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ON THE DIOPHANTINE EQUATION x2 + x+ 1 = yz

BY

A. SCHINZEL (Warszawa)

Abstract. All solutions of the equation x2 + x + 1 = yz in non-negative integers
x, y, z are given in terms of an arithmetic continued fraction.

As announced in [2], the following theorem holds.

Theorem. All solutions of the equation

(1) x2 + x+ 1 = yz

in non-negative integers x, y, z such that y ≤ z and only those are given by
the formulae

x = Ak−1Ak +Bk−1Bk +AkBk−1,(2)

y = A2
k−1 +Ak−1Bk−1 +B2

k−1,(3)

z = A2
k +AkBk +B2

k,(4)

where Ak, Bk are the numerator and the denominator, respectively, of the
continued fraction [b0, b1, . . . , bk], k ≥ 0 is even, b0 is an integer, and bi
(i = 1, . . . , k) are positive integers, except if k = 0, b0 < 0, when one has to
take x = |b0| − 1.

Lemma 1. For k = 0 the formulae (2)–(4) give

x = b0, y = 1, z = b20 + b0 + 1.

Proof. Clear.

Lemma 2. If k ≥ 2 is even, b0 is an integer, and bi (i = 1, . . . , k) are
positive integers, then

Ak−1Ak +Bk−1Bk +AkBk−1 ≥ 0.

Proof. If k = 2, b1 = 1, we have

A1 = b0 + 1, B1 = 1, A2 = b2(b0 + 1) + b0, B2 = b2 + 1,
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hence by (2),

x = (b2 + 1)b20 + (3b2 + 2)b0 + 3b2 + 1

≥ 4(b2 + 1)(3b2 + 1)− (3b2 + 2)2

4
=

3b22 + 4b2
4

> 0.

If k ≥ 2, kb1 > 2, then Bk−1 ≥ 2, Bk ≥ 3, and taking

(5) ξ0 = b0 +
1

b1
+ · · ·+

1

bk
,

we obtain by [3, Chapter II, Theorem 10],

(6) Ak−1 = Bk−1ξ0 + ρ, |ρ| < 1

Bk−1
, Ak = Bkξ0,

hence by (2),

x = Bk−1Bk(ξ20 + ξ0 + 1) +Bkρ ≥
3

2
Bk −

Bk

2
= Bk ≥ 3.

Lemma 3. If k ≥ 1 and b0 are integers, and bi (i = 1, . . . , k) are positive
integers, then

(7) A2
k−1 +Ak−1Bk−1 +B2

k−1 ≥ A2
k +AkBk +B2

k

implies kb1 = 1 and b0 < 0.

Proof. If kb1 = 1, we have

A2
k−1 +Ak−1Bk−1 +B2

k−1 = b20 + b0 + 1,

A2
k +AkBk +B2

k = b20 + 3b0 + 3,

and thus (7) implies 2b0 + 2 ≤ 0, i.e. b0 < 0.

If kb1 > 1 and (5) holds, then by [3, Chapter II, Theorem 10] we have (6),
hence

A2
k−1 +Ak−1Bk−1 +B2

k−1 = B2
k−1(ξ

2
0 + ξ0 + 1) +Bk−1(2ξ0ρ+ ρ) + ρ2

< B2
k−1(ξ

2
0 + ξ0 + 1) + 2ξ0 + 2,

A2
k +AkBk +B2

k = B2
k(ξ20 + ξ0 + 1),

A2
k +AkBk +B2

k −A2
k−1 −Ak−1Bk−1 −B2

k−1

≥ (B2
k −B2

k−1)(ξ
2
0 + ξ0 + 1)− 2ξ0 − 2

≥ 3(ξ20 + ξ0 + 1)− 2ξ0 − 2 ≥ 3ξ20 + ξ0 + 1 ≥ 11/4.

Proof of the Theorem. Necessity. Suppose that (1) holds, where x, y, z
are non-negative integers and y ≤ z. Then by [1, Theorem 131] applied with
a = b = c = 1 we have G = 1, c = f = g = 1, and there exist integers
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u, v, ξ, η such that

1 = vξ − uη,(8)

either x = ξu+ ηv + ηu, or x = −ξu− ηv − ξv,(9)

y = ξ2 + ξη + η2,(10)

z = u2 + uv + v2.(11)

Let δ = sgn v, ε = sgn η. If δ = 0, from (8) we obtain u = ±1, η = ±1,
ξ arbitrary, thus by (9)–(11),

either x = ±ξ − 1, or x = ∓ξ;
y = ξ2 ∓ ξ + 1, z = 1,

and since x ≥ 0, either x = |ξ| − 1 (|ξ| ≥ 1), y = ξ2 − |ξ| + 1, z = 1, or
x = |ξ|, y = ξ2 + |ξ|+ 1, z = 1. It follows that y > z unless ξ = 0,±1, x = 0,
y = z = 1. These values are obtained, by Lemma 1, from formulae (2)–(4)
for k = 0, b0 = 0.

If ε = 0, we deduce from (8) that δ = ±1, ξ = ±1, u is arbitrary, thus,
by (9)–(11),

either x = ±u, or x = ∓u− 1;

y = 1, z = u2 ± u+ 1,

and since x ≥ 0, either x = |u|, y = 1, z = u2 + |u| + 1, or x = |u| − 1
(|u| ≥ 1), y = 1, z = u2 − |u|+ 1. These values are obtained, by Lemma 1,
from formulae (2)–(4) for k = 0, b0 = |u| or |u| − 1, respectively.

If εδ 6= 0, from (8) we obtain

(12) |v|(εξ)− (δu)|η| = εδ = ±1.

If |v| = |η|, then |v| = |η| = 1, v = δ, η = ε, and since x ≥ 0 we obtain

for εδ = 1, x = (u+ δ)2, y = u2 + 3δ + 3, z = u2 + δu+ 1,

for εδ = −1, x = u2, y = u2 − δu+ 1, z = u2 + δu+ 1.

Since y ≤ z, for εδ = 1 we obtain δu < 0; for εδ = −1, δu ≥ 0. These values
of x, y, z are obtained from formulae (2)–(4) for k = 2, b0 = −1, b1 = |u+ δ|
or |u|, respectively, b2 = 1.

If |v| 6= |η|, then |v| < |η| or |v| > |η|. In the former case by [3, Chap-
ter II, Theorem 13] there exist integers k ≥ 1 and b0 and positive integers bi
(i = 1, . . . , k) such that δu = Ak−1, |v| = Bk−1, εξ = Ak, |η| = Bk, hence
u = δAk−1, v = δBk−1, ξ = εAk, η = εBk, and by (8),

(13) εδ = (−1)k−1.

Thus either x = εδ(Ak−1Ak + Bk−1Bk + AkBk−1), or x = −εδ(Ak−1Ak +
Bk−1Bk +AkBk−1),

z = A2
k−1 +Ak−1Bk−1 +B2

k−1, y = A2
k +AkBk +B2

k.
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Since y ≤ z, by Lemma 3 we have kb1 = 1 and b0 < 0, hence by (13), εδ = 1.
It follows that x = (b0 +1)2, y = b20 +3b0 +3, z = b20 +b0 +1. These values of
x, y, z are obtained from formulae (2)–(4) for b′0 = −1, b′1 = |b0 + 1|, b′2 = 1.

If |v| > |η| > 0, by [3, Chapter II, Theorem 13] there exist integers k ≥ 1
and b0 and positive integers bi (i = 1, . . . , k) such that

δu = Ak, |v| = Bk, εξ = Ak−1, |η| = Bk−1,

hence

u = δAk, v = δBk, ξ = εAk−1, η = εBk−1,

and by (8),

εδ = (−1)k.

If k is even, then

either x = εδ(Ak−1Ak +Bk−1Bk +AkBk−1) or

x = −εδ(Ak−1Ak +Bk−1Bk +Ak−1Bk),

y = A2
k−1 +Ak−1Bk−1 +B2

k−1, z = A2
k +AkBk +B2

k,

thus, by Lemma 2, we obtain formulae (2)–(4).

If k is odd, εδ = −1, ξ = 0, then k = 1, b0 = 0; u = δ, v = δb1, η = −εδ;
x = b1, y = 1, z = b21 + b1 + 1. These values of x, y, z are obtained, by
Lemma 1, from formulae (2)–(4) for k′ = 0, b′0 = b1.

If k is odd, εδ = −1, u = 0, then k = 1, b0 = −1, b1 = 1; v = δ, ξ = δ,
η = −δ; x = 0, y = z = 1. These values of x, y, z are obtained, by Lemma 1,
from formulae (2)–(4) for k′ = 0, b′0 = 0.

If k is odd, εδ = −1, |u| = |ξ|, then Ak−1 = Ak, b0 = −1, b1 = 2;
u = ξ = δ, v = η = −δ; x = 1, y = 1, z = 3. These values of x, y, z are
obtained, by Lemma 1, from formulae (2)–(4) for k′ = 0, b′0 = 1.

If k is odd, εδ = −1, then |u| < |ξ| is impossible since |v| > |η| > 0,
vξ − ηu = 1; hence |u| > |ξ| > 0, sgnAk = sgnAk−1 = a = ±1, and we
apply [3, Chapter II, Theorem 13] to the equation

|u|(−δaη)− |ξ|(−aεv) = 1.

We infer the existence of integers l ≥ 1 and b′0 and positive integers b′i
(i = 1, . . . , l) such that

|u| = Bl, −εav = Al, |ξ| = Bl−1, −δaη = Al−1,

thus (−1)l = 1, l even.

On the other hand,

u = δaBl, v = −εavAl, ξ = εaBl−1, η = −δaAl−1,
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hence using εδ = −1, we get

x = −Bl−1Bl −Al−1Al −Al−1Bl or x = Bl−1Bl +Al−1Al +Bl−1Al,

y = A2
l−1 +Al−1Bl−1 +B2

l−1, z = A2
l +AlBl +B2

l .

Since x ≥ 0 we have

x = Al−1Al +Bl−1Bl +Bl−1Al.

Indeed, by Lemma 2,

Bl−1Bl +Al−1Al +Al−1Bl = Al−1Al +Bl−1Bl +AlBl−1 + 1 > 0.

The proof is complete.

Sufficiency. It has been proved in [2] that formulae (2)–(4) give for every
even k and bi (i = 0, . . . , k) solutions of equation (1). The same follows from
the following identity, given by the referee:

(a2 + ab+ b2)(A2 +AB +B2)−
(
(aA+ bB + bA)2 + (aA+ bB + bA) + 1

)
= (aB −Ab− 1)(aA+ aB + bB + 1)

and from the well known formula Ak−1Bk −AkBk−1 = (−1)k. The inequal-
ities x ≥ 0 and 0 ≤ y ≤ z follow from Lemmas 2 and 3.

It is not enough to assume, as I originally conjectured, that bi ≥ 0
(i = 0, . . . , k). Take the example x = 67, y = 49, z = 93. If all bi ≥ 0, then
all Ai ≥ 0 and all Bi ≥ 0, hence if (2)–(4) hold, then Ak−1 = 3, Bk−1 = 5,
Ak = 4, Bk = 7. If all bi = 0, then

Ai =
1− (−1)i

2
, Bi =

1 + (−1)i

2
,

which is impossible. Let j be the greatest i ≤ k such that bi > 0. Then for
all i ≥ j − 1,

Ai =

{
3 for i odd,

4 for i even,
Bi =

{
5 for i odd,

7 for i even.

If j is odd, then Aj < Aj−1, which contradicts Aj = bjAj−1 + Aj−2. If j is
even, then bj = 1, Aj−2 = 1, Bj−2 = 3, j ≥ 4, and since A−1 = 1 we have

either b0 = 1, bi = 0 (0 < i ≤ j − 2),

or bi = 0 (0 ≤ i < j − 2), bj−2 = 1.

These cases give Bi = (1 + (−1)i)/2 (0 ≤ i ≤ j−2) or Bi = 0 (0 ≤ i ≤ j−2),
respectively, which contradicts Bj−2 = 3.

In a similar way one may find all integral solutions of the equation ax2 +
bx+c = yz, where a, b, c are given integers such that b2−4ac is not a perfect
square. The resulting formulae for x, y, z will be in general more complicated
than those given in the Theorem.
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