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by

David Brink (København)

1. Introduction. Unbeknownst to its European discoverers—Gregory
(1638–1675) and Leibniz (1646–1716)—the formula

(1)
π

4
=
∞∑
n=0

(−1)n

2n+ 1

had been found in India already in the fourteenth or fifteenth century. It
first appeared in Sanskrit verse in the book Tantrasangraha from about 1500
by the Indian mathematician, astronomer and universal genius Nilakantha
(1445–1545). Unlike Gregory and Leibniz, Nilakantha also gave approxima-
tions of the tail sums and found a more rapidly converging series,

(2)
π

4
=

3

4
+

∞∑
n=0

(−1)n

(2n+ 3)3 − (2n+ 3)
.

The reader is referred to Roy [14] for more details on this fascinating story.

We show here that (2) is the first step of a certain series transformation
that eventually leads to the accelerated series

(3) π =

∞∑
n=0

(5n+ 3)n!(2n)!

2n−1(3n+ 2)!
,

in much the same way as the difference operator leads to the Euler transform

(4) π =

∞∑
n=0

2n+1n!n!

(2n+ 1)!
.

We call (3) the Nilakantha transform of (1) and note that it converges
roughly as 13.5−n, whereas the Euler transform converges as 2−n. Applying
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the Nilakantha transformation to the Newton–Euler formula [8]

(5)
π

2
√

2
=
∞∑
n=0

(−1)n(n−1)/2

2n+ 1

gives the accelerated series (A.5) (see the Appendix), also with convergence
13.5−n. Similar transformations of these and other formulas lead to other
accelerated series for π which are collected in the Appendix in a standardized
form, with (3) corresponding to (A.1).

Several of the formulas in the Appendix are well known from the litera-
ture. A series equivalent to (A.1) is attributed to Gosper in [2, eq. (16.81)].
The series (A.2) is due to Adamchik and Wagon [1] and is one of the simplest
of all “BBP-like” formulas [2, Chapter 10]. The even simpler BBP-formula
(A.14) appears in [3, eq. (18)] with two terms at a time, attributed to Knuth.

I note that the formulas in the Appendix emerged quite naturally as
accelerations of simple series, and all were derived by hand.

As we shall see, this acceleration method can also be used to transform
divergent series into convergent ones, in a process more properly called series
deceleration. For example, decelerating the divergent series

(6)
π

3
√

3
=

∞∑
n=0

(−3)n

2n+ 1

gives the convergent, fractional BBP-formula (A.18). This argument, of
course, is no proof, but I also give an alternative, rigorous demonstration.

The general principle behind these formulas is an acceleration scheme
that allows one to approximate an alternating, “sporadic” sum

S = a0 − ak + a2k − a3k + · · ·

from a finite number of terms a0, a1, . . . , an of the complete sequence. The
general theory—in particular the idea of letting the ai be the moments of
a measure, writing S as an integral with respect to that measure, and ap-
proximating the integrand by means of Chebyshev polynomials—is strongly
indebted to that in [7] which it generalizes from k = 1 to arbitrary k.

As another example of this method, we show how to compute numerically
the constant

(7) K =

∞∑
n=0

(−1)n
ζ(n+ 1/2)

2n+ 1
= −2.1577829966 . . . ,

making the most of a small number of given integer and half-integer zeta-
values, ζ(n) and ζ(n + 1/2). The constant K is known as the Schnecken-
konstante and arises in connection with the Spiral of Theodorus [6].
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2. Alternating, sporadic series. Let µ be a finite, signed measure
on [0, 1] with moments

(8) ai =

1�

0

xi dµ, i ≥ 0,

converging to zero for i→∞, and consider the alternating, sporadic series

(9) S =

1�

0

dµ

1 + xk
=

∞∑
i=0

(−1)iaik

for some integer k ≥ 1. Let there be given a polynomial

(10) P (x) =

m+k−1∑
i=0

bix
i

with P (u) = 1 for uk = −1, and write

(11) Q(x) =
1− P (x)

1 + xk
=

m−1∑
i=0

cix
i.

Define a new measure µ′ with density P (x) with respect to µ, i.e., dµ′ =
P (x)dµ, and moments

a′i =

1�

0

xi dµ′ =

m+k−1∑
j=0

bjai+j ,

and consider the transformed series

S′ =

1�

0

dµ′

1 + xk
=

∞∑
i=0

(−1)ia′ik.

Write the difference between the old and the new series as

∇S = S − S′ =
1�

0

Q(x) dµ =

m−1∑
i=0

ciai.

Repeating this process gives a sequence of measures µ(n) with densities
dµ(n) = P (x)ndµ and moments

(12) a
(n)
i =

1�

0

xi dµ(n)

as well as a sequence of transformed series

(13) S(n) =

1�

0

dµ(n)

1 + xk
=

∞∑
i=0

(−1)ia
(n)
i
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with differences

(14) ∇S(n) = S(n) − S(n+1) =

1�

0

Q(x) dµ(n) =

m−1∑
i=0

cia
(n)
i .

After n steps one has

S =

n−1∑
i=0

∇S(i) + S(n).

If M is the maximum of |P (x)| on the interval [0, 1], then (13) gives the
bound

(15) |S(n)| ≤Mn
1�

0

d|µ|
1 + xk

,

cf. Remark 1 below. So if M < 1, one gets the accelerated series

(16) S =

∞∑
n=0

∇S(n)

with convergence Mn, i.e., ∇S(n) = O(Mn).

Remark 1. A signed measure may take negative as well as positive
values. Even if µ were required to be positive, the transformed measure µ′

would still take negative values if the density function P (x) did. By Jordan’s
Decomposition Theorem [4], one can write µ = µ+−µ− with unique positive
measures µ+ and µ− with disjoint supports. The theory of integration with
respect to a signed measure can thus be reduced to that of a usual, positive
measure. Absolute integrals such as the one appearing in (15) are defined
by means of the total variation |µ| = µ+ + µ−.

The assumption that the moments (8) converge to zero is equivalent to
µ({1}) = 0 and guarantees that

1

1 + xk
= 1− xk + x2k − · · ·

can be integrated termwise, say, by Lebesgue’s Dominated Convergence The-
orem.

It is a result of Hausdorff [12, Satz I] that a sequence of real numbers
a0, a1, a2, . . . is the sequence of moments of a finite, positive measure on [0, 1]
if and only if it is totally monotonic, i.e.,

(17) ∇nai ≥ 0 for all i, n ≥ 0.

As above, ∇ai = ai − ai+1 denotes the negated forward difference operator.
Similarly, also by Hausdorff [12, Satz II], the ai are the moments of a finite,
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signed measure on [0, 1] if and only if

(18) sup
n≥0

n∑
i=0

∣∣∣∣(ni
)
∇n−iai

∣∣∣∣ <∞.
The latter condition thus implies that (ai) is the difference between two
totally monotonic sequences. It is seen directly from the identity

n∑
i=0

(
n

i

)
∇n−iai = a0

that (17) implies (18).
Note that the moments (8) need not be of the same sign, not even even-

tually, so that in reality the series (9) is not necessarily alternating.
For later use we also note that ai = 1/(i+ 1) and a∗i = 1/(2i+ 1) are the

moments of the usual Lebesgue measure µ and the measure µ∗ with density
dµ∗ = dµ/2

√
x, respectively.

Remark 2. In order to compute S numerically, we approximate it by
the first difference ∇S. To minimize the error S′, we have to choose P (x)
as a polynomial of high degree that approximates zero uniformly on [0, 1].
In light of (11), this suggests taking

P (x) = 1− (1 + xk)Q(x),

where the polynomial Q(x) is a Chebyshev approximation to 1/(1 + xk).
This will be carried out in more detail in Sections 4 and 6.

Remark 3. On the other hand, if we wish to transform S into an exact,
accelerated series (16), we have to choose P (x) as a simple polynomial of low
degree, so that the terms (14) can be computed explicitly. If, for example,
P (x) is of the form xj(1− x)n, then the terms of the transformed series S′

are a′i = ∇nai+j .
The binomial sum

n∑
j=0

(
n

j

)
(−1)j

x+ j
=

n!

x(x+ 1) · · · (x+ n)

is well known. It holds as an identity in Q(x) and can be easily shown as a
partial fraction decomposition. The substitution x = i+ 1 thus gives

(19) ∇nai =
n!i!

(n+ i+ 1)!

for the sequence ai = 1/(i+ 1). Similarly, letting x = i+ 1/2 gives

(20) ∇na∗i =
4nn!(2i)!(n+ i)!

i!(2n+ 2i+ 1)!

for a∗i = 1/(2i+ 1). This will be of use later.
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3. The Nilakantha transform. Let k = 2 throughout this section.
Then P (x) must satisfy P (±i) = 1. We can take for P (x) any product of

−x2, x(1− x)2

2
, −(1− x)4

4
.

Let

(21) P (x) =
x(1− x)2

2
,

so that

Q(x) = 1− x

2
.

The transformed series S′ has terms

a′i =
∇2ai+1

2
=
ai+1 − 2ai+2 + ai+3

2
,

hence the first step of the transformation becomes

(22) S =

(
a0 −

a1
2

)
+
∞∑
i=0

ai+1 − 2ai+2 + ai+3

2
.

The n times transformed series S(n) has terms

a
(n)
i =

1

2n
∇2nai+n,

so that we get the Nilakantha transform

(23) S =

∞∑
n=0

1

2n
∇2n

(
an −

an+1

2

)
with convergence 13.5−n, since

(24) M = P (1/3) = 2/27.

Example 4. To accelerate the Gregory–Leibniz series (1), we let ai =
1/(i+ 1). The first step (22) of the transformation is precisely Nilakantha’s
series (2). To compute the fully accelerated series (23), we use the iden-
tity (19) and get (A.1).

Example 5. Taking instead P (x) as

(25) − (1− x)4

4
, −x

3(1− x)2

2
, −x

4(1− x)4

4

gives the three series (A.2), (A.3), (A.4) with M = 1/4, 54/3125, 1/1024,
respectively.

Example 6. The Newton–Euler series (5) can be rewritten as

π

2
√

2
=
∞∑
n=0

(−1)n

4n+ 1
+
∞∑
n=0

(−1)n

4n+ 3
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with two alternating, sporadic series corresponding to a∗i = 1/(2i + 1) and
a∗∗i = 1/(2i+ 3). Accelerating each series separately using

P (x) =
x(1− x)2

2
, −(1− x)4

4
, −x

3(1− x)2

2

and adding the results gives (A.5), (A.6), (A.7), respectively.

Remark 7. It follows in advance from (24) that (A.1) and (A.5) con-
verge as 13.5−n, but this is also evident from the expressions themselves,
by Stirling’s Formula. A similar remark applies to all other formulas in the
Appendix.

Remark 8. The factors

(2n)!(2n)!(3n)!

n!(6n)!
,

(2n)!(5n)!(6n)!

(3n)!(10n)!

appearing in (A.5) and (A.7) happen to be reciprocal integers by a criterion
of Landau (1900), anticipated by Chebyshev (1852) and Catalan (1874).
Such expressions are not too common and have been completely classified
(in a suitable sense) [5].

Remark 9. I stress that there is no evidence that Nilakantha derived
(2) the way we have done here, much less that he knew (3). Of course, the
transformation (22) is straightforward to verify directly, making (1) and (2)
essentially equivalent.

4. Numerical approximations. Let k ≥ 1 be given. The Chebyshev
polynomials of the first kind, Tm(x), are given recursively by T0(x) = 1,
T1(x) = x and

Tm(x) = 2xTm−1(x)− Tm−2(x).

The zeros of Tm(x) are

ηi = cos
(2i− 1)π

2m
, i = 1, . . . ,m.

Let Q(x) be the Chebyshev approximation of order m of 1/(1 + xk) on
the interval [0, 1], i.e., Q(x) is the polynomial of degree less than m agreeing
with 1/(1 + xk) at the m points (1 + ηi)/2. Since (1 + ηi)/2 are the zeros of
Tm(1− 2x), Q(x) satisfies

Q(x) ≡ 1

1 + xk
modulo Tm(1− 2x)

and can be computed from this congruence by the Euclidean Algorithm.
Thus, P (x) will be the polynomial of degree less than m + k with zeros
(1 + ηi)/2 and P (u) = 1 for uk = −1. Lagrange interpolation gives the
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explicit expression

P (x) = Tm(1− 2x)
∑

uk=−1

u

βmk
· 1 + xk

u− x

with βm = Tm(1− 2u).
In order to evaluate the maximum M of |P (x)| for 0 ≤ x ≤ 1 as m→∞,

first note |Tm(1−2x)| ≤ 1. For a fixed u, the numbers βm satisfy β0 = 1, β1 =
1−2u and the recursion βm = (2−4u)βm−1−βm−2. Hence, βm = (λm1 +λm2 )/2
with the roots λi of the characteristic polynomial λ2 − (2 − 4u)λ + 1. We
may suppose |λ1| > |λ2|, and conclude that βm ∼ |λ1|m/2. Finally, let λ be
the minimum of |λ1| as u runs through the roots of unity with uk = −1.
Then M = O(λ−m) as m→∞.

Some values of λ are given in Table 1. Note that the value λ = 5.828 for
k = 1 was found in [7].

Table 1. Values of λ

k 1 2 3 4 5 6 7 8 9 10

λ 5.828 4.612 3.732 3.220 2.890 2.659 2.488 2.356 2.250 2.164

Example 10. Suppose we want to compute numerically the alternating,
sporadic sum

S =

1�

0

dµ

1 + x2
=
∞∑
i=0

(−1)ia2i,

and that we have at our disposal the terms a0, a1, a2, . . . , a99. Letting k = 1
and m = 50 and using only every second term, a0, a2, a4, . . . , a98, we expect
a relative error of 5.828−50, or 38 correct, significant digits of S. Letting
k = 2 and m = 100, using all 100 available terms, we expect an error of
4.612−100, or 66 correct digits.

Consider the constant (7), and rewrite it as

K = ζ

(
1

2

)
−
∞∑
i=0

(−1)i
ζ(i+ 3/2)

2i+ 3

in order to bypass the singularity at z = 1. Suppose that the zeta-values
ζ(i/2 + 3/2) are available for i = 0, 1, . . . , 99. Using the first method gives
42 digits of S, while the second method gives 70 digits, in agreement with
our expectations. The second method can be carried out in Pari as follows:

T=subst(poltchebi(100),x,1-2*x)

Q=lift(1/Mod(1+x^2,T))

c(i)=polcoeff(Q,i)

a(i)=zeta(i/2+3/2)/(i+3)

K=zeta(1/2)-sum(i=0,99,c(i)*a(i))

We return to this example in Section 6.
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Remark 11. In the above example, it was assumed that the terms a0, a1,
. . . , a99 were simply given in advance. In practice, one might obviously have
to compute them first. Using k = 2 has the advantage that the integer
zeta-values ζ(n) are much faster to compute than the half-integer values
ζ(n+ 1/2). On the other hand, these values then need to be computed to a
precision of up to 10 extra digits due to the numerically larger coefficients ci.
Also, the ci can be computed particularly efficiently for k = 1 (cf. [7]).

Remark 12. For k = 2, we can compare the (optimal) value λ = 4.612
obtained from Chebyshev polynomials with the values λ = M−1/degP from
the polynomials P (x) given in Section 3. Of these, the Nilakantha trans-
formation (21) has the best convergence, i.e., λ = 2.381. The other three
transformations (25) have λ = 1.414, 2.252, 2.378, respectively.

5. Geometrically converging series. Let µ be a finite, signed mea-
sure on [0, 1] with arbitrary moments (8), and consider the alternating, ge-
ometrically converging series

(26) S =

1�

0

dµ

1 + θxk
=
∞∑
i=0

(−θ)iaki

for k ≥ 1 and 0 < θ < 1. Let P (x) be given as in (10) with P (u/θ1/k) = 1
for uk = −1, and write

Q(x) =
1− P (x)

1 + θxk
.

As before, we define a sequence of measures µ(n) with dµ(n) = P (x)ndµ and
moments (12), and we get a sequence of transformed series

S(n) =

1�

0

dµ(n)

1 + θxk

with differences (14) as well as an accelerated series (16) with ∇S(n) =
O(Mn), where M is the maximum of |P (x)| on [0, 1].

Example 13. The arcus tangent series

(27)
arctan

√
θ√

θ
=

∞∑
i=0

(−θ)i

2i+ 1

has the form (26) with k = 1 and ai = 1/(2i + 1). To accelerate it, P (x)
must satisfy P (−1/θ) = 1, and we can take any product of

−θx, θ(1− x)

θ + 1
.
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Letting

(28) P (x) =
θ(1− x)

θ + 1

and using (20) gives Euler’s accelerated series

(29)
arctan

√
θ√

θ
=

1

θ + 1

∞∑
n=0

(
4θ

θ + 1

)n n!n!

(2n+ 1)!

with M = θ/(θ + 1).
Note that the original series (27) converges for |θ| < 1, whereas the

accelerated series (29) converges for |θ| < |θ+1|, or Re(θ) > −1/2. The pre-
ceding discussion shows that the two series agree for 0 < θ < 1. The Identity
Theorem for holomorphic functions and the fact that uniform convergence
preserves holomorphicity show that (29) holds for Re(θ) > −1/2.

Inserting θ = 1, 1/3, 3 gives three classical formulas such as (4).
Also note that (4) is the Euler transform of the Gregory–Leibniz series,

i.e., the acceleration corresponding to the negated difference operator ∇, or

P (x) =
1− x

2
.

Historical note 14. Euler develops the Euler transformation and de-
rives (4) and (29) from (1) and (27) in his Institutiones Calculi Differentialis
[9, Part II, Chapter 1] from 1755. Much earlier, he had given a series for
arcsin2 x essentially equivalent to (29) in a letter to Johann Bernoulli dated
10 December 1737 [15]. Euler proves (29) again (twice) as well as the Machin-
like formula π = 20 arctan 1/7 + 8 arctan 3/79, and computes the two terms
with 13 and 17 correct decimals, respectively, but without adding them, in
1779 [10]. He extends this calculation and computes 21 correct decimals of
π in [11]. Several sources on the chronology of π state that Euler did this
calculation in 1755 and/or in less than an hour. It seems from the above,
though, that the calculation could not have been carried out before 1779.
Regarding the duration, the relevant passage reads: “totusque hic calculus
laborem unius circiter horae consum[p]sit” (and the entire calculation took
about an hour’s work).

Example 15. Taking

P (x) = −θ
2x(1− x)

θ + 1

rather than (28) gives the accelerated series

arctan
√
θ√

θ
=

1

4(θ + 1)

∞∑
n=0

(
−4θ2

θ + 1

)n(4n

2n

)−1( 3θ + 4

4n+ 1
− θ

4n+ 3

)
with M = θ2/4(θ + 1).
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By the same argument as before, this formula holds on a complex domain
bounded by the curve |θ|2 = 4|θ + 1|, or

(x2 + y2)2 = 16((x+ 1)2 + y2)

in real variables. This quartic, algebraic curve is a limaçon of Pascal, named
after Étienne Pascal, the father of Blaise Pascal, and first studied in 1525
by Albrecht Dürer [13] (1).

Fig. 1. Limaçon of Pascal

Inserting θ = 1, 1/3, 3 gives (A.8), (A.9), (A.10).
Note that the small loop around –1 is not included in the domain of

convergence, corresponding nicely to the fact that arctan has a singularity
at ±i.

Example 16. Letting

P (x) = −θ
3x(1− x)2

(θ + 1)2

gives the formidable expression

arctan
√
θ√

θ
=

1

9(θ + 1)2

∞∑
n=0

(
−16θ3

(θ + 1)2

)n
× (2n)!(2n)!(3n)!

n!(6n)!

(
5θ2 + 15θ + 9

6n+ 1
− θ2

6n+ 5

)
with M = 4θ3/27(θ + 1)2.

The domain of convergence is bounded by the sextic, limaçon-like curve

16(x2 + y2)3 = 729((x+ 1)2 + y2)2.

Inserting θ = 1, 1/3, 3 gives (A.11), (A.12), (A.13).

(1) I am grateful to my friend Kasper K. S. Andersen for identifying this curve.
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Formulas (A.8) and (A.11) are examples of van Wijngaarden’s trans-
formation [7], i.e., they are the accelerations of the Gregory–Leibniz series
corresponding to the polynomials

P (x) = −x(1− x)

2
, −x(1− x)2

4
.

Example 17. For k = 2 and ai = 1/(i+1), the general arctan series (27)
cannot be accelerated as in the previous examples. It may, however, for
specific choices of θ. Let θ = 1/3. Then we must have P (±i

√
3) and can

take any product of

−x
2

3
, −(1− x)3

8
.

Letting

P (x) = −(1− x)3

8
,
x2(1− x)3

24
gives the series (A.14), (A.15) with M = 1/8, 9/6250, respectively.

Example 18. The convergence of the accelerated series (16), and its
identity with (26), was proved under Hausdorff’s condition (18) and 0 <
θ < 1. It is a common phenomenon, however, that acceleration techniques
work in more general settings and even for divergent series [7, Remark 6].
Consider the divergent series (6), obtained by inserting θ = 3 into (27). Let
k = 2 and θ = 3. Then P (x) must satisfy

P

(
±i√

3

)
= 1.

We can take for P (x) any product of

−3x2,
9x(1− x)3

8
, −27(1− x)6

64
.

Letting P (x) be

9x(1− x)3

8
, −27x3(1− x)3

8
, −27(1− x)6

64
gives the three series (A.16), (A.17), (A.18) with M = 243/2048, 27/512,
27/64, respectively.

These formulas can be checked numerically to many digits, but of course
the above argument is no proof (although I like to think that Euler would
have appreciated it).

Remark 19. A quick, rigorous proof of (A.18) could go as follows. Write
Mercator’s Formula with six terms at a time,

− log(1− z) =

∞∑
n=0

z6n
(

z

6n+ 1
+ · · ·+ z6

6n+ 6

)
.

Insert z = eiπ/6
√

3/2 and take imaginary parts to get (A.18), q.e.d.
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Similar proofs of (A.2) and (A.14) are possible: Insert z = (1 + i)/2 and
z = eiπ/3/2 into Mercator’s Formula with four and three terms at a time,
respectively.

6. Numerical approximations again. To approximate the geomet-
rically converging series (26) numerically, let k ≥ 1 be given, but now let
Q(x) agree with 1/(1 + θxk) at the points (1 + ηi)/2, i.e.,

Q(x) ≡ 1

1 + θxk
modulo Tm(1− 2x).

Then

P (x) = Tm(1− 2x)
∑

uk=−1

u

βmk
· 1 + θxk

u− θ1/kx

with βm = Tm(1− 2uθ−1/k). Again, βm ∼ |λ1|m/2 with λ1 the numerically
greater root of the characteristic polynomial λ2 − (2 − 4uθ−1/k)λ + 1. We
conclude that M = O(λ−m) as m→∞ with

λ = min{|λ1| : uk = −1}.

Table 2 gives λ = λθ for various values of k and θ.

Table 2. Values of λθ

k λ1/2 λ1/3 λ1/4 λ1/5 λ1/6

1 9.899 13.93 17.94 21.95 25.96

2 6.129 7.328 8.352 9.263 10.09

3 4.607 5.254 5.782 6.236 6.636

4 3.829 4.264 4.612 4.905 5.160

5 3.357 3.685 3.942 4.157 4.343

6 3.040 3.303 3.508 3.678 3.823

7 2.811 3.031 3.202 3.342 3.462

8 2.636 2.827 2.973 3.094 3.196

9 2.499 2.667 2.796 2.902 2.991

10 2.388 2.539 2.654 2.748 2.828

Example 20. We return to the computation of the constant K from
Example 10. Write

K =
π

4
− 1 + ζ

(
1

2

)
−
∞∑
i=0

(−1)i
ζ(i+ 3/2)− 1

2i+ 3

to get a geometrically converging series, with θ = 1/2. Suppose again the
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zeta-values ζ(i/2 + 3/2) are given for i = 0, 1, . . . , 99. Using only the terms
a0, a2, a4, . . . , a98, we expect an error of 9.899−50, or 50 correct digits (cf. Ta-
ble 2). Using all 100 available terms, we expect an error of 6.129−100, or 79
correct digits. In practice, the two methods give 53 and 82 digits, respec-
tively, confirming the theory. The second method can be carried out in Pari
as follows:

T=subst(poltchebi(100),x,1-2*x)

Q=lift(1/Mod(1+x^2/2,T))

c(i)=polcoeff(Q,i)

a(i)=2^(i/2)*(zeta(i/2+3/2)-1)/(i+3)

K=Pi/4-1+zeta(1/2)-sum(i=0,99,c(i)*a(i))

Appendix. Series for π

(A.1)
3π

2
=
∞∑
n=0

1

2n

(
3n

n

)−1( 4

3n+ 1
+

1

3n+ 2

)
,

(A.2) π =

∞∑
n=0

(
−1

4

)n( 2

4n+ 1
+

2

4n+ 2
+

1

4n+ 3

)
,

(A.3)
125π

2
=
∞∑
n=0

(
−1

2

)n(5n

2n

)−1
×
(

208

5n+ 1
− 22

5n+ 2
+

8

5n+ 3
− 7

5n+ 4

)
,

(A.4) 1024π =
∞∑
n=0

(
−1

4

)n(8n

4n

)−1
×
(

3183

8n+ 1
+

117

8n+ 3
− 15

8n+ 5
− 5

8n+ 7

)
,

(A.5)
9π√

2
=

∞∑
n=0

8n
(2n)!(2n)!(3n)!

n!(6n)!

(
19

6n+ 1
+

1

6n+ 5

)
,

(A.6) 16
√

2π =
∞∑
n=0

(−64)n
(

8n

4n

)−1
×
(

75

8n+ 1
+

13

8n+ 3
− 3

8n+ 5
− 5

8n+ 7

)
,

(A.7)
625π√

2
=
∞∑
n=0

(−8)n
(2n)!(5n)!(6n)!

(3n)!(10n)!

×
(

1339

10n+ 1
+

184

10n+ 3
− 16

10n+ 7
− 11

10n+ 9

)
,
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(A.8) 2π =

∞∑
n=0

(−2)n
(

4n

2n

)−1( 7

4n+ 1
− 1

4n+ 3

)
,

(A.9)
8π√

3
=
∞∑
n=0

(
−1

3

)n(4n

2n

)−1( 15

4n+ 1
− 1

4n+ 3

)
,

(A.10)
16π

3
√

3
=

∞∑
n=0

(−9)n
(

4n

2n

)−1( 13

4n+ 1
− 3

4n+ 3

)
,

(A.11) 9π =

∞∑
n=0

(−4)n
(2n)!(2n)!(3n)!

n!(6n)!

(
29

6n+ 1
− 1

6n+ 5

)
,

(A.12) 24
√

3π =
∞∑
n=0

(
−1

3

)n (2n)!(2n)!(3n)!

n!(6n)!

(
131

6n+ 1
− 1

6n+ 5

)
,

(A.13)
16π

3
√

3
=

∞∑
n=0

(−27)n
(2n)!(2n)!(3n)!

n!(6n)!

(
11

6n+ 1
− 1

6n+ 5

)
,

(A.14)
4π

3
√

3
=
∞∑
n=0

(
−1

8

)n( 2

3n+ 1
+

1

3n+ 2

)
,

(A.15)
500π√

3
=
∞∑
n=0

1

24n

(
5n

2n

)−1( 872

5n+1
+

57

5n+2
+

12

5n+3
+

7

5n+4

)
,

(A.16)
256π

3
√

3
=

∞∑
n=0

(
9

8

)n(4n

n

)−1( 103

4n+ 1
+

72

4n+ 2
+

15

4n+ 3

)
,

(A.17)
1024π

3
√

3
=
∞∑
n=0

(
−27

8

)n(6n

3n

)−1( 637

6n+ 1
+

6

6n+ 3
− 27

6n+ 5

)
,

(A.18)
64π

3
√

3
=

∞∑
n=0

(
−27

64

)n
×
(

16

6n+ 1
+

24

6n+ 2
+

24

6n+ 3
+

18

6n+ 4
+

9

6n+ 5

)
.
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