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Some ¢g-supercongruences for truncated basic
hypergeometric series

by

VicTor J. W. Guo (Huaian) and JIANG ZENG (Lyon)

1. Introduction. We shall follow the standard g-notation from [4]. The
g-shifted factorial is defined by (a;q), = (1 —a)(1 —aq)--- (1 —ag™ ') for
n=1,2,...,and (a;q)o = 1, while the g-integeris denoted by [n] := %. In
a previous paper [0], we proposed several g-analogues of Rodriguez-Villegas
and Mortenson type congruences for truncated hypergeometric series con-
jectured by Rodriguez-Villegas [11], 9], and proved the following g-analogue

of one of their supercongruences:

p—1 ,
(L1) > i (‘1>q<lp2>/4 (mod [p?).

— (a* %)}, p

Here and in what follows, p always denotes an odd prime, and (5) is the
Legendre symbol modulo p.

Recently, by using the properties of generalized Legendre polynomials,
Z.-H. Sun [13, Theorem 2.5] proved the following remarkable congruence:

(1.2) pi <2:> (Z) <_1k_ a> 4% =0 (mod p?),

k=0
where a is a p-adic integer such that the least nonnegative residue of a mod-
ulo p is odd. It is interesting to note that is a common generalization
of several congruences due to van Hamme and Rodriguez-Villegas. On the
other hand, van Hamme [I7] proved the following congruence:

(P=1)/2 1\ 3 1 422 —2p (mod p?) if p = z2+y? with z odd,
3 >

k) 64k ~ |0 (mod p?) if p=3 (mod 4),

k=0
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a generalization of which was recently conjectured by H. Swisher [16, (H.3)].
The aim of this paper is to prove some g-supercongruences for certain trun-
cated basic hypergeometric series generalizing the above results.

Recall that the q-binomial coefficients [Z] are defined by

n—k+1.
n| _[n] _ @59k if0<k<n,
k k (4 9)k

q otherwise.

The first aim of this paper is to give a unified g-analogue of (|1.3]) and
Z.-W. Sun’s generalization [14, Theorem 1.1(i)] of ([L.3).

THEOREM 1.1. Let 0 < s < (p — 1)/2. Then modulo [p)?,

w8 BLLE] e
' = [k plk+s] e (—a% )i~ )3,

(—1)5q=D/2=s { (p—1)/2 r (6% 0%) (p-25—1)/2(0% €*) (p+25—-1) 2
(p*25*1)/4 (q q )(p 1)/2
if s = Q (mod 2),
0 otherw@se.
When s = 0, the congruence reduces to the following result.

COROLLARY 1.2. Modulo [p)?,

(p—1)/2 3 2k
2k q
1.5
(1-5) kzzo [kLz(—qQ'QQ)Z(—q; )31
(p-1)/2 [(P )/2} ! P
_J)q if p=1 (mod 4),
- ( )/4 ¢t (_q2;q2)%p71)/2
0 otherwise.

To see that is a g-analogue of we need to recall a known
result. Let p be a prime such that p = 1 (mod 4) and p = 22 + y? with
z =1 (mod 4). Then we have the so-called Beukers—Chowla—Dwork—Evans
congruence [3], [10]

(p—1)/2\ _ 2"t +1 p 2
=—— (22— — d
() =55 (2o ) (ot
which easily implies Sun’s congruence [12, Lemma 3.4]

_ 2
(1.6) <Ep B B?i) 2p1_1 = 42% — 2p (mod p?).

Using (1 , it is clear that (1.5 reduces to ([1.3)) when ¢ — 1.
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Generalizing a result of Mortenson [7, [§], Z.-W. Sun [15, (1.4)] obtained
the congruence

") _ (o -
+s / [ — 2 —
(17) 2 W = <p> (mOd P ) for 0 S S S T

For any p-adic integer x, let (x), denote the least nonnegative residue
of x modulo p. The second aim of this paper is to give a unified g-analogue

of and .

THEOREM 1.3. Let m and r be two positive integers with ptm. Let
s < min{(—r/m)p, (—(m —r)/m),} be a nonnegative integer. If (—1), =
s+ 1 (mod 2), then

(p—1)/2 _ L
(@™ q™)on(qd" a™)k(@™ ™)™ 9
1.8 =0 (mod [p|?),
(18) = (™5 ™) ks (a5 ™)t s (075 ¢7M)F (mod 7]
=l m. m r. . m m—r., m mk
(@™ q™)2r (a5 4™k (@™ "5 4™k 9
1.9 =0 (mod [p]“).
(19) = (™5 ™) k—s (@™ 4™ )it s (@75 427 (mod 7]

If (—r/m), = s (mod 2), then

(p—1)/2 _
(1.10) > (@™ ™)k (g5 4™ k(g™ "3 ™) kg™
L= (g™ 4™ ks (a3 ¢ )t s (@7™5 4™
p—=1
= ¢TI (™ P s (675 6P™) () s
2 2

(q_m<_r/m>P; qm)s(q_m<_(m_7")/m>:0; qm)s

(™5 %™) (—rpmyprs (@275 G%™) (—(mer) fmypts
2 2

(mod [p]).

Letting s = 0, —r/m = a and ¢ — 1 in (1.9)), we obtain (1.2)). On the
other hand, it is not difficult to see that (see [6]), for any prime p > 5,

(_1)<—1/3>,, _ (?)7 (_1)<_1/4>p — <_p2>’ (_1)<—1/6>p - <_p1>

Taking » = 1 and m = 3,4, 6 in (1.8]), we obtain

COROLLARY 1.4. Let p > b5 be a prime and let s be a nonnegative integer.
Then the following congruences hold modulo [p]?:

(p—1)/2 3V, (2. 3Y 3k
2 . .
k (q,q)kq7q2)kq —0if s <2 and s = %) (mod 2),
st ktslg (%%
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(p-1)/2 5 )
a e(@® a g™ . e
Z;,; [k-FS] (g5 ¢%)2 :OZfSSPTandsz 57— (mod 2),
(p—1)/2 o s e ek )
2k 1 (G Oe(@ O)ed™ _ . Ey
k—s [k + s] ¢ (q12;q12)% =0if s <P and s = —5*— (mod 2).

The proof of Theorem is based on the following ¢-Clausen type sum-
mation formula, which seems to be new and interesting in its own right.

THEOREM 1.5. Let n and s be nonnegative integers with s < n. Then

(72 )k (@ )ka" (= (@2 D) k(a/z5q)id
(L.11) (Z ; ; )(Z (@ Dr—s (@ Drs >

= (G Dr—s(G Drts )\
I VR0 R G Vi Ui L/ PR Gt NN C e el
(0% @*)n—s(0% @)nvs = (6% P)nk(G Dr—s(G Dirs (45 Q) 2k
We also have the following g-analogue of (1.7]), which reduces to (1.1
when s = 0.
THEOREM 1.6. Let p be an odd prime and let 0 < s < (p —1)/2. Then

(p—1)/2 (4 ¢

GG ks _ (1N (1-p2)a mod o2
kzzo (0% a*)k(0% ¢)res ( 2 >q T mod fpF)

Finally, we shall prove the following result.

THEOREM 1.7. Let p be an odd prime and let m, r be positive integers
with ptm and r < m. Then for any integer s with 0 < s < (—(m —r)/m),,

p—s _1 m r. m
(1_12) Z q qm ) )k+s
S VAT LTI LB T LD T

= (—1)(r/m)p gm{=r/mp((=r/m)p+1)/2
( 1) q (mod [p]).

In particular, if p=+1 (mod m), then
p=s=l, . m m—r. m 2
(113) Z (q :nq Lk(q m‘a(in )k-‘rs = (_1)<7T/m)pq% (mod [p])
= (@™ g™k )kt

Throughout the paper we will often use the fact that for any prime p,
the g-integer [p] is always an irreducible polynomial in Q[g]. Hence, Q|q]/[p]
is a field. Therefore, rational functions a(q)/b(q) are well defined modulo [p]
or [p]” (r > 1) on condition that b(q) is relatively prime to [p].

The rest of this paper is organized as follows. In Sections 2-5 we prove
Theorem [I.1] Theorem [I.5] Theorem 1.3 and Theorems [I.6]and [I.7] respec-
tively. We conclude the paper with some open problems.
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2. Proof of Theorem .1l We first establish two lemmas.
LEMMA 2.1. Let 0 <k < (p—1)/2. Then
—1)/2+k 2] g
e A T el
Proof. Since
(L= (1 = "™ 4+ (1= ¥ 712775 = (1 - ¢P)?,
we have
(1 — P 2+ (1 — P21 = (1 — ¥ 1275+ (mod [p]?).
It follows that
p-1/24+k T, — @241 — gr+a1)
[ 2k Lz a (4% ¢%)2k
kH§=1(1 )2 gp2i+1
(425 4%)2k
9 g
|,

—_ (_1\k
=1 [’f 2 (603,

LEMMA 2.2. Let n and s be nonnegative integers with s < n. Then

o LRI

k=0 q7 q)k

=(-1)

(mod [p?). =

if n=s (mod 2),

2
(_1)sq(n2—s2)/2 I: n :| (@ Dn—s(@ Dnts
(n—s)/2]p2  (#¢)7
0 otherwise.
Proof. We may rewrite the left-hand side of (2.2) as

(R (@ Ok (—a"% gt )
P D@ Dr—s(G Drrs (=G D

(;
_ (q )s(qn+1 q)s(q; 2)25(1 +(3) [qs—n7 qn+s+17 qs+1/2’ _qs+1/2

4 q
1q,q|.
(4% %) s(q; @) 2s ¢, =gt g2t

The result then follows from Andrews’ terminating g-analogue of Watson’s
formula [4, (IL.17)]:

(2.3)

-n 2 n+l _

q ,aq 7bb27 b b”(q, a2q2/b2;q2)n/2
agq, —aq, (a2q?, b2q; 4%)n )2

s+1/2

493

if n is even,

0 if n is odd,
aQ»QI =

with the substitution of n, a and b by n — s, ¢° and ¢ , respectively. =
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Proof of Theorem . By the congruence , we have

P D2 r9p12 1 2k 2

kzo [ k]qz [k + 8] 2 (=a% @) (—a:a)3;

_(pzl)m (p—1)/2+k] [2k 2k ik2+2k_pk( a )
=3 L L e e

The conclusion then follows from (2.2) with n = (p —1)/2 and ¢ — ¢*. =

3. Proof of Theorem [1.5l We first establish four lemmas to make the
proof easier.

LEMMA 3.1. Let n be a nonnegative integer. Then
n—k+1)

. ag®; kg ) (0w q)n(g; g)n
Gy e e = -

= (@5 n(2q™" @Int1’

n+1)

(3.2) zn:(—mfk [Z}q(’;) (G Onk _ o

prrt (@ ki1 1— g™

Proof. For (3.1)), by partial fraction decomposition we have

n

(3.3) (a5 @)n (g5 Q)n y

(@ @n(2q™ Qs =1 — g
with
—k ; : n.
o= iy LYol _ g g [ o e
aet (@ On(2¢7 @nta k] (a;q)

By the Gauss or g-binomial inversion (see, for example, [I, p. 77, Exercise
2.47]), the identity (3.2) is equivalent to

(q;9)n - [n} k(R 1
AE S (T
(%3 @)nt1 ,;0 k], 1 — g
which corresponds to the a = 0 case of (3.3)) with x — x¢". =
LEMMA 3.2. Let n be a positive integer. Then

(3.4)  (%;9)n (a/w'Q) = (# @)n(a/z;q)n

(z;9)k a/x Qr(1—q™) F
+ kz;) 1 — g k Z |: ] qurJ Q)n—ka
(35)  (;@)n+ (a/$;q)n=(fc;q)n(a/w,q)n+ a; Q)n
n—1 n—k Tn—k— . (g)—&-k]‘a'
Y (anlofmani - Y [T [T

E

—1 j=1
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Proof. We first prove (3.4)). Taking x = ¢~ (0 < m <n — 1), we have

o 0y [ g
: 0= ) (ag™™; @)n—r
=0 Jj=
n—1 k
_ N @ k(a0 = ") i [F] @) g
| (q; q)k(l—q”‘k) ]go( 1) ]:|q ( q »Q)n—k’
Nk ™) () -mk (ag™ @)k (1 = ¢) STl (9) (ad’: @)n
=1) {k]q (1 =g ") (=1¥ Mq (ag?; @)k

m
k=0 §=0
m

m s - m. 1— qn)
% 1 k[m Q}Q(’;) mk (aq s @)k .
,;( e J (ag?; @)k (1 — g"=F)
It follows from (3.1)) that

Zm: [ } q(g)_mk (aqm; q)r(1—q")

(ag?; )x(1 — qF)

k=j

_ ,q (ag™;9); - (m k) (m) (ag™ 5 )i (1— ")
aqﬂ Z [ ]q (aq?; q)r—j(1—qFk)

m—+1

 (=D)™(ag™; 0);(ag" 5 Ym (g i (1 — ¢")g~ ("2
(aq?; q);(aq%; Q)m—i ("™ Qm—j+1
_(m+1
()™(@905(00™ 5 (0 D (1 — g2
(a5 @)m (@™ @) m—j+1
Therefore, the right-hand side of (3.6)) can be simplified as

) _ oy~ m ' .
(37) (CL, Q)m-i—n(l q )q 2 Z(_l)m—j |:m:| q(;) (q Q)m
(a;:@)m =0 (@™ @)m—j+1
= (aq™; @)n,
where the equality follows from (3.2). Noticing that (¢~™;¢q), = 0 for 0 <
m < n — 1, we have proved that both sides of (3.4) are equal for z = ¢~™
(0 <m < n—1), and by symmetry, for x = ag™ (0 < m < n — 1) too.
Furthermore, both sides of (3.4)) are of the form =" P(x) with P(z) being
a polynomial in x of degree 2n with leading coefficient (—1)”q(g). Hence,
they must be identical. This proves ({3.4]).
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By the g-binomial theorem (see, for example, |2, Theorem 3.3]), for k > 1,

(33) i 7[00,
n—=k ‘—n_ e k .
Sl o
= g(—l)i nzk] (¢ gDt e,
2=

Moreover, for k = 0, the left-hand side of (3.8) is clearly equal to (a;q)n.
Noticing that

[n ; k] (a; Q)iq(il; q—)ljz”—’“) N {n Zf . 1] {k :r_ZI 1] 1_1qw

we complete the proof of (3.5)). =

Let n and h be positive integers and let m and s be nonnegative integers
such that s <m and h <n —m (son >m). Let

fx; 4, k) == (259)(z; k(a5 0); (¢ @)k

j—m—h+1. k—m—h+1. 27+k 2k+j)

(¢ s )n-1(g i @)h-1(¢7T" — ¢
(=)™ =Yq; )2 (0 Dn-1(05 0)j—s (6 D) j+5(@ Dr—s(G Dets”
and, for integers a,b > s, let

a b
=> ) flasgk)

Jj=s k=s
LEMMA 3.3. Let A= (m?+3m — s®> +5)/2 —m(n+ h) — h*> + h. Then
_ (.T; Q)s(x§ Q)m+h(qs+1/x§ Q)n—s—hxnisihqA
(3.9) Lipn(z)
. m,n

(G Dm—s(@ Dt s(G Dns (G Dt s (@ Dn—m—n

Proof. Without loss of generality, we assume that ¢ is a complex number
with |g| < 1. We first note that f(x;j, k) = —f(z;k, j), and s0 Ly, ;m(x) = 0.
Since both sides of are polynomials in x of degree m+n with the same
leading coefficient, it suffices to show that these two polynomials have m+n
common roots, counted with multiplicity.

We proceed by dividing the roots of the right-hand side of into four
cases:
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e If s > 1, then it is easily seen that (z;¢)? divides Ly, (), which
means that the numbers ¢7" (0 < r < s—1) are roots of Ly, ,(x) with
multiplicity 2.

e For r with s < r < m, we have (g
Lm,n<qir) = Lm,m(qiT) = 0.

eForrwithm+1<r<m+h-—1, we have r —m — h+1 <0, and
so (¢ M g)p_1 =0 for m +1 < k < r, while for 7 < k < n we have
(¢7";¢)r = 0. Hence, we again get Ly, n(¢7") = Ly m(¢™") = 0.

e For r with s +1 <r <n—h, it is clear that Ly, ,(¢") = 0 follows from
the identity

n

k(@ QR ) (1 — ¢F ) g
Z( n)(T)(kmh+1) (1 k])2j+k
p (5 Dr—s(0 Drets

which is proved as follows: The left-hand side of (3.10)) can be written as

(311) (¢ q)s(¢"5q)s

y Z": (7% Q) k—s(q" % Qs (@Y Q) o1 (1 — gF 7 ) g2+
P (4 D525 Drets

-r

;) = 0if & > m, and so

(3.10) =0,

n—s

— n—s k
— (g " T. -1 k —(n—s)k-i—( )
(@™ 0)s(d"9)s > _(-1) [ L ]q 2) Ry,
k=0
where
(qr+s. q)k(qk’-i-s—m—h—‘rl. Q)h 1(1 _ qk+s—j)q2j+k+s
Ry = ’ L TAL i )
(43 Drt2s
Since
@0k _ (@)
(Q; Q)k+25 (q; Q)rJrsfl

we see that Ry is a polynomial in ¢* of degreer —s—1+h—-14+2<n-—s
with constant term 0. By the g-binomial theorem (see [2, Theorem 3.3]),

i(—l)’“ [Z] qq(kgl)xk = (2¢; q)n,

and we have

n
n k1l
3.12 —1)F| " 4l
CERED YL LS
k=0 q
It follows that the right-hand side of (3.11)) is equal to 0. Hence, the identity

(3.10) holds.

Thus, we have found all the m + n roots of Ly, ,(x), which are clearly
the same as those of the right-hand side of (3.9)). m

)ik _ 0 for 1 <i<n,
U (g;@)n fori=0.
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REMARK. We can use the identity (3.12)) to give a short proof of Jack-
son’s terminating g-analogue of Dixon’s identity (see [5]).

LEMMA 3.4. Let n and h be positive integers and let m and s be non-
negative integers with h <n —m and s < m. Then

(3.13) Z Z 22 p(1 — ¢h I gi Rtk

=S @ qj s(q,Q)j+s(q;q)kfs(q;q)k+s

k—m—1][m+h—j—1
X
h—1 h—1
(=)™ (% %2 (~ ¢ Don-ng™ 2

(6 Dm—s(G Dmts (@28 n—s(0% 02 nts( On-1(a%, ¢ n—m—n

Proof. By the definition of g-binomial coefficients, we have [k ey 1] =0
for m+1 < k < m+h. Hence, the left-hand side of (3.13 - remains unchanged

if we replace » ;' ., by > .. Furthermore,

e

h—1 h—1
(P ) (gF T ) 1q(m_j)(h_1)_(g)
(=1 g a)ji_y
The conclusion then follows from the identity withz = —¢™". =
Proof of Theorem . The left-hand side of may be expanded as

n 2\2 2k

—2n.
(3.14) Z((q )i (z; )x(a/x; Qn

(@ i s (@ )iy

S (@2 ) (a2 @™ ((25.0)5 (/25 @)k + (25 @)k (q/w;q)j)'

s<j<k<n (‘L Q)]—S(Qa Q)]-i-s(Qa Q)k—s(Qa Q)k+s
For 0 < j < k, from (3.5) we deduce that

(3.15)  (z;9)j(q/7; @k + (25 )r(q/7; q);
= (#19)(q/7;9); ((zd’; @)y + (@ /23 0)1—j)

q)
= (@ @)k(g/z @)k + (:9)5(q /56 )i (¢ rj
k—j—1

+ > (@q)jila/75)54(1 — ¢)

i=

1

k—j—i . . 1N (G495

S e [ e 1
h—1 h—1 1—q"
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(9: Q)k(Q/x Dk + (x;9)5(a/x; 9);

—Jj—
+ Z 75q)j+i(q/x;q) 44 (1 _qk_])

1=

iy k—j—i—1][i+h—1]¢("s)+i+2)n
X Z h—1 h—1 1—q"
h=1

where in the last step we have used the g-binomial theorem:
S [F ], 05
2j+1. =1 A - +2jh‘
(@ ry =1+ (1) [ . }q 2
h=1
By (3.15), we may write (3.14) as > _ . am(%; )m(q/2; ¢)m, where

P Vit M et
= (@) q)g+s(q7 Dm—s (@ Ome+s
+§: - 2 ¢%)i(a " (1 — ¥ )
b (69)i-5(09)545(@ s (4 Drs

1hk—m—1 m+h—j5—1 q(h;1)+(m+j)h
<2 DNy h—1 1—g&

It is easy to see that

zn: — q] B —2n Sq En: q 2n+23 ) ,qus
= (@a)j-s(g; q)g+s (g5 @)2s j:s( $4); S+ 1)

B (q—2n qfnJrs _ fn+s

- ( 28+1 7qﬂ q

(_1)n s q72n7q n+s+1

—(n—s)?

s Qn—sq®
(Q7 q)QS(q2S+17 Q)n—s

by the ¢g-Chu—Vandermonde summation formula [4, Appendix (II.6)]. Hence,

n

" q
i=s ;q)J*S( )]+S( Qm—s(¢ QDm+s

)s(q™ )m( qn+5+1’q)n_sqm+sf(nfs)2
(Q7 Q)mfs(q;Q)mﬁs(qa Dnts

_ (_1)n—m(q2;QQ)%(_q;q)znme—n2—2mn
(Q§ Q)m—s<Q§ Q)m+s(q2§ q2)n—s(q2§ q2)n+s(q27 qz)n—

) qj—l-m

(—1) s ¢
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Substituting (3.17) and ( into (| , we obtain

(_1)n—m(q q )2 m?—n?—2mn

3.18 A, =
B18) = (@ D@ P s 2>n+s
X 5 2n pg("2 ) +2mh
— D% 4% ) n—m—h
Replacing h by n —m — h, we have
n—m (h+1)+2mh
2n hq
3.19
( ) hZ:O q q )nfmfh
= Lt ot )”‘mq<"‘z"“>+2m<n—m>
(¢; Q)
N @R O o
P (=& D)n(a: On
e S —(n—m) _ ,m+n+1
:( ('], Q)n+m _1)n—mq( 2+1)+2m(n7m)2¢1 q y —4 ;q’q—Qm
(Q7Q)n—m —q

_ (_q; Q)n+m(qinim; Q)n—m (_1)n—mq(n77;+l)+2m(nfm)
(@3 Dn-m(=¢ Dn-m
_ (q2§ qz)m—&-n
(4% ¢*)n-m(q; @)2m
where we have used the ¢-Chu—Vandermonde summation formula. It follows

from (3.18)) and (3.19)) that a,, is just the coefficient of (z;q)m(q/z;q)m on
the right-hand side of (1.11]). =

)

4. Proof of Theorem We first give a congruence modulo [p].

LEMMA 4.1. Let m and r be two positive integers with ptm. Let s <
min{(—r/m),, (—(m —r)/m),} be a nonnegative integer. Then the following
congruence holds modulo [p]:

(p—1)/2
(4.1) pz (@™ a*™)k(d" a™) kg™
= (g™ k-5 (7 4kt
(=r/m)p+s)m
¢ 2 (@) s (g
2

—m(=r/m)p

1q™)s

(@75 ™) rymipss
if (—=r/m), = s (mod 2),

0 otherwise.
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Proof. 1t is easy to see that (—r/m), + (—(m —r)/m), =p — 1, and so
s < (p—1)/2. Since p is an odd prime, we see that (¢"; ¢*™)r = 0 (mod [p])
for (p+1)/2 <k <p—s—1, which means that

(p—1)/2

—s5—

1
(@™ ™ d™ed™ I~ (@™ ™k ¢ )rg™
= @0k (@ ks = (@5 4)k-s (07 0 ks

(mod [p]).

Let @ = ™Er/metr  Thep m|r —ap and r —ap = —m(—r/m), < 0. It

is clear that (¢";¢"™)r = (¢""*";¢™)x (mod [p]) and (¢"~*P;¢™)r = 0 for
k > (—r/m),. Moreover, we have p —s —1 > p — (—(m —7r)/m), — 1 =
(—r/m), > s, and therefore

—s—1
pi (@™ ™)k P ™) kg™
= (@0 k=s (€ Dt

(=r/m) m m r—a m m
_ Zp(q $ 2™ (g P ™) g™

= (@ )k (0" 4 ks
(g™ q*™) s (g™ =T/ g g™

(@™5q™)2s
q—m(<—r/m)p—s)7 q(s+1/2)m, _q(s+1/2)m o
X 3¢2 0 q(2s+1)m 7q 7q (mOd [p])

The conclusion follows from Andrews’ identity (2.3)). =

Proof of Theorem . By Lemma for 0 <k < (p—1)/2, we have
(" 4™ ok _ [%] 1
(¢*™; ¢*>m)3 k| om (=™ 4™,
_ -1)/2+k
1 k, mk?—mkp (p . m. . m
(=1)"q ok q2m( 7" q" )2k
(_1)k mk2—mkp

q (@™ ™) (p=1)/2+k

mod [p]?),
(™5 ™) (p—1)/2-k (4™ ™) 2 ( pP)
and so
(p—1)/2 m. ., m r. . m m—r. . m m
(4.2) g (@™ q™)2k(q"; ™)k (@™ "5 ™) kg™
(¢ ™) k—s (™5 ™)k ™)

p +s(0°™; ¢
® 2 (=1)M(a™5 ™) oo (67 0™k(d™ T3

= (@) e (4705 (075 4 s (475 4™ )2k

. m)kquzfmk(pfl)

(mod [p]?).
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Letting ¢ — ¢, x = ¢" and n = (p — 1)/2 in Theorem we see that the
right-hand side of (4.2) can be written as

(—1)P=D2(g2 ™) 1 je (62562 1y jarsa PV

(@™ ™) 1)/

—1)/2
y <(p / (q’"(lp);qm)k(q’”;qm)kqm’“)
(@™ q™)k—s(q"; 4™ ) kt-s

(4.3)

k=s

—1)/2
y (0325/ (¢"P); P ™) (g™ qm)kqu>
—s (@™ q™)k—s(a™; ™)kt

If (—r/m), = s+ 1 (mod 2), then by the congruence (4.1, we have

—1)/2 -1)/2
(r—1)/ (qm(l—p); q2m)k(qr; qm)kqu _ (r-1)/ (qm; q2m)k(qr; qm)kqu
= (@™ k-5 (4" 4 ks

=0 (mod [p]),

= (@™ )k-s(@" 4™ kts
and also (—(m —r)/m), = s+ 1 (mod 2), which means that
(p-1)/2 m(1—-p). ,2m m—r. m\ .mk
3 (q it )k(qm 14 g™ _ (mod [p]).
= (@)™ ks

Noticing that (¢*™; qzm)(p_l)/g % 0 (mod [p]), we conclude that the right-
hand side of (4.2)) is congruent to 0 modulo [p]?. This proves (I.8).
To prove (|1.9), just observe that (see the proof of Lemma

(¢"¢")k=(q""";¢™)r =0 (mod [p])

for max{(—r/m)p, (—(m —r)/m)p} <k <p—1, and

(@™ 9™ )k
(@™ ™ )k—s(q™; 4" )kt
=0 (mod [p])
for (p— 1)/2 < k < masx{(—r/m)y, (—(m — ) /m),}.

Finally, (1.10)) follows from factorizing (4.2) into (4.3)), applying the first
case of the congruence (4.1), and then using the aforementioned relation

(=r/m)p+{(=(m—71)/m)p=p—1. u

m—r

(¢ ¢ (@™ q™ ) =

5. Proof of Theorems and The following lemma is probably

known. For the reader’s convenience, we include a proof.
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LEMMA 5.1. Let m, n and s be nonnegative integers with s < n. Then

(5.1) Zn:(—nk m [m + "1 g3k — (—1yng= ("3,

k=0 "

n n+k 2k+28 qszkank _
5.2 —1)k B —— G RS CE o D
(5:2) kzzo( ) [ 2k L2[ k+s La( Gt q)as (1)

Proof. Tt is not difficult to see that (5.1)) and (5.2]) are equivalent, re-
spectively, to

s S [ e =

n
k=0
n _ 2n—2k+1.
oo ] [ e
k=0 klel n Jel 16%)s
Since [m+”_k} can be written as a polynomial in ¢~* of degree n with

constant term 1/(q; q)n, the identity ([5.3)) follows from (3.12). On the other
hand, since 0 < s < n, we see that

[271 . k:| (q2n 2k:+1’q ) _ (q2”_2k+25+2;q2)n_5(q2”_2k+1;q2)s
2 (P72 q?) (4% 6*)n

is a polynomial in ¢~ % of degree n with constant term 1/(¢?; ¢),. Therefore,

follows from with ¢ = ¢%. =
Proof of Theorem[1.0. It is easy to see that
(@) _ [%] 1
(@) Lk g2 (—aa)%
Hence, by Lemmas [2.1] and [5.1] we have

n

(p—1)/2 2

k(‘]a )k—i—s
(5.5) > SRC
(—1)

Z/T ] [2k+2s] 1
prrd 2L k4 s |2 (=€ @2k (—4; a)2kt2s

= (—1)F [pzl + k’] {% + 25} (—¢; q)ang" ~"P
2k E+s |2 (¢ q)2mt2s

=0
= (=1)@=D/240-)/4 (mod [p]?). u
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Proof of Theorem [1.7, Again, let a = (m(—r/m), +r)/p. Then a is a
positive integer, m|ap — r, and so
k

(5.6) @30k _ I 1—gmitrm
(@mq™k o L—a™
B X . k (1 _ qap—mj—r+m)qmj+r—m

_ (_1);[(:@? —kr)/m] qu(kfl)/QJrkr
|

—r/m m — —mgr(—r/m
(—r/ >p] g =) /2=mk(r/m)y (1164 [p]),
qm

(qm—r;qm)k+s _ ]ﬁ 1— qap+mj—r B |:a1:n—7’ Ny S:|
qm

@54 ks 5 L—a™ k+s

(5.7)

_ F—r/n;)it k+ s] § (mod ().

By the congruences (5.6) and (5.7)), we have

—s—1
pi (@ d™)k(@™ 0™ ) kts

(@™ ™) k(@™ q™) ks

k=0
—s—1
_ pz (—l)k [(‘T/'m)p] [(—r/m),, +k+ 3] qu(k—l)/2—mk(—7‘/m>p
P k g k+s m
= (_1)<*T‘/m>pq*m(*T/m>p(<*r/m>p+1)/2 (mod [p]),

where in the last step we have used p —s —1 > p — (=(m —7r)/m), — 1
= (—r/m), and the identity (5.1)). This proves (1.12).
To prove ([1.13)), just notice that if p = +1 (mod m), then r(m%w
is an integer and
—m{—r/m),((=r/m)p, +1) _ r(m —7r)(1—p?)
2 2m

(mod p). =

6. Concluding remarks and open problems. It seems that the con-
gruence (|1.9) can be further generalized as follows.

CONJECTURE 6.1. Let m and r be two positive integers with ptm. Let
s < p—1 be a nonnegative integer. If (—r/m), =s+1 (mod 2), then
1 _
— (@™ ™) k(d™ 5 ™) kg™

=0 (mod [p]?).
™) i—s (@™ @)kt s (275 ¢2™)2 ( Pl

k=s



q-Supercongruences for hypergeometric series 325

Note that if s > max{(—r/m),, (—(m —r)/m),}, then is obviously
true, since in this case each summand on the left-hand side is congruent
to 0 modulo [p]?. It is easy to see that when r = 1, m = 3,4,6 and ¢ — 1,
Conjecture [6.1) reduces to a result of Z.-W. Sun [14] Theorem 1.3(i)].

We conjecture that Theorem [I.7] can be further strengthened:

CONJECTURE 6.2. Let m and r be positive integers with p=+1 (mod m)
and r < m. Then for any integer s with 0 < s < (—(m —r)/m),,
p—s—1 (q'r qm) (qm—r qm)
) k ) k+s _ 4\ (=r/m)p r(m—r)(1—p?)/(2m) 2
= (-1 Pq mod [p|7).
Z (qm;qm)k(qm;qm)kJrs ( ) ( [ ] )

k=0
Like [6, Conjecture 7.1], Conjecture seems to have a further general-

ization

CONJECTURE 6.3. Let m and |r| be positive integers with ptm and m{r.
Then there exists a unique integer fpm.,r such that, for any s with 0 < s <

(=(m —7)/m)y,

R T O T
Z ; k ) k+s = (_1)(—T/m>z)qu,m,r (mod [p]g)

= (g™ g™ )(q75 4 ks
Furthermore, the numbers fp m r satisfy the symmetry fpmr = fpmm—r and
the recurrence relation:
—fomr if 7=0 (mod p),
fp,m,m-w =

fpomyr — 7  otherwise.

Here are some values of f,

f321 =2, f323=-3, fa325=3, fa27=-2, f320=-9,

f3211 =9, f3213=-2, f531=-8, f532=-8, f534=-9,

f535=—10, fs37=—13, f538 =10, f5310 = —20, f5311 = 2,

f5313 =20, f5314=-9, f5316 =7, f5317 = —23, f5319=—9,

fs81=—23, fro1=-54, froo=—21, froa=—-37, fr95=—37,

fro7 =21, fros =—54, fro10=—55, fro11 = —23 fro13 = —41,

fro1a = —42, fro16 = =22, fr917 = —33.

Finally, supercongruences (or g-supercongruences) have now been around
for quite a long time, and it would be desirable to have some more conceptual

proofs of these phenomena, such as combinatorial interpretations, connec-
tions to elliptic curves or to representations of p-adic groups.
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