a path in (Qsg, Isg) | p = β2p2 or β4p2 for some path p2}.

The remaining situation is similar to Case (c1); we omit the proof.

To sum up, we see that Db
sg(Γ ) ' Db

sg(Γ
′). Since Γ ′ is also skewed-gentle,

we replace Γ in the above with Γ ′, and discuss it recursively. After ](Sp)
steps, we conclude that Db

sg(Γ ) ' Db
sg(KQ/〈I〉).

Corollary 3.6. Let (Q,Sp, I) be a skewed-gentle triple. Then the fol-
lowing statements are equivalent:

(i) gldimKQsg/〈Isg〉 <∞.
(ii) gldimKQ/〈I〉 <∞.

Proof. This follows from Theorem 3.5 which states that KQsg/〈Isg〉 and
KQ/〈I〉 are singularity equivalent.

4. The second main theorem. We first recall the singularity category
of a gentle algebra from [14]. For a gentle algebra Λ = KQ/〈I〉, we denote
by C(Λ) the set of equivalence classes (with respect to cyclic permutation)
of repetition-free cyclic paths α1 . . . αn in Q such that αiαi+1 ∈ I for all i,
where we set n + 1 = 1. For convenience, we call any element c in C(Λ)
full repetition-free cyclic. For every arrow α ∈ Q1, there is at most one
cycle c ∈ C(Λ) containing it. Moreover, let l(c) denote the length of a cycle
c ∈ C(Λ), i.e. l(α1 . . . αn) = n.

Theorem 4.1 ([14]). There is an equivalence of triangulated categories

Db
sg(Λ) '

∏
c∈C(Λ)

Db(K)

[l(c)]
,

where Db(K)/[l(c)] denotes the triangulated orbit category (see Keller [15]).

Let (Q,Sp, I) be a skewed-gentle triple. For any c = α1 . . . αn ∈ C(Λ), if
there are an even (resp. odd) number of special vertices lying on c, then we
call c an even (resp. odd) repetition-free cyclic path. We denote by Ceven(Λ)
(resp. Codd(Λ)) the set of even (resp. odd) repetition-free cyclic paths. Recall
that we say that a cyclic path c = α1 . . . αn passes through a vertex b if
b = t(αj) for some 2 ≤ j ≤ n.

For any path c = α1 . . . αn in Q and 2 ≤ i ≤ n, we set

σi(c) :=

{
+ if α1 . . . αi passes through an even number of special vertices,

− if α1 . . . αi passes through an odd number of special vertices.
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Sometimes, we write just σi if c is obvious. Similarly, for any 2 ≤ i ≤ n, we
set

τi(c) :=

{
+ if α1 . . . αi passes through an odd number of special vertices,

− if α1 . . . αi passes through an even number of special vertices.

Lemma 4.2. Let (Q,Sp, I) be a skewed-gentle triple. For any oriented
path c = α1 . . . αn in Q, α+

1 α
σ2
2 . . . ασnn and α−1 α

τ2
2 . . . ατnn are oriented paths

in Qg. In particular, if αi−1αi ∈ I for some 2 ≤ i ≤ n, then α
σi−1

i−1 α
σi
i and

α
τi−1

i−1 α
τi
i are in Ig.

Proof. We prove this for α+
1 α

σ2
2 . . . ασnn ; the other is similar. Set σ1 = +.

For any 2 ≤ i ≤ n, if t(αi) is special, then s(α±i−1) = s(αi) = t(α±i ). On the

other hand, if t(αi) is ordinary, then σi−1 = σi, so s(α
σi−1

i−1 ) = s(αi)
σi−1 =

t(ασii ). To sum up, s(α
σi−1

i−1 ) = t(ασii ) for any 2 ≤ i ≤ n, so α+
1 α

σ2
2 . . . ασnn is

a path in Qg.

For the last statement, if t(αi) is special, then σi−1 6= σi, which implies
that α

σi−1

i−1 α
σi
i ∈ Ig by the definition of Ig; if t(αi) is ordinary, then σi−1 = σi,

which also implies that α
σi−1

i−1 α
σi
i ∈ Ig.

Lemma 4.3. Let (Q,Sp, I) be a skewed-gentle triple. Then for any arrow
α1 in Q, the following statements are equivalent:

(i) There is a full repetition-free cyclic path in Q containing α1.
(ii) There is a full repetition-free cyclic path in Qg containing α+

1 .
(iii) There is a full repetition-free cyclic path in Qg containing α−1 .

Proof. Recall that Qg0 :=
⋃
i∈Q0

Q0[i] where Q0[i] is the set {i} (resp.

{i−, i+}) if the vertex i is special (resp. ordinary), Qg1 := {α+, α− | α ∈ Q1},

s(α±) :=

{
s(α)± if s(α) /∈ Sp,
s(α) if s(α) ∈ Sp,

t(α±) :=

{
t(α)± if t(α) /∈ Sp,
t(α) if t(α) ∈ Sp,

and

Ig := {β+α+, β−α− | βα ∈ I, t(α) /∈ Sp}
∪ {β+α−, β−α+ | βα ∈ I, t(α) ∈ Sp}.

For (i)⇒(ii), (iii), let c = α1 . . . αn be a full repetition-free cyclic path
in Q containing α1. We consider two cases.

(a) If c ∈ Ceven(Λ), then we claim that α+
1 α

σ2
2 . . . ασnn and α−1 α

τ2
2 . . . ατnn

are full repetition-free cyclic paths.

We prove this for α+
1 α

σ2
2 . . . ασnn ; the other is similar. In fact, Lemma 4.2

implies that it is an oriented path in Qg.

If t(α1) = s(αn) is special, then t(α±1 ) = s(α±n ) = t(α1), so α+
1 α

σ2
2 . . . ασnn

is a cyclic path. Furthermore, α1 . . . αn passes through an odd number of
special vertices, so σn = −, which implies ασnn α+

1 ∈ Ig. Lemma 4.2 also
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shows that

α+
1 α

σ2
2 , . . . , α

σi−1

i−1 α
σi
i , . . . , α

σn−1

n−1 α
σn
n ∈ Ig,

and then together with the above, we see that α+
1 α

σ2
2 . . . ασnn is full repetition-

free.

If t(α) = s(αn) is ordinary, then t(α+) = t(α)+ = s(αn)+ and t(α−) =
t(α)− = s(αn)−. In particular, α1 . . . αn passes through an even number
of special vertices, so σn = +, which implies α+

1 α
σ2
2 . . . ασnn is cyclic and

ασnn α+
1 ∈ Ig. Similarly, we conclude that it is also full repetition-free.

(b) If c ∈ Codd(Λ), set l = α1 . . . αnα1 . . . αn. Then we claim that

p = α+
1 α

σ2(l)
2 . . . ασn(l)n α

σn+1(l)
1 α

σn+2(l)
2 . . . ασ2n(l)n

is a full repetition-free cyclic path. From c ∈ Codd(Λ), it is easy to see that
σn+1(l) = − and σn+i(l) = τi(c) for any 2 ≤ i ≤ n. Thus

p = α+
1 α

σ2(c)
2 . . . ασn(c)n α−1 α

τ2(c)
2 . . . ατn(c)n .

Similarly to (a), we need only check that s(α
σ2n(l)
n ) = t(α+

1 ) and α
σ2n(l)
n α+

1

is in Ig. If s(αn) is special, then l passes through an odd number of special
vertices, and so σ2n(l) = −. In this case, we have s(α±n ) = t(α±1 ), and so

α
σ2n(l)
n α+

1 ∈ Ig by the definition of Ig. If s(αn) is ordinary, then l passes
through an even number of special vertices, and so σ2n(l) = +. In this

case, we also have s(α+
n ) = s(αn)+ = t(α+

1 ), and so α
σ2n(l)
n α+

1 ∈ Ig by the
definition of Ig.

For (ii)⇒(i) and (iii)⇒(i), let αδ11 . . . αδnn be any full repetition-free cyclic
path in Qg, where δi = + or −, and αi is an arrow in Q for any 1 ≤ i ≤ n.

Since s(αδii ) = t(α
δi+1

i+1 ) for any 1 ≤ i ≤ n, where we set n+ 1 = 1, it is easy
to see that s(αi) = t(αi+1). So α1 . . . αn is cyclic. On the other hand, by the
definition of Ig, every zero relation in Ig comes from a zero relation in I,

and it is easy to see that αiαi+1 ∈ I since αδii α
δi+1

i+1 ∈ Ig for any 1 ≤ i ≤ n.
If αi 6= αj for any i 6= j, then α1 . . . αn is a repetition-free cyclic path.

Otherwise, without losing generality, we assume that αm+1 = α1 for some
1 < m < n. It is easy to see that δm+1 6= δ1 since αδ11 . . . αδnn is repetition-
free, which also implies that m is unique. In fact, for any 1 ≤ i ≤ n, there
exists at most one j satisfying 1 ≤ j 6= i ≤ n and αi = αj . We claim that
α1 . . . αm is a full repetition-free cyclic path. Since (Q, I) is gentle, for α1,
there exists at most one arrow β with t(β) = s(α1) such that α1β ∈ I.
However, we know that α1α2, αm+1αm+2 ∈ I, so αm+2 = α2. Inductively,
we get αm+i = αi for all 1 ≤ i ≤ m. Since αnα1 ∈ I and αmαm+1 ∈ I,
we also get αn = αm = α2m, which implies that α1 . . . αm is cyclic and
α1 . . . αm = αm+1αm+2 . . . α2m. In fact, we also know that n = 2m. For any
1 ≤ i 6= j ≤ m, if αi = αj , then αm+i = αi = αj = αm+j , which contradicts
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αδ11 . . . αδnn being repetition-free. So α1 . . . αm is repetition-free. To sum up,
α1 . . . αm is a full repetition-free cyclic path.

The following theorem is the second main result of this paper.

Theorem 4.4. Let (Q,Sp, I) be a skewed-gentle triple. There is an equiv-
alence of triangulated categories

Db
sg(KQ

g/〈Ig〉) '
( ∏
c∈Ceven(Λ)

Db(K)

[l(c)]

)

×
( ∏
c∈Ceven(Λ)

Db(K)

[l(c)]

)
×
( ∏
c∈Codd(Λ)

Db(K)

[2l(c)]

)
,

where Λ = KQ/〈I〉 and Db(K)/[l(c)] denotes the triangulated orbit category.

Proof. Since (Qg, Ig) is a gentle pair, for any arrow αδ ∈ Qg where δ = +
or −, there is at most one full repetition-free cyclic path containing αδ. It
follows from Lemma 4.3 and its proof that

C(KQg/〈Ig〉) = {α+
1 α

σ2
2 . . . ασnn , α−1 α

τ2
2 . . . ατnn | c = α1 . . . αn ∈ Ceven(Λ)}

∪ {α+
1 α

σ2(c)
2 . . . ασn(c)n α−1 α

τ2(c)
2 . . . ατn(c)n | c = α1 . . . αn ∈ Codd(Λ)}.

Then Theorem 4.1 yields the result immediately.

In general, we do not have Db
sg(KQ

sg/〈Isg〉) ' Db
sg(KQ

g/Ig). In fact,

Theorem 4.4 shows that Db
sg(KQ

sg/〈Isg〉) ' Db
sg(KQ

g/Ig) if and only if
they are zero. So we have the following direct corollary.

Corollary 4.5. Let (Q,Sp, I) be a skewed-gentle triple. Then the fol-
lowing statements are equivalent:

(i) gldimKQsg/〈Isg〉 <∞.
(ii) gldimKQ/〈I〉 <∞.
(iii) gldimKQg/〈Ig〉 <∞.

Proof. By Corollary 3.6, we need only prove that (ii)⇔(iii). Theorem
4.4 shows that Db

sg(KQ/〈I〉) ' 0 if and only if Db
sg(KQ

g/〈Ig〉) ' 0, which
implies that gldimKQ/〈I〉 <∞ if and only if gldimKQg/〈Ig〉 <∞.

Remark 4.6. Note that we do not assume charK 6= 2 in Corollary 4.5.
When charK 6= 2, we know that KQsg/〈Isg〉 is Morita equivalent to a skew-
group algebra (KQg/〈Ig〉)G defined in Section 2.3. In this case, [18, Theorem
1.3] shows that gldimKQsg/〈Isg〉 <∞ if and only if gldimKQg/〈Ig〉 <∞.

In the following, we denote by Sn the self-injective Nakayama algebra
of a cyclic quiver with n vertices modulo the ideal generated by paths of
length 2.
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Example 4.7. (a) In the notation of Examples 2.6(a) and 2.7(a), we
have Db

sg(KQ
sg/〈Isg〉) ' mod(KQ/〈I〉) ' modS2, while Db

sg(KQ
g/〈Ig〉) '

modS4.

(b) In the notation of Examples 2.6(b) and 2.7(b), we have
Db
sg(KQ

sg/〈Isg〉) ' mod(KQ/〈I〉) ' modS3, while Db
sg(KQ

g/〈Ig〉) '
modS6.
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