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COXETER POLYNOMIALS OF SALEM TREES

BY

CHARALAMPOS A. EVRIPIDOU (Nicosia)

Abstract. We compute the Coxeter polynomial of a family of Salem trees, and also
the limit of the spectral radii of their Coxeter transformations as the number of their
vertices tends to infinity. We also prove that if z is a root of multiplicities m1, . . . ,mk

for the Coxeter polynomials of the trees T1, . . . , Tk respectively, then z is a root for the
Coxeter polynomial of their join, of multiplicity at least min{m−m1, . . . ,m−mk} where
m = m1 + · · ·+mk.

1. Introduction and preliminaries. In [14], Lakatos determines the
limit of the spectral radii of the Coxeter transformations of particular infinite
sequences of starlike trees. In the present paper we generalize her result to a
wider range of trees. In addition, our idea of proof is different from the one
in [14].

We use the same terminology as in [14, 24, 27]. We denote by N ⊆ Z the
set of positive integers and the ring of integers respectively. The algebra of
n× n integer matrices is denoted by Mn(Z), where n ∈ N. We consider only
simple graphs (i.e. graphs without multiple edges and loops) Γ = (Γ0, Γ1)
with Γ0 = {v1, . . . , vn} the set of vertices and Γ1 the set of edges, where
(vi, vj) ∈ Γ1 if there is an edge connecting vi and vj .

Assume that Γ = (Γ0, Γ1) is a simple graph with the set of enumerated
vertices Γ0 = {v1, . . . , vn}. We recall that the adjacency matrix of Γ is the
n× n symmetric matrix

(1.1) AdΓ = [aij ] ∈Mn(Z)

with aij = 1 if (vi, vj) ∈ Γ1, and aij = 0 otherwise. The characteristic
polynomial of Γ is defined to be

(1.2) χΓ (t) := det(t · In −AdΓ ) ∈ Z[t]

where In = [δij ] is the identity matrix in Mn(Z). It is clear that χΓ (t)
does not depend on the enumeration v1, . . . , vn of the vertices in Γ0 (see [4]
and [6]).
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Let Rn be the standard n-dimensional real vector space with the standard
basis e1, . . . , en. Given i ∈ {1, . . . , n}, the ith reflection of Γ is defined to be
the R-linear automorphism σi : Rn → Rn given by the formula

(1.3) σi(ej) = ej − (2δij − aij)ei.

The subgroupWΓ of the general linear group GL(Rn) ∼= GL(n,R) generated
by the reflections σ1, . . . , σn of Γ is called the Weyl group of Γ and has the
presentation

(1.4) WΓ = 〈σ1, . . . , σn : (σiσj)
mij = 1〉

where M = [mij ] ∈ Mn(Z) is the matrix defined by mii = 1 for all i =
1, . . . , n, and mij = aij + 2 for all i 6= j (see [3, 11, 30]). The product
ΦΓ = σ1 · . . . · σn ∈ WΓ is defined to be the Coxeter transformation of Γ
(see [17]). Obviously, it depends on the enumeration of the vertices (see
Remark 1.1 for details). We recall that the Coxeter transformations were first
studied by Coxeter [5] who showed that their eigenvalues have remarkable
properties (see also Bourbaki [3] and Humphreys [11]).

Throughout this paper, we assume that Γ is a tree T = (T0, T1) with
enumerated vertices T0 = {v1, . . . , vn}, AdT = [aij ] ∈Mn(Z) is its adjacency
matrix, and

(1.5) ΦT = σ1 · . . . · σn ∈WT
is its Coxeter transformation with respect to the enumeration v1, . . . , vn.
The Coxeter polynomial of the tree T is defined to be the characteristic
polynomial of ΦT : Rn → Rn, that is, the polynomial (see [11, 17, 25])

(1.6) coxT (t) := det(t · idRn −ΦT ) ∈ Z[t].

Since T is a tree, the characteristic polynomial of ΦT does not depend
on the enumeration of the vertices. Indeed, if vε(1), . . . , vε(n) is obtained
from v1, . . . , vn by a permutation ε ∈ Sn then the Coxeter transformation
ΦεT : Rn → Rn corresponding to vε(1), . . . , vε(n) is conjugate to ΦT (see [25,
Proposition 2.2], [11, Proposition 3.16], [3, 17] and the following remark for
details).

Remark 1.1. (a) The Coxeter polynomial cox∆(t) is also defined and
studied in [24, 25, 26] in a more general setting of loop-free edge-bipartite
multigraphs ∆ = (∆0, ∆1 = ∆−1 ∪ ∆

+
1 ), with ∆0 = {v1, . . . , vn} and a

separated bipartition∆1 = ∆−1 ∪∆
+
1 of the set of edges. The class of loop-free

edge-bipartite multigraphs contains all simple graphs, loop-free multigraphs,
and simple signed graphs (see [32]).

The definition of cox∆(t) ∈ Z[t] for an edge-bipartite multigraph∆ differs
from (1.6) for simple graphs, and depends on the upper triangular Gram
matrix Ǧ∆ = [d∆ij ] ∈ GL(n,Z) where d∆ij = 1 for i = j, d∆ij is the number of
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edges between vi and vj with i < j lying in ∆+
1 , and −d∆ij is the number of

edges between vi and vj with i < j lying in ∆−1 .
In [24, 25, 26], with any loop-free edge-bipartite multigraph ∆ = (∆0, ∆1

= ∆−1 ∪∆
+
1 ) the Coxeter matrix Cox∆ := −Ǧ∆ ·Ǧ− tr

∆ ∈Mn(Z) is associated,
and its characteristic polynomial

(1.7) cox∆(t) := det(t · In − Cox∆) ∈ Z[t],

called the Coxeter polynomial of∆, is self-reciprocal in the sense that cox∆(t)
= tn cox∆(1/t) (see [23, Lemma 2.8(c3)–(c4)]). The Coxeter transformation
of ∆ is defined to be the group automorphism

(1.8) Φ∆ : Zn → Zn, v 7→ v · Cox∆ .

It is proved in [25, Proposition 2.2] that when the underlying multigraph ∆
of∆ is a tree, the Coxeter polynomial does not depend on the enumeration of
the vertices v1, . . . , vn. Hence, in view of the sink-source reflection technique
applied in [1, Proposition VII.4.7], the Coxeter polynomial cox∆(t) (1.7) of
∆ coincides with the Coxeter polynomial cox∆(t) of the tree T = ∆ (in the
sense of (1.6)).

The reader is also referred to the recent papers [12, 13], where the irre-
ducible and reduced root systems in the sense of Bourbaki [3] are studied in
connection with roots of positive connected edge-bipartite graphs.

(b) The Coxeter polynomial is also defined in [22, 27], for any finite poset
J ≡ (J,�) with J = {1, . . . , n}, as

(1.9) coxJ(t) := det(t · In − CoxJ) ∈ Z[t]

where CoxJ = −CJ · C− tr
J ∈ Mn(Z) is the Coxeter matrix of J and CJ :=

[cij ] ∈ M(Z) is its incidence matrix, with cij = 1 if i � j, and cij = 0 if
i 6� j. It is shown that if the Hasse diagram H := HJ of J is a tree, then the
Coxeter polynomial coxJ(t) (1.9) of J coincides with the Coxeter polynomial
coxH(t) of the tree T = H (in the sense of (1.6)).

By applying Remark 1.1(a) we get the following useful fact.

Corollary 1.2. Assume that T = (T0, T1) is a tree with enumerated
vertices v1, . . . , vn and let ǦT = [dij ] ∈Mn(Z) be the upper triangular Gram
matrix of T , with d11 = · · · = dnn = 1, dij = −1 if i < j and there is an
edge (vi, vj) in T1, and [dij ] = 0 otherwise.

(a) The Coxeter transformation ΦT : Rn → Rn (1.5) of the tree T re-
stricts to the group automorphism ΦT : Zn → Zn defined by

ΦT (u) = u · CoxT

where CoxT := −ǦT · Ǧ− tr
T ∈ Mn(Z) is the Coxeter matrix of T

viewed as an edge-bipartite graph, with T +
1 empty.
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(b) The Coxeter polynomial coxT (t) (1.6) of the tree T coincides with the
Coxeter polynomial coxT (t) = det(t · In − Cox∆) (1.7) of T viewed
as an edge-bipartite tree.

(c) The Coxeter polynomial coxT (t) (1.6) of T is self-reciprocal and does
not depend on the enumeration of its vertices.

Proof. We view T as an edge-bipartite graph, with T1 = T −1 ∪T
+
1 where

T +
1 is the empty set. Then the matrix Ǧ = [dij ] ∈Mn(Z) coincides with the

upper triangular Gram matrix Ǧ∆ = [a∆ij ] defined in Remark 1.1(a), and the
corollary is a consequence of the remark.

The most important families of trees are the trees of type ADE given in
Figure 1. These are known as the simply laced Dynkin diagrams. There is a
long list of objects which admit an ADE classification, meaning that there is
an equivalence between equivalence classes of objects of the given type and
the ADE graphs (see for example [9]). Examples of these objects include

• simply laced finite Coxeter groups,
• simply laced simple Lie algebras,
• platonic solids,
• quivers of finite representation types,
• Kleinian singularities,
• finite subgroups of SU(2).

d1 d2 dn− 2 dn− 1 dn. . .An : (n ≥ 1)

!!
!

aaa
d1 d2 dn− 3 dn− 2

dn− 1

dn. . .Dn : (n ≥ 4)

. . .d1 d2 d4 d5 dn− 1 dn
d3

En : (n = 6, 7, 8)

Fig. 1. Simply laced Dynkin diagrams

Note that the graphs En are defined in general for all n ≥ 3, where E3 =
A2⊕A1, and for n ≥ 4 are defined as in Figure 1. The graphs En where studied
extensively in [8] where their Coxeter polynomials were completely factored
into cyclotomic and Salem polynomials. The Coxeter polynomials of theADE
graphs are well known and have been calculated many times (see for instance
[2, 3, 7, 8, 25, 27, 30]). One of the main aims of this paper is to find a universal
formula for the Coxeter polynomials of a family of trees which we denote by
S
(i)
p1,...,pk . For specific values of i, k, p1, . . . , pk ∈ N we obtain the ADE graphs.
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To define the trees S(i)
p1,...,pk , we recall that the join of simple graphs

Γ1, . . . , Γk, with a fixed vertex vi in each of the graphs Γi, is the graph
obtained by adding a new vertex and joining it to vi for all i = 1, . . . , k
(see [30]).

For k, p1, . . . , pk ∈ N and i ∈ {0, 1, . . . , k}, we define the tree S(i)
p1,...,pk to

be the join of the Dynkin diagrams Dp1 , . . . ,Dpi and Api+1 , . . . ,Apk , in their
vertices numbered 1, as shown in Figure 3.

The tree S(0)
p1,...,pk is the star Tp1−1,...,pk−1 defined in [20], which is the join

of the Dynkin diagrams Ap1−1, . . . ,Apk−1. It is called a wild star in [14].

To the best of our knowledge the graphs S(i)
p1,...,pk for i ≥ 1 are defined here

for the first time. For particular values of i and pj , we get some well-known
trees. For example, for k = 2, i = 0, p1 = 1, p2 = n − 2 we obtain the
Dynkin diagrams An; for k = 3, i = 0, p1 = 1, p2 = 1, p3 = n − 3 we
obtain Dn; for k = 3, i = 0, p1 = 1, p2 = 2, p3 = n − 4 we obtain En;
and for k = 3, i = 1, p1 = n − 2, p2 = p3 = 1 we obtain the Euclidean
Dynkin diagrams D̃n (see Figure 2). Note that S(0)

1,2,6 = E10 and coxE10(t) =

t10 + t9 − t7 − t6 − t5 − t4 − t3 + t+ 1 is the well-known Lehmer polynomial
which is conjectured to have the smallest Mahler measure among the monic
integer non-cyclotomic polynomials (see [29]).

!!
!

aaa

aa
a

!!!

d3 d4 dn− 2 dn− 1

d1
d2

dn
dn + 1

. . .D̃n : (n ≥ 4)

d1 d2 d3 d4 d5
d6
d7

Ẽ6 :

d1 d2 d3 d4 d5 d6 d7
d8Ẽ7 :

Fig. 2. The Euclidean diagrams D̃n, Ẽ6 and Ẽ7

Let p(t) be a monic polynomial with integer coefficients. We denote the
set {z ∈ C : p(z) = 0} of its roots by Z(p(t)), and the maximum of {|z| :
z ∈ Z(p)} by ρ(p(t)). For example, ρ(coxAn(t)) = ρ(coxDn(t)) = 1, while
ρ(coxEn(t)) > 1 for n ≥ 10 (see [8] and [15]).

If the polynomial p(t) is irreducible and all of its roots lie on the unit circle
(or equivalently ρ(p(t)) = 1), then p(t) is called a cyclotomic polynomial.
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Assume now that the polynomial p(t) is irreducible, non-cyclotomic with
only one root outside the unit circle. If p(t) has at least one root on the unit
circle, it is called a Salem polynomial, while if it has no roots on the unit
circle, it is called a Pisot polynomial (see [15]).

It is not difficult to see that cyclotomic and Salem polynomials are self-
reciprocal. This follows from the following facts. A polynomial p(t) of degree
n is irreducible if and only if the polynomial p∗(t) := tnp(1/t), which we call
the reciprocal of p(t), is irreducible. If α lies on the unit circle then α is a
root of p(t) if and only if 1/α is also a root of p(t).

We recall from [15] the following definition.

Definition 1.3.

(a) A tree T is said to be cyclotomic if all roots of the Coxeter polynomial
coxT (t) are on the unit disk, or equivalently coxT (t) is a product of
cyclotomic polynomials.

(b) A tree T is called a Salem tree if the Coxeter polynomial coxT (t)
has only one root outside the unit circle, or equivalently coxT (t) is a
product of a Salem polynomial and some cyclotomic polynomials.

2. Main results. In this paper we are mainly concerned with the case
k = 3 (i.e. with the trees S(i)

p,q,r) and prove four theorems about the Coxeter
polynomials cox

S
(i)
p1,...,pk

(t). In Theorem 2.1 we present a recursive relation
for these polynomials and we use it in Theorem 2.2 to find the Coxeter poly-
nomials of S(i)

p,q,r for all i = 0, 1, 2, 3. In Theorem 2.3 we show that the limits
limp→∞ ρ(cox

S
(i)
p,q,r

(t)), limq→∞ ρ(cox
S
(i)
p,q,r

(t)) and limr→∞ ρ(cox
S
(i)
p,q,r

(t)) are
Pisot numbers. We also show that

lim
p,q,r→∞

ρ(cox
S
(i)
p,q,r

(t)) = 2 for all i = 0, 1, 2, 3.

It was shown by Lakatos [14] that

lim
p1,...,pk→∞

ρ(cox
S
(0)
p1,...,pk

(t)) = k − 1 for k ∈ N.

In Theorem 2.4 we generalize that result by showing that

lim
p1,...,pk→∞

ρ(cox
S
(i)
p1,...,pk

(t)) = k − 1 for all i ∈ {0, 1, . . . , k}.

We mention here that the multiple limits limp1,...,pi→∞ αn are the iterated
limits limp1→∞(. . . (limpi→∞ αn)).

Theorem 2.1. Let k, p1, . . . , pk ∈ N and p1 ≥ 2. Then

cox
S
(0)
p1,...,pk

(t) = (t+ 1) cox
S
(0)
p1−1,...,pk

(t)− t cox
S
(0)
p1−2,...,pk

(t).
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v d v1,1d . . . v1,p1−3d v1,p1−2d&%
'$

H1

HHHHv2,1d
· · · v2,p2−3d

HH
HHv2,p2−2d
&%
'$

H2

· · ·

vk,1d
...
vk,pk−3d

vk,pk−2

d
&%
'$

Hk

d
vj,pj−1

d
vj,pj−2

d
vj,pj

Hj for j = 1, . . . , i

d
vj,pj−2

d
vj,pj−1

d
vj,pj

Hj for j = i + 1, . . . , k

Fig. 3. The trees S(i)
p1,...,pk

If k ≥ 2 and p1 ≥ 3 then

cox
S
(i)
p1,...,pk

(t) = (t+ 1)[cox
S
(i−1)
p2,...,pk,p1−1

(t)− t cox
S
(i−1)
p2,...,pk,p1−3

(t)]

for all i ∈ {1, . . . , k}.

Theorem 2.2.

(a) For i ≤ 2,

cox
S
(i)
p,q,r

(t) =
(t+ 1)i

t− 1
[tr+2F (i)

p,q(t)− (F (i)
p,q)
∗(t)],

where

F (0)
p,q (t) = tp+q − coxAp−1(t) coxAq−1(t),

F (1)
p,q (t) = tp+q−2(t− 1)− (tp−2 + 1) coxAq−1(t),

F (2)
p,q (t) = tp+q−4(t− 1)2 − (tp−2 + 1)(tq−2 + 1).

(b) For i = 3,

cox
S
(3)
p,q,r

(t) = (t+ 1)3[trF (3)
p,q (t) + (F (3)

p,q )∗(t)],

where F (3)
p,q (t) = F

(2)
p,q (t).

Theorem 2.3.

(1)
lim
r→∞

ρ(cox
S
(i)
p,q,r

(t)) = ρ(F (i)
p,q(t)) for i = 0, 1, 2, and

ρ(F (i)
p,q(t)) is a Pisot number,
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lim
p→∞

ρ(cox
S
(i)
p,q,r

(t)) = ρ(F (i−1)
q,r (t)) for i = 1, 2, 3,(2)

lim
p,q→∞

ρ(cox
S
(i)
p,q,r

(t)) = ρ(tr+2 − 2tr+1 + 1) for i = 0, 1, 2,(3)

lim
q,r→∞

ρ(cox
S
(i)
p,q,r

(t)) = ρ(tp − 2tp−1 − 1) for i = 1, 2, 3,(4)

lim
p,q,r→∞

ρ(cox
S
(i)
p,q,r

(t)) = 2 for i = 0, 1, 2, 3.(5)

Theorem 2.4. For k, p1, . . . , pk ∈ N and all i ∈ {0, 1, . . . , k} we have

lim
p1,...,pk→∞

ρ(cox
S
(i)
p1,...,pk

(t)) = k − 1.

Remark 2.5. (a) Note that for i = 0 or i = 3 the trees S(i)
p,q,r and S(i)

r,q,p

are the same, and therefore the case i = 0 in (2) is given in (1). Similarly the
limit limp→∞ ρ(cox

S
(0)
p,q,r

(t)) can be found using the result of (1). The same
holds for (3) and (4): the double limit limp,q→∞ ρ(cox

S
(3)
p,q,r

(t)) is obtained
from (4), and limq,r→∞ ρ(cox

S
(i)
p,q,r

(t)) from (3).

(b) In [15] it was shown by James McKee and Chris Smyth that if a
non-cyclotomic tree is the join of cyclotomic trees then it is a Salem tree.
The cyclotomic trees were classified in [28]; they are the subgraphs of the
Euclidean diagram Ẽ8 = E9 and of the Euclidean diagrams of Figure 2
(see also [15, 19]). In [15] the Salem trees were classified and they include
the joins of cyclotomic trees which are not cyclotomic. It follows from this
classification that the cyclotomic cases of the trees S(i)

p1,...,pk are those for
k = i = 2 or k = 3, i = 0, p1 = p2 = p3 = 2 or k = 3, i = 0, p1 = 1,
p2 = p3 = 3 or k = 3, i = 0, p1 = 1, p2 = 2, p3 = 5 and subgraphs of these.
For all the other cases, S(i)

p1,...,pk are Salem trees.
(c) We recall that the Mahler measure of a monic integer polynomial f(t)

is

M(f) =
∏
{|z| : z ∈ Z(f(t)), |z| ≥ 1}

(see [29]). We can easily see that if f is cyclotomic, Salem or Pisot then
M(f) = ρ(f(t)). Lehmer’s problem asks if we can find f with Mahler measure
arbitrarily close to 1. Since cox

S
(i)
p1,...,pk

(t) has at most one root outside the

unit circle, its Mahler measure is ρ(cox
S
(i)
p1,...,pk

(t)). Theorem 2.2 in connection
with Lemma 3.3 can be used to verify Lehmer’s conjecture for the family
of the polynomials cox

S
(i)
p,q,r

(t), asserting that the smallest Mahler measure,
larger than 1, is the Mahler measure of cox

S
(0)
1,2,6

(t) = coxE10(t) (see also [15]
and the recent papers [16, 18]).
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Example 2.6. For the Dynkin diagrams Dn, Theorem 2.2 gives

coxDn(t) = cox
S
(0)
1,1,n−3

(t)

=
1

t− 1
(tn−1(t2 − 1) + t2 − 1) = tn + tn−1 + t+ 1.

For the Euclidean diagrams D̃n, Theorem 2.2 gives

coxD̃n
(t) = cox

S
(1)
n−2,1,1

(t)

=
t+ 1

t− 1
[t3(tn−2 − tn−3 − tn−4 − 1) + tn−2 + t2 + t− 1]

= (tn−2 − 1)(t− 1)(t+ 1)2,

and for the diagrams En it gives

coxEn(t) = cox
S
(0)
1,2,n−4

(t) =
1

t− 1
[tn−2(t3 − t− 1) + t3 + t2 − 1].

All these agree with the known formulas (see [7, 8] and [25, Proposition 2.3]).

We also prove the following theorem concerning joins of trees.

Theorem 2.7. Let T be the join of trees T (1), . . . , T (k), k ≥ 2. Suppose
that z is a root of coxT (i)(t) with multiplicity mi. Then z is also a root of
coxT (t) with multiplicity at least

min{m−mi : i = 1, . . . , k}
where m = m1 + · · ·+mk.

Remark 2.8. (a) According to [31] if z 6= ±1 is a common root z of the
polynomials coxT1(t), . . . , coxTk(t) then its multiplicity mi is 1. Therefore in
that case Theorem 2.7 shows that z is a root of coxT (t) with multiplicity at
least k− 1. This result was proved in [8, Theorem 3.1]. For z = ±1 however,
z can be a root of coxT (t) with multiplicity less than k − 1. For example,
consider the join T of the Euclidean diagrams D̃4 as shown in Figure 4. Then
coxT (t) and coxD̃4

(t) both have 1 as a root with multiplicity 2.
(b) Now suppose that T is a join of trees T1, T2 and z is a common

root of coxT1(t) and coxT2(t). Then Theorem 2.7 generalizes a theorem due
to Kolmykov [30] (see also [8, Theorem 1.5]) asserting that z is a root of
coxT (t).

d d
dZ

ZZ
�

��

d d�
��

Z
ZZ
d
d d
dZ

ZZ
�
��

d d�
��

Z
ZZ

Fig. 4. The join of two D̃4 diagrams
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For the convenience of the reader we include all theorems that will be
used, in several cases with proofs, thus making this paper self-contained.
This is done in Section 3. In Section 4 we prove Theorems 2.1–2.4 and 2.7.

3. Generalities on Coxeter polynomials. The following proposition
is due to Subbotin and Sumin; the proof below is taken from [30].

Proposition 3.1. Assume that T = (T0, T1) is a tree and let e =
(v1, v2) ∈ T1 be a splitting edge of T that splits it into the trees R = (R0,R1)
and S = (S0,S1). Assume that v1 ∈ R0 and v2 ∈ S0. Then

coxT (t) = coxR(t) coxS(t)− t coxR̃(t) coxS̃(t)

where R̃ = (R̃0, R̃1) and S̃ = (S̃0, S̃1) are the subgraphs of R and S with
vertex sets R̃0 = R0 \ {v1} and S̃0 = S0 \ {v2}.

Proof. We enumerate the vertices of R and S as R0 = {u1, . . . , uk}
and S0 = {uk+1, . . . , uk+m}, where v1 = uk and v2 = uk+1. Let ê =
{e1, . . . , ek+m} be the standard basis of Rk+m, and let V1 be the vector
subspace of Rk+m with basis ê1 = {e1, . . . , ek} and V2 the subspace of Rk+m
with basis ê2 = {ek+1, . . . , ek+m}. Also let σi be the ith reflection of T . Then
ΦR = σ1 . . . σk is the Coxeter transformation of R, ΦS = σk+1 . . . σk+m is the
Coxeter transformation of S, and ΦT = ΦRΦS is the Coxeter transformation
of T . If R,S are the matrices corresponding to ΦR, ΦS with respect to the
bases ê1, ê2, then with respect to the basis ê the Coxeter transformation ΦT
corresponds to the matrix(

R Ek1

0mk Im

)
·
(
Ik 0km

E1k S

)
,

where Eij is the matrix with all entries zero except the i, j entry which is 1,
and 0ij is the i× j zero matrix. The Coxeter polynomial of T is then given by

coxT (t) = det(tIk+m − ΦT ) = det

(
tIk −R− Ek,k −Ek,1S
−E1,k tIm − S

)
.

Subtracting the (k + 1)th row from the kth row we obtain

coxT (t) = det

(
tIk −R −tEk,1
−E1,k tIm − S

)
.

Expanding the determinant with respect to the kth row we deduce that

coxT (t) = coxR(t) coxS(t)− t coxR̃(t) coxS̃(t).

The following well-known lemma says that the eigenvalues of a bipartite
graph are symmetric around 0 (see [4, 6]).
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Lemma 3.2. Let Γ be a bipartite graph. If λ is an eigenvalue of the
adjacency matrix AdΓ , then so is −λ.

Proof. Enumerate the vertices of Γ in such a way that its adjacency
matrix has the form

AdΓ =

(
0 B

BT 0

)
.

Suppose that
( x
y

)
is an eigenvector of AdΓ with eigenvalue λ. Then

(−x
y

)
is

an eigenvector of AdΓ with eigenvalue −λ.

The next lemma is due to Hoffman and Smith [10].

Lemma 3.3. If k, p1, . . . , pk ∈ N, 0 ≤ i ≤ k and pj < p′j for some
1 ≤ j ≤ k, then

ρ(cox
S
(i)
p1,...,pj ,...,pk

(t)) ≤ ρ(cox
S
(i)

p1,...,p
′
j
,...,pk

(t)) if j > i,(1)

ρ(cox
S
(i)
p1,...,pj ,...,pk

(t)) ≥ ρ(cox
S
(i)

p1,...,p
′
j
,...,pk

(t)) if j ≤ i.(2)

Moreover, equalities hold if and only if the tree S(i)
p1,...,p′j ,...,pk

is cyclotomic.

We will also need the following lemma.

Lemma 3.4. Suppose that fn(t) = tng(t)+h(t) is a sequence of functions
such that g, h are continuous, fn(zn) = 0 for all n ∈ N and that limn→∞ zn =
z0. If |z0| > 1 then g(z0) = 0, while if |z0| < 1 then h(z0) = 0.

Proof. Suppose that |z0| > 1. The function h is continuous and |g(zn)| =
|h(zn)|/|znn |. Therefore limn→∞ |g(zn)| = 0. Since |g(z0)|− |g(zn)| ≤ |g(z0)−
g(zn)| → 0 as n→∞, we conclude that g(z0) = 0. The proof for |z0| < 1 is
similar.

4. Proof of main theorems

Proof of Theorem 2.1. For p1 ≥ 2 we split the tree S(0)
p1,...,pk by removing

the edge (v1,p1−1, v1,p1) and we apply Proposition 3.1 to get

cox
S
(0)
p1,...,pk

(t) = coxA1(t) cox
S
(0)
p1−1,...,pk

(t)− t cox
S
(0)
p1−2,...,pk

(t)

= (t+ 1) cox
S
(0)
p1−1,...,pk

(t)− t cox
S
(0)
p1−2,...,pk

(t).

We have used the fact that coxA1(t) = t + 1, which can be easily verified
from the definition of the Coxeter polynomial.

For k ≥ 2, p1 ≥ 3 and 1 ≤ i ≤ k, if we split the tree S(0)
p1,...,pk by

removing the edge (v1,p1−2, v1,p1) we end up with A1 and the join of i − 1
Dynkin diagrams of types Dp2 , . . . ,Dpi and k−i+1 Dynkin diagrams of types
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Api+1 , . . . ,Apk ,Ap1−1. We apply Proposition 3.1 to the edge (v1,p1−2, v1,p1)
to get

cox
S
(i)
p1,...,pk

(t) = coxA1(t)[cox
S
(i−1)
p2,...,pk,p1−1

(t)− t cox
S
(i−1)
p2,...,pk,p1−3

(t)].

Proof of Theorem 2.2. For simplicity of notation, we write uj , vj , wj in-
stead of v1,j , v2,j , v3,j respectively.

(a) Applying Proposition 3.1 to the splitting edge (v, u1) of S(0)
p,q,r we get

cox
S
(0)
p,q,r

(t) = coxAp(t) coxAq+r+1(t)− t coxAp−1(t) coxAq(t) coxAr(t).

The polynomial coxAn(t) can be easily calculated using Proposition 3.1. It
satisfies the recurrence

coxAn(t) = coxAn−1(t) + t(coxAn−1(t)− coxAn−2(t))

and is given by the formula coxAn(t) = tn + tn−1 + · · ·+ t+ 1. Therefore

(t− 1)3 cox
S
(0)
p,q,r

(t) = tp+q+r+4 − 2tp+q+r+3 + tp+r+2 + tq+r+2 − tr+2

+ tp+q+2 − tp+2 − tq+2 + 2t− 1

= tp+q+r+2(t− 1)− tr+2(tq − 1) coxAp−1(t)

+ t2(tq − 1) coxAp−1(t)− t+ 1,

and hence

(t− 1) cox
S
(0)
p,q,r

(t) = tr+2(tp+q − coxAp−1(t) coxAq−1(t))

+ t2 coxAp−1(t) coxAq−1(t)− 1

= tr+2F (0)
p,q (t)− (F (0)

p,q )∗(t).

For i = 1, 2 we use the recurrence relation of Theorem 2.1. For i = 1, we get

cox
S
(1)
p,q,r

(t) = (t+ 1)[cox
S
(0)
p−1,q,r

(t)− t cox
S
(0)
p−3,q,r

(t)]

= (t+ 1)tr+2[F
(0)
p−1,q(t)− tF

(0)
p−3,q(t)]

− (t+ 1)[(F
(0)
p−1,q)

∗(t)− t(F (0)
p−3,q)

∗(t)]

= (t+ 1)tr+2[F
(0)
p−1,q(t)− tF

(0)
p−3,q(t)]

− (t+ 1)[F
(0)
p−1,q(t)− tF

(0)
p−3,q(t)]

∗.

The last equality holds because of the following fact. For m1 ≥ m2 ∈ N and
two polynomials f, g with deg f = deg(g)+m1 the reciprocal of f(t)+tm2g(t)
is (f(t) + tm2g(t))∗ = f∗(t) + tm1−m2g∗(t). Therefore to finish the proof for
i = 1 it is enough to show that

F (1)
p,q (t) = F

(0)
p−1,q(t)− tF

(0)
p−3,q(t).
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This is an easy verification:

F
(0)
p−1,q(t)− tF

(0)
p−3,q(t)

= tp+q−2(t− 1)− tp−1 − 1

t− 1
coxAq−1(t) + t

tp−3 − 1

t− 1
coxAq−1(t)

= tp+q−2(t− 1)− (tp−2 + 1) coxAq−1(t).

For i = 2, by Theorem 2.1 we get

cox
S
(2)
p,q,r

(t) = (t+ 1)[cox
S
(1)
q,p−1,r

(t)− t cox
S
(1)
q,p−3,r

(t)]

= (t+ 1)tr+2[F
(1)
q,p−1(t)− tF

(1)
q,p−3(t)]

− (t+ 1)[F
(1)
q,p−1(t)− tF

(1)
q,p−3(t)]

∗,

and to finish the proof it is enough to verify that

F (2)
p,q (t) = F

(1)
q,p−1(t)− tF

(1)
q,p−3(t).

(b) We apply Proposition 3.1 to the edge (wr−2, wr) of S(3)
p,q,r to obtain

cox
S
(3)
p,q,r

(t) = (t+ 1) cox
S
(2)
p,q,r−1

(t)− t(t+ 1) cox
S
(2)
p,q,r−3

(t).

Therefore
t− 1

(t+ 1)3
cox

S
(3)
p,q,r

(t) =
t− 1

(t+ 1)2
cox

S
(2)
p,q,r−1

(t)− t t− 1

(t+ 1)2
cox

S
(2)
p,q,r−3

(t)

= tr+1F (2)
p,q (t)− (F (2)

p,q )∗(t)− trF (2)
p,q (t) + t(F (2)

p,q )∗(t),

and hence
cox

S
(3)
p,q,r

(t) = (t+ 1)3[trF (2)
p,q (t) + (F (2)

p,q )∗(t)].

Remark 4.1. (a) For i = 1 we could have applied Proposition 3.1 to the
splitting edge (up−2, up) and use S(0)

p,q,r = S
(0)
q,r,p to obtain

cox
S
(1)
p,q,r

(t) = (t+ 1)[tpF (0)
q,r (t) + (F (0)

q,r )∗(t)].

Similarly by noting that the graphs S(1)
p,r,q, S

(1)
p,q,r are the same, as also are

S
(2)
p,q,r, S

(2)
q,p,r, Proposition 3.1 applied to the splitting edge (vq−2, vq) gives

cox
S
(2)
p,q,r

(t) = (t+ 1)2[tpF (1)
q,r (t) + (F (1)

q,r )∗(t)].

(b) The polynomials F (i)
p,q(t) are explicitly given by

F (0)
p,q (t) =

tp(tq+2 − 2tq+1 + 1) + tq − 1

(t− 1)2
,
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F (1)
p,q (t) =

tp−2(tq+2 − 2tq+1 + 1)− tq + 1

t− 1

=
tq(tp − 2tp−1 − 1) + tp−2 − 1

t− 1
,

F (2)
p,q (t) = tp−2(tq − 2tq−1 − 1)− tq−2 − 1.

Proof of Theorem 2.3. (1) From Theorem 2.2 and Lemma 3.4 it is enough
to show that the sequence (αr)r∈N defined by αr = ρ(cox

S
(i)
p,q,r

(t)) is con-
vergent. By Lemma 3.3, for i = 0, 1, 2 the sequence (αr)r∈N is increasing.
Since cox

S
(i)
p,q,r

(t) = tr+2F (t) + G(t) where F (t), G(t) are monic polynomi-
als, (αr)r∈N is also bounded, for if M is so large that F (t), G(t) > 0 for
all t ≥ M , then z < M for all z ∈ Z(cox

S
(i)
p,q,r

(t)). Therefore the sequence
(αr)r∈N is indeed convergent.

We now prove that ρ(F
(i)
p,q) is a Pisot number (cf. [15, Lemma 4.3]). Let

ε > 0 be small enough and r be large enough such that ρ(cox
S
(i)
p,q,r

(t)) > 1+ε

and |tr+2F
(i)
p,q(t)| > |(F (i)

p,q)∗(t)| for every |t| = 1 + ε. From Rouché’s theorem
(see [21]) it follows that F (i)

q,r(t) has only one root, say z0, outside the unit
circle. If z0 were a Salem number then we would have F ∗(z0) = 0 and
therefore cox

S
(i)
p,q,r

(z0) = 0 for all large r, contrary to Lemma 3.3. Therefore

z0 = ρ(F
(i)
p,q(t)), and ρ(F

(i)
p,q(t)) is a Pisot number.

(2) As in (1) we define βp = ρ(cox
S
(i)
p,q,r

(t)). From Lemma 3.3, for i =

1, 2, 3, the sequence (βp)p∈N is decreasing. Remark 4.1 implies that for i = 1, 2
we have

(4.1) cox
S
(i)
p,q,r

(t) = (t+ 1)i[tpF (i−1)
q,r (t) + (F (i−1)

q,r )∗(t)].

From Theorem 2.2 and cox
S
(3)
p,q,r

(t) = cox
S
(3)
q,r,p

(t) it follows that (4.1) also
holds for i = 3. Therefore the sequence (βp)p∈N is bounded, and from Lemma
3.4 it converges to ρ(F

(i−1)
q,r (t)).

(3) For q, r ∈ N and i ∈ {0, 1, 2} we define `(i)q,r = limp→∞ ρ(cox
S
(i)
p,q,r

(t)).
By Lemma 3.3, `q,r is monotonic with respect to q. By (1) and (2) and the
form of the polynomials F (0)

q,r (t), F
(1)
q,r (t), the sequence (`

(i)
q,r)q∈N is bounded,

and hence convergent (note that `(i)q,r equals ρ(F
(0)
q,r (t)) or ρ(F

(1)
q,r (t))). From

Remark 4.1, Lemma 3.4 and the fact that `q,r > 1 we deduce the formula
of (3).

(4) The proof for this case is similar to (3). For p, q ∈ N and i ∈ {1, 2, 3}
we define `(i)p,q = limr→∞ ρ(cox

S
(i)
p,q,r

(t)). By Lemma 3.3, `p,q is monotonic in q.

By (1), (2) and the form of F (1)
p,q (t), F

(2)
p,q (t) (see Remark 4.1), the sequence
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(`
(i)
p,q)q∈N is bounded, and hence convergent (`(i)p,q is equal to ρ(F

(1)
p,q (t)) or

ρ(F
(2)
p,q (t))). From Lemma 3.4 and `p,q > 1 we deduce the formula of (4).
(5) The case i = 0 was proved by Lakatos [14], and so we only consider

the cases i = 1, 2, 3. Let `(i)p = limq,r→∞ ρ(cox
S
(i)
p,q,r

(t)). From (4), `(i)p =

ρ(H(t)) where H(t) := tp − 2tp−1 − 1. Hence limp,q,r→∞ ρ(cox
S
(i)
p,q,r

(t)) =

limp→∞ ρ(H(t)) = 2.

Proof of Theorem 2.4. For i ∈ {0, 1, . . . , k − 1} we have

cox
S
(i)
p1,...,pk

(t) =
tpk+1F (t)− F ∗(t)

t− 1
where

F (t) = cox
S
(i)
p1,··· ,pk−1

(t)− coxDp1 (t)
(t) . . . coxDpi

(t) coxApi+1
(t) . . . coxApk−1

(t).

Since the Coxeter polynomials of S(i)
p1,...,pk and Dpj ,Apj are self-reciprocal

(see Corollary 1.2(c)), we have

F ∗(t) = cox
S
(i)
p1,...,pk−1

(t)− t coxDp1 (t)
(t) . . . coxDpi

(t) coxApi+1
(t) . . . coxApk−1

(t).

Proposition 3.1 applied to the splitting edge (v, vk,1) yields

cox
S
(i)
p1,...,pk

(t) = cox
S
(i)
p1,...,pk−1

(t) coxApk
(t)

− t coxDp1 (t)
(t) . . . coxDpi

(t) coxApi+1
(t) . . . coxApk−1

(t) coxApk−1(t)

= cox
S
(i)
p1,...,pk−1

(t)
tpk+1 − 1

t− 1

− t coxDp1 (t)
(t) . . . coxDpi

(t) coxApi+1
(t) . . . coxApk−1

(t)
tpk − 1

t− 1
,

which is exactly the polynomial t
pk+1F (t)−F ∗(t)

t−1 .

Therefore limpk→∞ ρ(cox
S
(i)
p1,...,pk

(t)) = ρ(F ). Similar formulas hold for
i = k and inductively we show that

lim
p2,...,pk→∞

ρ(cox
S
(i)
p1,...,pk

(t)) = ρ(G)

where

G(t) =

{
tp1 − (k − 1)tp1−1 − k + 2 if i 6= 0,
tp1+1 − (k − 1)tp1 + k − 2 if i = 0.

Hence the assertion follows.

Proof of Theorem 2.7. Let T (i) = (T (i)
0 , T (i)

1 ) where T (i)
0 is the set of

vertices of T (i). We denote by T [i] the join of the graphs T (1), . . . , T (i) at
the vertices vi ∈ T (i)

0 . The graph T (i) looks like the one in Figure 5.
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v d d
v1

T (1)
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# 

H
HHH

HHH
HHH d"!
# 

v2

T (2)

. .
.

d"!
# 
vn T (i)

Fig. 5. The join of the graphs T (1), . . . , T (i)

Let i ∈ {2, . . . , k}. Applying Proposition 3.1 to the edge (v, vi) we get

coxT [i](t) = coxT [i−1](t) coxT (i)(t)− t coxT (1)(t) . . . coxT (i−1)(t) cox
T̃ (i)

(t),

where we denote by T̃ (i) the induced subgraph of T (i) with the set of vertices
T̃ (i)

0 = T (i)
0 \ {vi}.

Set Pk(t) = coxT (1)(t) . . . cox
T̃ (i)

(t) . . . coxT (k)(t). Then

coxT [k](t) = coxT [k−1](t) coxT (k)(t)− tPk(t)
= coxT [k−2](t) coxT (k−1)(t) coxT (k)(t)

− t coxT (1)(t) . . . coxT (k−2)(t) cox
T̃ (k−1)

(t) coxT (k)(t)− tPk(t)

= coxT [k−2](t) coxT (k−1)(t) coxT (k)(t)− t(Pk−1(t)+Pk(t))

. . .

= coxT [0](t) coxT (1)(t) . . . coxT (k)(t)− t(P1(t) + · · ·+ Pk(t))

= (t+ 1) coxT (1)(t) . . . coxT (k)(t)− t(P1(t) + · · ·+ Pk(t)).

Since z is a root of Pi(t) of multiplicity m−mi, the theorem follows.
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