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ON THE DIOPHANTINE EQUATION 2>+ x+1=yz

A. SCHINZEL (Warszawa)

Abstract. All solutions of the equation z® 4+ = + 1 = yz in non-negative integers
x,y, z are given in terms of an arithmetic continued fraction.

As announced in [2], the following theorem holds.
THEOREM. All solutions of the equation
(1) 2 +r+1=yz

in non-negative integers x,y, z such that y < z and only those are given by
the formulae

(2) v = Ag_ 1A + Br—1Bg + A Bg_1,

(3) y=A7_+Ap_1By1 + B,

(4) z = A} + AyBy, + By,

where Ay, B are the numerator and the denominator, respectively, of the
continued fraction [by,by,...,bg], k > 0 is even, by is an integer, and b;
(i =1,...,k) are positive integers, except if k =0, by < 0, when one has to

take x = |bg| — 1.
LEMMA 1. For k = 0 the formulae f give
r=1by, y=1, z:bg+bo+1.
Proof. Clear. u

LEMMA 2. If k > 2 is even, by is an integer, and b; (i = 1,...,k) are
positive integers, then

Ag—1Ag + B 1By + ApBp—1 > 0.
Proof. If k=2, by =1, we have
Ai=by+1, Bi=1, Ay=ba(bg+1)+by, By=0by+1,
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hence by ,
x = (by + 1)b2 4 (3bg + 2)bg + 3by + 1
4(ba +1)(3ba + 1) — (3by +2)?  3b3 + 4by
- 4 N 4
If K> 2, kby > 2, then By_1 > 2, By > 3, and taking

(5) o—bo-i-'—‘ '—‘

we obtain by [3] Chapter II, Theorem 10],

> 0.

1
(6) A1 =Br_1&+p, |p| < B, Ay, = Bj&o,
hence by ,
By,

3
T = Bj_ 1Bk(§0+§o+1)—|—ka> Bk—?_Bk>3l

LEMMA 3. Ifk > 1 and by are integers, and b; (i = 1,...,k) are positive
integers, then
(7) A? |+ Ay 1By + B}, > A? + ApBy, + B
implies kby = 1 and by < 0.

Proof. 1f kb = 1, we have

A2 4+ Ay 1By_1+ B | =b3+b+1,
A%+ ApBy + B} = b3 + 3bo + 3,

and thus implies 2by + 2 < 0, i.e. by < 0.

If kby > 1 and (5] holds, then by [3, Chapter II, Theorem 10] we have @,
hence

A} 4+ A B+ By = Bl (§ + &+ 1) + B (260p + p) + 07
< Bl (8 +&+1)+26+2,
A? + AxBy + B = B + & + 1),
A2 + ApB+ B} — A} | — Ay_1By_1 — B},
> (B — Bi_)(& + &+ 1) — 26 — 2
>3(2+&+1)—26—-2>32+6+1>11/4. m
Proof of the Theorem. Necessity. Suppose that holds, where z,vy, z

are non-negative integers and y < z. Then by [I, Theorem 131] applied with
a=b=c=1wehave G =1, ¢c=f =g =1, and there exist integers
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u, v, €, n such that

(8) 1 =g —un,

(9) either z = u + nv + nu, or x = —&u — nv — &,
(10) y =&+ &+’

(11) z=u? +uv + 07

Let 6 = sgnv, € = sgnn. If 6 = 0, from we obtain u = +1, n = +1,
¢ arbitrary, thus by @*,
either x = +£ — 1, or x = F¢;

y=EFE+1, 2=1,
and since > 0, either 2 = €| =1 (|¢| > 1),y =& —|¢|+1, 2 = 1, or
r=¢,y=8E+£]+1, z = 1. It follows that y > z unless £ = 0,£1, z = 0,
y = z = 1. These values are obtained, by Lemma (1} from formulae f
for k =0, bg = 0.
If e = 0, we deduce from that 6 = £1, £ = +£1, u is arbitrary, thus,

by (@)D,
either x = +u, or x = Fu — 1;
y:l7 Z:UQZl:u+1,
and since > 0, either . = |ul, y = 1, 2 = v®> + |u| + 1, or & = |u| — 1
(Ju| > 1), y = 1, 2 = u? — |u| + 1. These values are obtained, by Lemma
from formulae (2)—(4) for k =0, by = |u| or |u| — 1, respectively.
If €6 # 0, from we obtain

(12) [vl(e€) — (du)ln| = €6 = +1.

If |v| = |n], then |v| = |n| =1, v =4, n = ¢, and since > 0 we obtain
for ed =1, z=w+0)?% y=u>+30+3, z=u’+du+1,
fored = -1, z=1u> y=u®—du+1, z=u’+du+l.

Since y < z, for €6 = 1 we obtain du < 0; for €d = —1, du > 0. These values
of z,y, z are obtained from formulae (2)-({) for k =2, by = —1, by = |u+ 4|
or |ul, respectively, by = 1.

If |v| # |n|, then |v] < |n| or |v| > |n|. In the former case by [3, Chap-
ter II, Theorem 13] there exist integers k > 1 and by and positive integers b;
(¢t =1,...,k) such that du = Ag_1, |v| = Bi_1, €§ = Ay, |n| = By, hence
u=0Ap_1,v=0By_1, { =cAy, n =eByg, and by ,

(13) ed = (—1)k1,

Thus either z = 5(5(Ak,1Ak + Bi_1Bj + Akkal)y or r = —65(Ak,1Ak +
By_1By + ApBg-1),

z = A%—l + Ak—lBk—l + Bl%—l? Yy = A% + AkBk + B%
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Since y < z, by Lemmawe have kb; = 1 and by < 0, hence by , ed =1.
It follows that = = (bp+1)2, y = bg+3bo+3, z = b%—i—bo + 1. These values of
x,y, z are obtained from formulae f for by = —1, b} = |bo + 1|, b5, = 1.
If |[v| > |n| > 0, by [3, Chapter II, Theorem 13] there exist integers k > 1
and by and positive integers b; (i = 1,..., k) such that
du= Ay, |v|=DBk, e&=Ar1, nl=DBi1,

hence
u = 5Ak7 v = 6Bk7 € = EAk:—la n= €Bk—17

and by ,
g6 = (—1)k.

If k£ is even, then

either z = 6(5(Ak_1Ak + Br_1Br + AkBk—l) or
x = —e6(Ap_14A; + Byp_1Bi, + Ay_1By),
y=A? |+ Ap_1By_1+ B |, z=A2+ AB,+ BZ,

thus, by Lemma |2| we obtain formulae f.

Ifkisodd,ed =—-1,£=0,then k=1,by =0; u =4, v=4b, n = —¢;
v =by,y =12 =02+ b + 1. These values of x,y,z are obtained, by
Lemmal[l] from formulae (2)—(4) for &' =0, b} = b1.

Ifkisodd,ed = -1, u=0,then k=1,bp= -1,y =1;v =19, & =9,
n=—06;x=0,y=2z=1. These values of z,y, z are obtained, by Lemma/[l]
from formulae (2)—() for ¥’ =0, bj, = 0.

If kis odd, ed = —1, |u| = [{], then A1 = Ag, bp = —1, by = 2;
u=§¢=0,v=n=-0 =1,y =1, 2z = 3. These values of x,y, z are
obtained, by Lemma (1|, from formulae f for ¥ =0, by = 1.

If k£ is odd, €6 = —1, then |u| < |{| is impossible since |[v| > |n| > 0,
v€ — nu = 1; hence |u|] > [£| > 0, sgn Ay, = sgn Ay = a = £1, and we
apply [3l Chapter II, Theorem 13] to the equation

ul(=dan) = [¢](—aev) = 1.

We infer the existence of integers | > 1 and bj and positive integers b/
(¢ =1,...,1) such that

lu| = B;, —eav=A4;, |{|=DB_1, —dan=A_1,

thus (—1)! =1, [ even.
On the other hand,

u=4daB;, v=—cavd;, E=caB;_1, n=-daA;_;,
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hence using € = —1, we get
r=-B_1B — A 1A —A 1B or x=DB_ 1B+ A_1A + B_14,,
y=A? |+ A_1B_1+B},, z=A}+AB + B}
Since z > 0 we have
x=A_1A;+ B_1B;+ B_1 A
Indeed, by Lemma
Bi1Bi+ A1 A+ Ai_1B; = Aj_1 A+ Bi_1B,+ ABj_1 + 1> 0.

The proof is complete.

Sufficiency. It has been proved in [2] that formulae f give for every
even k and b; (i = 0,..., k) solutions of equation . The same follows from
the following identity, given by the referee:

(a* 4+ ab+b*)(A* + AB + B?) — ((aA + bB + bA)* + (aA + bB + bA) + 1)
= (aB—Ab—1)(aA+aB+bB+1)

and from the well known formula A,_1Br — ApBr_1 = (—l)k. The inequal-
ities z > 0 and 0 < y < z follow from Lemmas [2] and [3| =

It is not enough to assume, as I originally conjectured, that b; > 0
(1 =0,...,k). Take the example x = 67, y = 49, z = 93. If all b; > 0, then
all A; > 0 and all B; > 0, hence if f hold, then Ap_1 =3, By_1 =5,
A =4, B =7. If all b; =0, then

1—(=1)¢ —1)¢
B

2 2
which is impossible. Let j be the greatest ¢ < k such that b; > 0. Then for
alle > 45— 1,
3 for i odd, j
Ai:{ or i o B {5 for i odd,

A;

4 for 7 even, 7 for i even.

Ifj is odd, then Aj < Aj—l, which contradicts Aj = bjAj—l + Aj_Q. Ifj is
even, then b; =1, A; o =1, Bj_9 =3, j > 4, and since A_; = 1 we have
either by =1, b; =0 (O<i§j*2),
or b;=0 (0§l<]—2), bjfzzl.

These cases give B; = (1+ (=1)1)/2(0<i < j—2)or B;=0(0<i < j—2),
respectively, which contradicts Bj_o = 3.

In a similar way one may find all integral solutions of the equation az?+
bx+c = yz, where a, b, ¢ are given integers such that b? —4ac is not a perfect
square. The resulting formulae for z, y, z will be in general more complicated
than those given in the Theorem.
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