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1. Introduction. The Fibonacci sequence F := {Fn}n≥0 is given by
F0 = 0, F1 = 1 and Fn+2 = Fn+1 +Fn for all n ≥ 0. Carmichael’s Primitive
Divisor Theorem (see [2]) says that if n ≥ 13, then there is a prime factor p
of Fn which does not divide Fm for any 1 ≤ m ≤ n− 1. In particular, if n >
m ≥ 1 and Fn and Fm are multiplicatively dependent, then max{m,n} ≤ 12.
Further, a quick check shows that in fact the only indices 1 ≤ m < n
corresponding to multiplicatively dependent Fibonacci numbers Fm and Fn
have either m ∈ {1, 2} (for which F1 = F2 = 1), or (m,n) = (3, 6). In the
same spirit, in [7], we looked at multiplicatively dependent pairs of terms in

the k-generalized Fibonacci sequence F(k) := {F (k)
n }n≥−(k−2) given by

F
(k)
i = 0 for i = −(k − 2),−(k − 3), . . . , 0, F

(k)
1 = 1,

F
(k)
n+k = F

(k)
n+k−1 + F

(k)
n+k−2 + · · ·+ F (k)

n for all n ≥ −(k − 2).

Although there is no version of Carmichael’s theorem for the k-generalized
Fibonacci sequence when k > 2, we showed that if 1 ≤ m < n are such that

F
(k)
m and F

(k)
n are multiplicatively dependent, then either m ∈ {1, 2} (and

F
(k)
1 = F

(k)
2 = 1), or n ≤ k + 1. Furthermore, since F

(k)
m is a power of 2 for

all m in the interval [1, k + 1], it follows that for any 1 ≤ m < n ≤ k + 1,

F
(k)
m and F

(k)
n are multiplicatively dependent.

In this paper, we look at the Tribonacci sequence T := {Tn}n≥0 given
by T0 = 0, T1 = T2 = 1, and

Tn+3 = Tn+2 + Tn+1 + Tn for all n ≥ 0.

We study the multiplicatively dependent triples of positive integers belong-
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ing to T. That is, we look at the Diophantine equation

(1.1) T x` T
y
mT

z
n = 1 with 1 ≤ ` < m < n and x, y, z integers.

We discard the situation when one or more of the indices `,m, n is 1 or 2 since
T1 = T2 = 1. We also assume that any two of T`, Tm, Tn are multiplicatively
independent, since if two of them are multiplicatively dependent, then by
the main result in [7] these numbers are in {2, 4}, and the third one is either
in this set as well or it is not really involved in the actual multiplicative
dependence relation (i.e., its exponent in (1.1) is 0).

We prove the following result.

Main Theorem. The only triples of Tribonacci numbers which exceed 1
and are multiplicatively dependent, but any two are pairwise multiplicatively
independent, are:

T15 = T 3
4 T5, T15 = T 6

3 T5, T 4
7 = T 12

3 T9, T 4
7 = T 6

4 T9,

T 2
13 = T17T9, T 2

16 = T15T17, T 2
12 = T15T9.

2. Preliminaries

2.1. The Tribonacci sequence. The characteristic polynomial of the
Tribonacci sequence is

Ψ(X) = X3 −X2 −X − 1.

It has a real root

α = 1
3

(
1 + (19− 3

√
33)1/3 + (19 + 3

√
33)1/3

)
and two complex conjugate roots

(2.1) β = α−1/2eiθ and γ = α−1/2e−iθ with θ ∈ (π/2, π).

A recent result of Dresden and Du [4] establishes a Binet-like formula
for k-generalized Fibonacci numbers. For Tribonacci numbers it states that

(2.2) Tn = dαα
n + dββ

n + dγγ
n,

where dX = (X − 1)/(X(4X − 6)). We set

(2.3) dβ = ρeiω and dγ = ρe−iω with ω ∈ (0, π).

Dresden and Du also showed that the contribution of the complex roots β
and γ with absolute value less than 1 to the right-hand side of (2.2) is very
small; more precisely,

(2.4) |Tn − dααn| < 1/2 for all n ≥ 0.

These facts were already known to Spickerman [9].
Furthermore,

(2.5) Tn − dααn = 2 Re(dββ
n) = 2ρ cos(ω + nθ)/αn/2.



Tribonacci numbers 329

It is also well-known (see [1]) that

(2.6) αn−2 ≤ Tn ≤ αn−1 for all n ≥ 1.

Let L := Q(α, β) be the splitting field of Ψ over Q. Then dL = [L : Q]=6.
Furthermore, [Q(α) : Q] = 3. The Galois group of L over Q is

G := Gal(L/Q) ∼= {(1), (αβ), (αγ), (βγ), (αβγ), (αγβ)} ∼= S3.

Here, we identify the automorphisms of G with the permutations of the roots
of Ψ . For instance, the permutation (αβ) corresponds to the automorphism
σ : α 7→ β, β 7→ α, γ 7→ γ.

We conclude with a few results which play important roles in our work.

Theorem 1. Let α, dα be the algebraic numbers given by (2.2). If r, s
are integers such that αrdsα ∈ Q, then r = s = 0.

Proof. If s 6= 0, then conjugating the equality αrdsα = t with some t ∈ Q
by the automorphisms (αβ) and (αγ), we obtain

βrdsβ = γrdsγ .

Since (β/γ)r is a unit in L, we conclude that dγ/dβ is also a unit, in parti-
cular, an algebraic integer. However, this is impossible because the minimal
polynomial of this number over Z is

11X6 + 33X5 + 64X4 − 73X3 + 64X2 + 33X + 11.

Thus, s = 0 and αr ∈ Q. Now, if r 6= 0, then α|r| = t > 1 and conjugating
again by (αβ), we obtain |β||r| = t > 1, which is false because |β| < 1.
Hence, r = s = 0.

Theorem 2. Let m > ` ≥ 3. Then

gcd(T`, Tm) < α2m/3.

Proof. If m = 4, then ` = 3 and 2 = gcd(T3, T4) < α8/3. From now on,
we assume m ≥ 5. We set D := gcd(T`, Tm). Let c be a positive constant to
be determined. We first consider the case ` < cm. Then

D ≤ T` ≤ Tbcmc ≤ αbcmc−1 < αcm.

Now, we assume that ` ≥ cm. By performing calculations in the integer ring
of K := Q(α), we see that D divides the algebraic integer

αm−` T` − Tm = dββ
`(αm−` − βm−`) + dγγ

`(αm−` − γm−`).

For the above calculation we have used (2.2). Hence, by calculating norms
from K to Q, we conclude that D3 divides

|NK/Q(αm−` T` − Tm)| = |αm−` T` − Tm| |βm−` T` − Tm| |γm−` T` − Tm|.
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Observe that

|αm−` T` − Tm| = |dββ`(αm−` − βm−`) + dγγ
`(αm−` − γm−`)|

<
2ρ

α`/2

(
αm−` +

1

α(m−`)/2

)
< 2ρα(1−3c/2)m +

2ρ

αm/2
.

In the above, we have used the fact that ` ≥ max{3, cm} as well as (2.1)
and (2.3). On the other hand,

|βm−` T` − Tm| |γm−` T` − Tm| < (T` + Tm)2 < 4T 2
m < 4α2m−2.

Thus,

D3 ≤ |NK/Q(αm−` T` − Tm)| < 8ρα(3−3c/2)m−2
(

1 +
1

α
3
2
(1−c)m

)
.

Hence,

D ≤
2

α2/3

(
ρ+

ρ

α
3
2
(1−c)m

)1/3

α(1−c/2)m.

We choose c = 2/3, and use the fact that m ≥ 5 to get

2

α2/3

(
ρ+

ρ

α
3
2
(1−c)m

)1/3

≤ 2

α2/3
(ρ+

ρ

α5/2
)1/3 < 1,

and therefore conclude that D < α2m/3.

Lemma 1. There do not exist positive integers a, b, c, ` < m < n with
max{a, b, c} < n such that

(2.7) a
T`
α`

+ c
Tn
αn

= b
Tm
αm

.

Proof. Multiply equation (2.7) by αn and rearrange terms to get

cTn + (−bTm)αn−m + aT`α
n−` = 0.

Write u = n−m, v = n− ` and note that 1 ≤ u < v. Conjugating the above
equation by any conjugation with α 7→ β, then with α 7→ γ, we find that
U = (cTn,−bTm, aT`)T is a vector in the null-space of the matrix

(2.8) Au,v =

1 αu αv

1 βu βv

1 γu γv

 .

By the main result of [6], we have (u, v) = (3, 4), (13, 16), (13, 17), (16, 17)
and in each case the matrix Au,v has rank 2. Thus, its null-space is one-
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dimensional. A quick computation shows that the vectors

(2.9)

 1

−2

1

 ,

 1

56

−9

 ,

 2

103

−9

 ,

 1

103

−56


are in the null-space of Au,v for (u, v) = (3, 4), (13, 16), (13, 17), (16, 17),
respectively. For example, one can check that each of the polynomials

X4 − 2X3 + 1, 9X16 + 56X13 + 1,

9X17 + 103X13 + 2, −56X17 + 103X16 + 1

has X3 − X2 − X − 1 as a factor. Thus, U is parallel to one of the four
vectors from (2.9). The last three are excluded because in U the first and
last components have the same sign, whereas in the last three vectors in (2.9)
the first and last components have different signs. Thus, the only possibility
is the first one for which ` = n−4, m = n−3 and cTn = aTn−4 = (b/2)Tn−3.
We get Tn/Tn−4 = a/c. Hence, Tn/gcd(Tn, Tn−4) = a/gcd(a, c) ≤ n. Thus,

αn−2 ≤ Tn ≤ ngcd(Tn−4, Tn) < nα2n/3,

giving αn < (α2n)3, so n ≤ 20. In the above argument, we have used Theo-
rem 2. Now one prints Tn/Tn−4 for all n ∈ {5, . . . , 20} and checks that none
of these fractions is of the form a/c with max{a, c} < n, so there are no
examples satisfying (2.7).

2.2. Linear forms in logarithms. Let η be an algebraic number of
degree d over Q with minimal primitive polynomial

f(X) := a0

d∏
i=1

(X − η(i)) ∈ Z[X],

where a0 > 0. The logarithmic height of η is given by

h(η) :=
1

d

(
log a0 +

d∑
i=1

log max{|η(i)|, 1}
)
.

The following properties of the logarithmic height function h(·) will be used:

h(ηγ±1) ≤ h(η) + h(γ) and h(ηs) = |s|h(η) for s ∈ Z.

Our main tool is a lower bound for a linear form in logarithms of algebraic
numbers given by the following result of Matveev [8].

Theorem 3 (Matveev’s theorem). Let K be a number field of degree D
over Q, η1, . . . , ηt nonzero elements of K, and b1, . . . , bt rational integers.
Set

Λ := ηb11 · · · η
bt
t − 1 and B ≥ max{|b1|, . . . , |bt|}.
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Let Ai ≥ max{Dh(ηi), |log ηi|, 0.16} be real numbers for i = 1, . . . , t. Then,
assuming that Λ 6= 0, we have

|Λ| > exp
(
−3 · 30t+4 · (t+ 1)5.5 ·D2(1 + logD)(1 + log(tB))A1 ·At

)
.

If in addition K is real, then

|Λ| > exp
(
−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1 · · ·At

)
.

2.3. The reduction lemmas. In the course of our calculations, we get
some upper bounds on our variables which are very large, so we need to
reduce them. To this end, we use some results of the theory of continued
fractions and geometry of numbers.

The following results, well-known in Diophantine approximation, will be
used when dealing with homogeneous linear forms in two integer variables.

Lemma 2. Let M be a positive integer, and let p1/q1, p2/q2, . . . be con-
vergents of the continued fraction of the irrational τ such that M < qN+1

for some N . Write aM = max{at : t = 0, 1, . . . , N + 1}. Then

|mτ − n| >
1

(aM + 2)m

for all pairs (n,m) of integers with 0 < m < M .

For nonhomogeneous linear forms in two integer variables, we will use
a slight variation of a result due to Dujella and Pethő [5], which itself is a
generalization of a result of Baker and Davenport. For a real number X, we
write ‖X‖ = min{|X − n| : n ∈ Z} for the distance from X to the nearest
integer.

Lemma 3. Let M be a positive integer, let p/q be a convergent of the
continued fraction of the irrational τ such that q > 6M , and let A,B, µ be
real numbers with A > 0 and B > 1. Let ε := ‖µq‖ −M‖τq‖. If ε > 0, then
there is no solution to the inequality

0 < |mτ − n+ µ| < AB−k

in positive integers m, n and k with

m ≤M and k ≥ log(Aq/ε)

logB
.

On various occasions, we will need to find a lower bound for the absolute
value of linear forms in three and four integer variables:

(2.10) |x1τ1 + · · ·+ xtτt| with |xi| ≤ Xi.

To this end, we set X := max{Xi}, choose C > (tX)t, and consider the
integer lattice Ω generated by

bj = ej + bCτjeet for 1 ≤ j ≤ t− 1 and bt = bCτteet.
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We first calculate a reduced base {b1, . . . ,bt} using the LLL-algorithm and
afterwards its Gram–Schmidt associated basis {b∗1, . . . ,b∗t }. We further com-
pute the following values:

c1 = max
1≤i≤t

‖b1‖
‖b∗i ‖

, m =
‖b1‖
c1

, Q =
t−1∑
i=1

X2
i , T =

t∑
i=1

Xi/2.

Finally, from the geometry of numbers we conclude that if m2 ≥ T 2 + Q,
then

|x1τ1 + · · ·+ xtτt| > (
√
m2 −Q− T )/C.

For more details, see [3, Chapter 2].

3. Proof of the Main Theorem

3.1. Bounds on exponents. We recall that our goal is to solve the Dio-
phantine equation (1.1). Without loss of generality, we can assume that x,
y and z are relatively prime. Furthermore, we suppose that at most one of
T`, Tm and Tn is a power of two.

Let P = {p1, . . . , pt} be the set of all primes involved in the factorization
of T`TmTn. Thus

(3.1) T` =
∏
p∈P

p`p , Tm =
∏
p∈P

pmp , Tn =
∏
p∈P

pnp .

As a consequence of inequality (2.6) and α < 2 we have

max
p∈P
{`p,mp, np} ≤ n.

For a prime p and a nonzero integerm, we write υp(m) for the exact exponent
of p in the factorization of m.

Lemma 4. Let T`, Tm, Tn be Tribonacci numbers of indices at least 3
which are pairwise multiplicatively independent. If T x` T

y
mT zn = 1 and υp(Tt)

≤ k for t ∈ {`,m, n}, then exactly one of the numbers x, y, z has an opposite
sign to the other two and

max{|x|, |y|, |z|} < k2.

Proof. It is easy to note that exactly one of the numbers x, y, z has
opposite sign to the other two. For the second assertion, we take the Q-vector
space

H := 〈log T`, log Tm, log Tn〉 ⊆ 〈log p : p ∈ P 〉.

Then dimQH = 2. Indeed, since T`, Tm, Tn are multiplicatively dependent,
we have dimQH ≤ 2. However, dimQH = 1 would contradict the hypothesis
that any two of T`, Tm, Tn are multiplicatively independent.
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The Diophantine equation (1.1) can be represented in matrix form asxy
z


T  `p1 · · · `pt

mp1 · · · mpt

np1 · · · npt




log p1
...

log pt

 =

xy
z


T  log T`

log Tm

log Tn

 = 0.

Now, as dimQH = 2, the 3× t-matrix on the left-hand side has rank 2. So,
there are pa, pb ∈ P such that upa = [`pa ,mpa , npa ] and upb = [`pb ,mpb , npb ]
are linearly independent. In particular, [x, y, z] is parallel to the vector cross
product

upa × upb =

∣∣∣∣∣∣∣
î ĵ k̂

`pa mpa npa

`pb mpb npb

∣∣∣∣∣∣∣
= î(mpanpb − npampb)− ĵ(`panpb − npa`pb) + k̂(`pampb −mpa`pb),

and since gcd(x, y, z) = 1, it follows that x, y, z are divisors of the com-
ponents of the vector upa × upb above. Since these components are each a
difference of two nonnegative integers each of size at most k2, we conclude
that max{|x|, |y|, |z|} ≤ k2.

From Lemma 4, we conclude that max{|x|, |y|, |z|} ≤ n2, and we may
assume that among x, y, z there are two positive integers and one negative
integer.

For the rest of this paper, we distinguish two cases:

dx+y+zα α`x+my+nz 6= 1 and dx+y+zα α`x+my+nz = 1.

4. The case dx+y+zα α`x+my+nz 6= 1. For technical reasons, we assume
that n > 50. Note that by (2.5), we can write

(4.1) Tn = dαα
n + en/α

n/2, where en := 2ρ cos(ω + nθ).

We have

(4.2) T z
n = dzαα

nz

(
1 +

en

dαα3n/2

)z
.

We look at the elements

(4.3) (1 + r)z and k := zr, where r :=
en

dαα3n/2
.

Since n > 50, en/dα < α and |z| ≤ n2, we have

|k| = |zr| < 2n2/α3n/2 and in particular |k| < 3 · 10−16.

Now, if z > 0 and r < 0, then

1 > (1 + r)z = exp(z log(1− |r|)) ≥ exp(−2|k|) > 1− 2|k|,
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while if z > 0 and r > 0, then

1 < (1 + r)z = (1 + |k|/z)z < exp |k| < 1 + 2|k|,
because |r| < 1/2 and |k| is very small.

Thus, in either case assuming that z > 0 we have

(4.4) T zn = dzαα
nz(1 + ζn) with |ζn| < 3n2/α3n/2.

Regarding T x` and T ym, we assume that m > ` > 10 log n (later we will
show that ` < m = O(log n)). By the respective choices of r and k, we use
the same argument as above to conclude that

T x` = dxαα
x`(1 + ζ`) with |ζ`| <

3n2

α3`/2
,(4.5)

T ym = dyαα
my(1 + ζm) with |ζm| <

3n2

α3m/2
,(4.6)

provided that x and y are positive.

Now, supposing z < 0 (the same conclusion is obtained in the other two
cases when x or y is negative), we make use of (4.4)–(4.6) in the Diophantine
equation (1.1) to obtain

dx+yα α`x+my(1 + ζ`)(1 + ζm) = d|z|α α
n|z|(1 + ζn).

Separating the dominant terms, we get

dx+yα α`x+my − d|z|α αn|z| = d|z|α α
n|z|ζn − dx+yα α`x+my(ζ` + ζm + ζ`ζm).

Dividing by d
|z|
α αn|z| and taking absolute value, we conclude that

|dx+y+zα α`x+my+nz − 1| < |ζn|+
dx+yα α`x+my

d
|z|
α αn|z|

|ζ` + ζm + ζ`ζm|(4.7)

<
9n2

α3`/2
.

Above, we have used the inequalities

|ζn| <
0.5n2

α3`/2
and |ζ` + ζm + ζ`ζm| <

4.25n2

α3`/2

as well as

dx+yα α`x+my

d
|z|
α αn|z|

=
1 + ζn

(1 + ζ`)(1 + ζm)
<

1 + 0.8

(1− 4 · 10−4)2
< 2,

which follows from (4.4)–(4.6). In the above inequality, we have also used
the fact that the function f(n) = 3n2/α3n/2 is decreasing, and that f(n) ≤
f(5) < 0.8 for all n ≥ 5, as well as that

max{|ζ`|, |ζm|} <
3n2

α15 logn
=

3

n15 logα−2
<

3

515 logα−2
< 4 · 10−4.
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On the left-hand side of inequality (4.7), we have a linear form in t := 2
logarithms, with η1 := dα, η2 := α, b1 := x + y + z, b2 := `x + my + nz.
So, Λ1 := dx+y+zα α`x+my+nz − 1 is nonzero by hypothesis, and from (4.7) we
deduce that

(4.8) |Λ1| <
9n2

α3`/2
.

The field K := Q(α) contains η1, η2 and has D = [K : Q] = 3. Since the
minimal polynomial of dα is 44X3 − 2X − 1, and dα and its conjugates dβ
and dγ are all inside the unit disk, we can take A1 := log 44. Further, by
the properties of the roots of Ψ , we take A2 := 0.7 > logα. Since K is real,
Theorem 3 gives the following lower bound for |Λ1|:

exp
(
−1.4× 305 × 24.532(1 + log 3)(1 + log(2n3))(logα)(0.7)

)
,

which is smaller than 9n2/α3`/2 by (4.8). Taking logarithms on both sides
and performing the corresponding calculations, we get

` < 1.5 · 1011 log n,(4.9)

where we have used 1 + log(2n3) < 4.1 log n for all n ≥ 5.

We go back to equation (1.1). Replacing T ym, T zn according to (4.4)
and (4.6), by the same arguments used to derive (4.7) we obtain

|dy+zα αmy+nzT x` − 1| < 5n2/α3m/2.(4.10)

Again we use the real version of Matveev’s theorem, with t := 3,

η1 := dα, η2 := α, η3 := T`,

b1 := y + z, b2 := my + nz, b3 := x.

So, Λ2 := dy+zα αmy+nzT x` − 1 and

(4.11) |Λ2| < 5n2/α3m/2.

We can take again K := Q(α), D := 3, A1 := log 44, A2 := 0.7 and
B := 2n3. For A3, we note that T` ≤ α`−1 < 2`, so we can take A3 := 0.7`.
We are ready to use Theorem 1 since Λ2 6= 0: indeed, otherwise by Lemma 1
we would obtain y + z = my + nz = 0. Since m 6= n, we get y = z = 0. So,
T x` = 1 and thus x = 0. However, this contradicts our hypothesis.

Combining the conclusion of Theorem 3 with inequality (4.11), we get,
after taking logarithms, the following upper bound for m:

3 logα

2
m− log(5n2) < 1.4 · 306 · 34.5 · 32(1 + log 3)

×(1 + log(2n3))(log 44)(0.7)(0.7`).

Using again the fact that 1 + log(2n3) < 4.1 log n for all n ≥ 5 and that
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` < 1.5 · 1011 log n, we get

(4.12) m < 2.6 · 1024 log2 n.

Returning once again to (1.1), we replace T zn according to (4.4). We now
obtain

|Λ3| := |dzααnzT x` T ym − 1| < 4n2/α3n/2.(4.13)

A new application of Theorem 3 (real case) with the data

t := 3, η1 := dα, η2 := α, η3 := T`, η4 := Tm,

b1 := z, b2 := nz, b3 := x, b4 := y,

where we take

K = Q(α), D = 3, A1 = log 44, A2 = 0.7, A3 = 0.7`, A4 = 0.7m

and B = n3, leads to
n < 1.2 · 1015`m log n.

The fact that Λ3 6= 0 is an immediate application of Lemma 1. Inserting
(4.9) and (4.12) in the above inequality, we get n < 4.5 · 1050 log4 n, which
leads to n < 3.3 · 1058. From (4.9) and (4.12), we deduce that ` < 1.5 · 1013

and m < 4 · 1028.
In summary, we have proved the following result.

Lemma 5. Let (`,m, n, x, y, z) be a solution of (1.1) with 3 ≤ ` < m < n
such that dx+y+zα αmx+ny+`z 6= 1. Then max{|x|, |y|, |z|} ≤ n2 and

` < 1.5 · 1013, m < 4 · 1028, n < 1.6 · 1059.

The rest of this section is dedicated to reducing the bounds given in this
lemma. For this purpose, we return to Λ1, Λ2 and Λ3.

First of all, we consider

Γ1 := (x+ y + z) log(dα) + (`x+my + nz) logα.

Then eΓ1 − 1 = Λ1. Assuming that ` > 310, we have |Λ1| < 1/2 (given that
n < 1.6 · 1059), so e|Γ1| < 3/2 and

(4.14) |Γ1| < e|Γ1||eΓ1 − 1| < 13.5n2/α3`/2.

From the above inequality, we note that |Γ1| < 1. Thus, without loss of
generality, we can suppose that x+ y + z and `x+my + nz are positive.

Dividing both sides of (4.14) by (x+ y + z) logα, we obtain

(4.15)

∣∣∣∣ log(d−1α )

logα
− `x+my + nz

x+ y + z

∣∣∣∣ < 23n2

α3`/2(x+ y + z)
.

We set τ := log(d−1α )/logα, and compute a few initial terms of its continued
fraction [a0, a1, a2, . . .] and its convergents p1/q1, p2/q2, . . . . Then we find
an integer t such that qt > 5.2 · 10118 > 2n2 > x + y + z and take aM :=
max{ai : 0 ≤ i ≤ t}. Computationally, we confirm that q231 > 5.2 · 10118
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and aM = 174. Thus, combining (4.15) with the conclusion of Lemma 2, we
get

α3`/2 < 4.1 · 103(x+ y + z)n2 < 8.2 · 103n4.

Using the fact that n < 1.6 · 1059, we conclude that ` ≤ 610.
We now go back to the inequality for Λ2, where we set

Γ2 := x log T` + (y + z) log dα + (my + nz) logα.

It is easy to see from (4.11) that

(4.16) |Γ2| < 8n2/α3m/2.

For each ` ∈ [3, 610] we estimate |Γ2| from below via the procedure
described in Section 2.3 (LLL-algorithm). First of all, note that Γ2 6= 0
because Λ2 6= 0.

As in (2.10), we set t := 3,

τ1 := log T`, τ2 := log dα, τ3 := logα,

x1 := x, x2 := y + z, x3 := my + nz.

Further, we take X := 2 · (1.6 · 1059)3 as an upper bound for |x|, |y+ z| and
|my + nz|, and C := (3X)3. A computer search then reveals that |Γ2| >
2.3 · 10−360. Combining this with (4.16), we conclude that m ≤ 1210.

Returning to the application of Matveev’s theorem for Λ3, we use the
latest bounds for ` and m, instead of (4.9) and (4.12), to obtain n < 4.4·1022.
We return to Γ1 and Γ2 with this new bound on n and suppose that m >
` > 120. So, |Γ1|, |Γ2| < 1/2, and (4.14) and (4.16) are satisfied. In our new
reduction of the bound of `, we find that q108 > 4 · 1045 > 2n2 > x + y + z
and aM = 49. This time we obtain ` ≤ 240. Regarding m, we redefine
X := 2 · (4 ·1022)3. By the LLL-algorithm, we obtain |γ2| > 1.7 ·10−140, from
which we conclude that m ≤ 470.

Now, with ` ∈ [3, 240], m ∈ [`+ 1, 470] and n ∈ [m+ 1, 4.4 · 1022], we go
back to Λ3. Taking

Γ3 := x log T` + y log Tm + z log dα + nz logα,

we get eΓ3 − 1 = Λ3 and |Γ3| < 6n2/α3n/2 (here we have used n > 50).
We use the LLL-algorithm with X := (4.4 · 1022)3 (a current upper

bound on |x|, |y|, |z|, |nz|) to find a lower bound of |Γ3|. Computationally
we confirm that |Γ3| > 10−412. Thus, n ≤ 1050. Once again, we reduce the
bounds on ` and m using |Γ1| and |Γ2|, respectively (now it is enough to
assume that m > ` > 25). This time we obtain ` ≤ 40 and m ≤ 72. Finally,
applying the LLL-algorithm to |Γ3| with ` ∈ [3, 40] and m ∈ [` + 1, 72], we
obtain n ≤ 130.

A thorough inspection, through the analysis of the primitive prime fac-
tors of T`, Tm and Tn (here, we say that p |Tn is primitive if p - Tk for all
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1 ≤ k ≤ n− 1) with ` ∈ [3, 40], m ∈ [`+ 1, 72] and n ∈ [m+ 1, 130], reveals
that the only solutions of (1.1) in this case are

T15 = T 3
4 T5, T15 = T 6

3 T5, T 4
7 = T 12

3 T9, T 4
7 = T 6

4 T9.

5. The case dx+y+zα α`x+my+nz = 1. This case is a lot more challenging.
By Theorem 1, we conclude

(5.1) x+ y + z = 0, `x+my + nz = 0.

So, x+y = −z and (n−`)x+(n−m)y = 0. Solving this system with respect
to x and y while treating z as a parameter, we get, by Cramer’s rule,

x =

∣∣−z 1
0 n−m

∣∣∣∣ 1 1
n−` n−m

∣∣ =
z(n−m)

m− `
,(5.2)

y =

∣∣ 1 −z
n−` 0

∣∣∣∣ 1 1
n−` n−m

∣∣ =
z(n− `)
`−m

.(5.3)

Taking into account that n− `, n−m and m− ` are all positive, we deduce
that x and z have the same sign, so are positive, while y is negative. Even
more, from (5.1) we get |y| = x+ z. Thus, (1.1) becomes

T x` T
z
n = T x+zm .(5.4)

On the other hand, as gcd(x, z) = gcd(y, z) = 1, from (5.2) and (5.3) we get

(5.5) z |m− `, x |n−m, y |n− `.

Thus,

(5.6) max{x, |y|, z} < n.

We now go back to (2.2), (4.1) and (4.2) in order to derive new expres-
sions for T x` , T zn and T x+zm with two dominant terms. As in the previous
section, we begin by assuming that m > ` > 10 log n. We analyze

(1 + e`d
−1
α α−3`/2)x

by using the binomial theorem. We write

s` := (1 + e`d
−1
α α−3`/2)x − 1− xe`d−1α α−3`/2 and κ := 2ρ/dα,

so

|s`| ≤
x∑
j=2

(
x

j

)(
κ

α3`/2

)j
<
κ2x2

α3`

∞∑
j=0

(
κx

α3`/2

)j
<
κ2n2

α3`

∞∑
j=0

(
κn

α3`/2

)j
<

1.1 · κ2n2

α3`
,
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where we have used the inequalities(
x

j

)
< xj ≤ nj and

κn

α3`/2
<

κ

n15 logα−1
≤ κ

515 logα−1
< 4 · 10−6.

In summary, we have shown that

T x` = dxαα
`x

(
1 +

κx

α3`/2
cos(ω + `θ) + s`

)
, |s`| <

1.1 · κ2n2

α3`
.(5.7)

In the same way, we obtain

T zn = dzαα
nz

(
1 +

κz

α3n/2
cos(ω + nθ) + sn

)
, |sn| <

1.1 · κ2n2

α3n
,(5.8)

T |y|m = d|y|α α
m|y|
(

1 +
κ|y|
α3m/2

cos(ω +mθ) + sm

)
, |sm| <

1.1 · κ2n2

α3m
.(5.9)

Inserting (5.7)–(5.9) in (5.4), and using dx+y+zα α`x+my+nz = 1 to simplify
the resulting expressions, we obtain(

1 +
κx

α3`/2
cos(ω + `θ) + s`

)
·
(

1 +
κz

α3n/2
cos(ω + nθ) + sn

)
= 1 +

κ(x+ z)

α3m/2
cos(ω +mθ) + sm.

Expanding the left-hand side and performing some calculations, we arrive
at

(5.10)
κx

α3`/2
cos(ω + `θ) =

κ(x+ z)

α3m/2
cos(ω +mθ)− κz

α3n/2
cos(ω + nθ)

− κ2xz

α3(n+`)/2
cos(ω + `θ) cos(ω + nθ)

− κx

α3`/2
cos(ω + `θ)sn −

κz

α3n/2
cos(ω + nθ)s`

+ sm − s` − sn − s`sn.

Multiplying (5.10) by α3`/2/κx and taking absolute values, we get

|cos(ω + `θ)| < 3n2

α3min{`,m−`}/2 .

But

2|cos(ω + `θ)| = |1 + e2i(ω+`θ)| =
∣∣∣∣1− (−dβdγ

)(
β

γ

)`∣∣∣∣.
Thus,

(5.11)

∣∣∣∣1− (−dβdγ
)(

β

γ

)`∣∣∣∣ < 6n2

α3min{`,m−`}/2 .
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In order to find an upper bound for ` and m in terms of log n, we use the
complex version of Theorem 3 with the parameters

t := 2, η1 := −dβ/dγ , η2 := β/γ, b1 := 1, b2 := `.

Thus, Λ4 := 1− (−dβ/dγ)(β/γ)`, and from (5.11) we obtain

(5.12) |Λ4| <
6n2

α3min{`,m−`}/2 .

The number field K = Q(α, β) contains η1, η2 and has degree D = 6 over Q.
A simple check shows that the minimal polynomials of η1 and η2 are∏
σ∈G

(
X + σ

(
dβ
dγ

))
= 11X6 − 33X5 + 64X4 + 73X3 + 64X2 − 33X + 11,∏

σ∈G
(X − σ(β/γ)) = X6 + 4X5 + 11X4 + 12X3 + 11X2 + 4X + 1,

respectively, where G is the Galois group Gal(K/Q). Furthermore, the con-
jugates of η1 and η2 satisfy∣∣∣∣dβdγ

∣∣∣∣ =

∣∣∣∣dγdβ
∣∣∣∣ = 1,

∣∣∣∣dβdα
∣∣∣∣ =

∣∣∣∣dγdα
∣∣∣∣ = 0.773 . . . ,

∣∣∣∣dαdβ
∣∣∣∣ =

∣∣∣∣dαdγ
∣∣∣∣ = 1.293 . . .∣∣∣∣βγ

∣∣∣∣ =

∣∣∣∣γβ
∣∣∣∣ = 1,

∣∣∣∣βα
∣∣∣∣ =

∣∣∣∣γα
∣∣∣∣ = 0.4008 . . . ,

∣∣∣∣αβ
∣∣∣∣ =

∣∣∣∣αγ
∣∣∣∣ = 2.494 . . . .

Hence,

h(η1) =
1

6

(
log 11 + 2 log

∣∣∣∣dαdβ
∣∣∣∣) < 0.5, h(η2) =

1

3
log

∣∣∣∣αβ
∣∣∣∣ < 0.31.

So, we can take A1 := 3 and A2 := 2, given that |log η1| < 2 and |log η2| < 2.
Finally, Λ4 6= 0, because β/γ is an algebraic integer while dγ/dβ is not. We
set B := n.

By Theorem 3, we obtain

|Λ4| > exp
(
−3 · 306 · 35.5 · 62 · (1 + log 6) · (1 + log(2n)) · 3 · 2

)
(5.13)

> exp(−1.7 · 1015 log n).

Here we have used 1 + log(2n) < 3 log n, valid for all n ≥ 5.

Combining (5.12) and (5.13), we arrive at

min{`,m− `} < 2 log 6

3 logα
+

4 log n

3 logα
+

3.4 · 1015

3 logα
log n(5.14)

< 2 · 1015 log n.

We now analyze two cases according to whether ` or m− ` is smaller.

Case 1. ` ≤ m− `. By (5.14), we have

(5.15) ` < 2 · 1015 log n.
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As in the above section, we go back to the Diophantine equation (5.4) and
replace T ym, T zn according to (4.6) and (4.4), respectively. This time, we get
an inequality analogous to (4.10):

|Λ′2| := |d−xα α−`xT x` − 1| < 5n/α3m/2.(5.16)

Here, we have used analogues of (4.4) and (4.6),

|ζm| < 3n/α3m/2 and |ζn| < 3n/α3n/2,

which hold because max{|y|, z} < n (see (5.6)).

We next apply Matveev’s theorem again with t := 1 and

η1 := d−1α α−`T` and b1 := x.

Note that η1 ∈ K := Q(α) and [K : Q] = 3. Using the properties of logarith-
mic height (see Section 2.2), we get

h(η1) ≤ h(dα) + `h(α) + h(T`) < h(dα) + 2`h(α) < 2`,

where we have used (2.6) and the fact that h(dα) < 1.3 (since the minimal
polynomial of dα is 44X3− 2X − 1). Thus, we take A1 := 6` and B := n. It
is easy to see that Λ′2 is nonzero: otherwise x = 0, which is not true.

Theorem 3 gives the following lower bound for |Λ′2|:

exp
(
−1.4 · 304 · 32(1 + log 3)(1 + log n)(6`)

)
.

Combining (5.15), (5.16) and the above bound, we conclude that

(5.17) m < 5.7 · 1023 log2 n.

We go back to (5.4) and replace only T zn by using (4.4), to obtain

|Λ′3| := |d−zα α−nzT−x` T x+zm − 1| < 3n/α3n/2.(5.18)

Clearly, Λ′3 6= 0, because otherwise z = 0, which is not true.

With appropriate choices of K, D, ηi, bi, Ai, B, we obtain from Matveev’s
theorem (real case) the following lower bound on log |Λ′3|:

(5.19) −1.4 · 307 · 44.5 · 32(1 + log 3)(1 + 2 log n)(log 44)(0.7)(0.7`)(0.7m).

But, from (5.18), we have the upper bound

log |Λ′3| < log(3n)− (1.5 logα)n.

Hence, using (5.15) and (5.17), we get n < 1054 log4 n. This last inequality
leads to the following absolute bounds on `, m and n.

Lemma 6. Let (`,m, n, x, y, z) be a solution of (5.4) with 3 ≤ ` < m < n
and ` < m− ` and dx+y+zα α`x+my+nz = 1. Then max{x, |y|, z} < n and

` < 3.2 · 1017, m < 8 · 1032, n < 4.2 · 1062.



Tribonacci numbers 343

We now reduce the bounds given in this lemma. We begin by assuming
that ` > 480. From (5.11), we get

|sin(ω + `θ − π/2)| = |cos(ω + `θ)| < (3n2)α−3`/2 < 2α−`/2.

Setting t := b(ω + `θ − π/2)/πe, where bye is the nearest integer to the real
number y, we obtain −π/2 ≤ ω + `θ − π/2− tπ ≤ π/2. Hence,

2α−`/2 > |sin(ω + `θ − π/2)| = |sin(ω + `θ − π/2− tπ)|(5.20)

≥
∣∣∣∣2ωπ +

2θ

π
`− 2t− 1

∣∣∣∣,
where we have used the inequality

|sin y| = sin |y| ≥ 2

π
|y| for all −π/2 ≤ y ≤ π/2.

We conclude from (5.20) that

(5.21)

∣∣∣∣ θπ `− t+

(
ω

π
− 1

2

)∣∣∣∣ < α−`/2.

We note that
θ

π
`− t+

(
ω

π
− 1

2

)
is nonzero. We set

τ :=
θ

π
, µ :=

ω

π
− 1

2
, A := 1, B := α1/2.

Inequality (5.21) can be rewritten as

(5.22) 0 < |τ`− t+ µ| < AB−`.

The fact that T is nondegenerate ensures that τ is an irrational number
(otherwise the ratio β/γ is a root of unity, which is not the case). Lastly,
we take M := 3.2 · 1017 which is an upper bound on ` by the inequalities
in Lemma 6, and apply Lemma 3 to (5.22). With the help of Mathematica,
we find that q38 > 6M and ε = 0.39065 . . . . Thus, the maximum value
of blog(Aq/ε)/logBc is 142, which is an upper bound on `, according to
Lemma 3. However, we assumed that ` > 480. This contradiction shows
that ` ≤ 480.

We now go back to (5.16) and note that

(5.23) 3.3 · 10−191 < min
`∈[3,480]

|d−1α α−`T` − 1| ≤ |(d−1α α−`T`)
x − 1| < 5n

α3m/2
.

This leads to m ≤ 640.
Returning to the application of Matveev’s theorem in Λ′3, we use the lat-

est bounds for ` and m, instead of (5.15) and (5.17), to obtain n < 1.4 · 1022.
Using this new bound on n, we return to our application of continued frac-
tions in (5.21). We now assume that ` > 180 and take M := 480 (the current
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upper bound of `). The same arguments used before lead to ` ≤ 180. Redo-
ing the calculations for ` ∈ [3, 180], we obtain 2.6 ·10−72 as a lower bound on
the right-hand side of (5.23). Thus, m ≤ 240. Once again, returning to Λ′3,
we obtain n < 3.6 · 1019.

With the new bounds, namely

` ∈ [3, 180], m ∈ [`+ 1, 240], n ∈ [m+ 1, 3.6 · 1019],

we implement the LLL-algorithm on Λ′3. We write

(5.24) Γ ′3 := x log T` + y log Tm + z log dα + nz logα.

Since |Λ′3| < 3n/α3n/2 < 1/2 for all n > 50, we conclude that |Γ ′3| <
5n/α3n/2. We note that max{x, |y|, z, nz} < n2, so we set X := (3.6 · 1019)2.
Computationally, we verify the lower bound

1.1 · 10−190 < |Γ ′3| < 5n/α3n/2.

Hence, n ≤ 500. Once again, we return to the argument using continued
fractions (5.21), where we now assume that ` > 30 and take M := 180. This
time we have q9 > 6M and ` ≤ 60. In (5.23), we now have

min
`∈[3,60]

|d−1α α−`T` − 1| > 2 · 10−24.

Using the above inequality instead of the left-hand side of (5.23), and the
fact that n ≤ 500, we obtain m ≤ 70. We now repeat the LLL-algorithm
with ` ∈ [3, 60] and m ∈ [` + 1, 70], where we take X := 5002. We get
|Γ ′3| > 1.2 · 10−74, and so n ≤ 200. We finish our reduction here, since the
current bound is acceptable for a computational search.

Case 2: m− ` ≤ `. By (5.14), we have

(5.25) m− ` < 2 · 1015 log n.

Subcase 2.1: In (3.1) we have mp ≥ 5`p/6 for all p ∈ P . Then, by
Theorem 2,

α5(`−2)/6 < T
5/6
` =

(∏
p`p
)5/6

≤ gcd(T`, Tm) < α2m/3.

Thus, 5(`− 2)/6 < 2m/3 and so

(5.26) ` < 4
5m+ 2.

Combining (5.25) and (5.26), we deduce

(5.27) ` < 9 · 1015 log n and m < 2 · 1016 log n.

We now return, as before, to (5.18) and (5.19), where we use (5.27) to
obtain n < 8.4 · 1045 log3 n. This inequality and (5.27) allow us to deduce
the following result.
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Lemma 7. Let (`,m, n, x, y, z) be a solution of (5.4) with 3 ≤ ` < m < n
and dx+y+zα α`x+my+nz = 1. Assume that m− ` < ` and υp(Tm) ≥ 5υp(T`)/6
for all p ∈ P . Then max{x, |y|, z} < n and

` < 1.1 · 1018, m < 1.3 · 1018, n < 1.5 · 1052.

We next start reducing the bounds on `, m and n. Returning to (5.12), we
have |cos(ω+`θ)| < 3n2/α3(m−`)/2. First assume m−` > 390. Repeating the
arguments concerning continued fractions, we deduce an inequality similar
to (5.21) but with m− ` instead of `:

(5.28)

∣∣∣∣ θπ `− t+

(
ω

π
− 1

2

)∣∣∣∣ < α−(m−`)/2.

Setting M := 1.1 · 1018 (current bound on `), we confirm with Mathematica
that q41 > 6M and ε = 0.0141 . . . . Thus, m−` ≤ 164, which contradicts our
assumption that m − ` > 390. From now on, we assume that m − ` ≤ 390.
Therefore, by (5.26), we get

` ≤ 1570 and m ≤ 1950.

With these bounds, we go to the lower bound of log |Λ′3| given in (5.19) and
replace ` and m, to obtain n < 1.4 · 1023. Restarting our reduction cycle
through the continued fractions argument, inequality (5.26) and the linear
form in logarithms Λ′3, we conclude that ` ≤ 710, m ≤ 885 and n < 2.8·1022.

We implement the LLL-algorithm with ` ∈ [3, 710] and m ∈ [` + 1, 885]
on Γ ′3 in (5.24). We now set X := (2.8 ·1022)2 (current bound on max{x, |y|,
z, nz}). We verify with Mathematica the lower bound

10−360 < |Γ ′3| < 5n/α3n/2.

Hence, n ≤ 920. Once again, we return to the argument using continued
fractions (5.21), where we now assume that m− ` > 30. We take M := 710.
This time we have m− ` ≤ 60. Thus, ` ≤ 250. For ` ∈ [3, 250], we calculate
an inequality similar to (5.23):

1.2 · 10−100 < min
`∈[3,250]

|d−1α α−`T` − 1|(5.29)

≤ |(d−1α α−`T`)
x − 1| < 5n/α3(m−`)/2.

This leads to m ≤ 260. Finally, applying the LLL-algorithm algorithm on
Γ ′3 leads to the conclusion that n ≤ 280. The bounds ` < m < n ≤ 280 are
low enough to perform a computer search.

Subcase 2.2: In (3.1), we have mp < 5`p/6 for some p ∈ P . From the
Diophantine equation (5.4), we deduce that

`px = υp(T
x
` ) ≤ υp(T x+zm ) = mp(x+ z) < 5

6`p(x+ z).
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Thus, x < 5z. Combining this with (5.2), and inequalities (5.5) and (5.25),
we conclude that

x < 1016 log n, z < 2 · 1015 log n,(5.30)

m− ` < 2 · 1015 log n, n−m < 1016 log n, n− ` < 2 · 1016 log n.(5.31)

We go one last time to (5.4), and replace each term according to (5.7)–(5.9),
where we now use the identity

κ

α3t/2
cos(ω + tθ) =

dβ
dα

(
β

α

)t
+
dγ
dα

(
γ

α

)t
for each t = `,m, n. Thus, the Diophantine equation T x` T

z
n = T x+zm is reduced

to (
1 + x

(
dβ
dα

(
β

α

)`
+
dγ
dα

(
γ

α

)`)
+ s`

)
×
(

1 + z

(
dβ
dα

(
β

α

)n
+
dγ
dα

(
γ

α

)n)
+ sn

)
= 1 + (x+ z)

(
dβ
dα

(
β

α

)m
+
dγ
dα

(
γ

α

)m)
+ sm.

Multiplying, simplifying and rearranging terms, we get

(5.32) x

(
dβ
dα

(
β

α

)`
+
dγ
dα

(
γ

α

)`)
+ z

(
dβ
dα

(
β

α

)n
+
dγ
dα

(
γ

α

)n)
− (x+ z)

(
dβ
dα

(
β

α

)m
+
dγ
dα

(
γ

α

)m)
= sm − s` − sn − s`sn − x

(
dβ
dα

(
β

α

)`
+
dγ
dα

(
γ

α

)`)
sn

− z
(
dβ
dα

(
β

α

)n
+
dγ
dα

(
γ

α

)n)
s`

− xz
dβ
dα

dγ
dα

((
β

α

)n(γ
α

)`
+

(
β

α

)`(γ
α

)n)
− xz

((
dβ
dα

)2(β
α

)`+n
+

(
dγ
dα

)2(γ
α

)`+n)
.

We work on the left-hand side of (5.32). We start reorganizing the terms:

(5.33)
dβ
dα

(
β

α

)`[
x+ z

(
β

α

)n−`
− (x+ z)

(
β

α

)m−`]
+
dγ
dα

(
γ

α

)`[
x+ z

(
γ

α

)n−`
− (x+ z)

(
γ

α

)m−`]
.
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The second term in (5.33) is nonzero. Indeed, otherwise

x = (x+ z)

(
γ

α

)m−`
− z
(
γ

α

)n−`
.

Taking absolute value and using

|γ/α| = 1/α3/2, m < n, x < 5z, z ≤ m− `,
we get

1 ≤ x < x+ z

α3(m−`)/2 +
z

α3(n−`)/2 <
7(m− `)
α3(m−`)/2 .

The last inequality holds only for m− ` ≤ 3. Thus,

x ∈ [1, 15], z ∈ [1, 3], m− ` ∈ [1, 3], n− ` ∈ [2, 18].

However, a computational check reveals that∣∣∣∣x+ z

(
γ

α

)n−`
− (x+ z)

(
γ

α

)m−`∣∣∣∣ > 1

for x, z, m− ` and n− ` in the above range.

We now show that every expression on the left-hand side of (5.32) is
nonzero. First of all, we note by (2.2) that for t = `,m, n,

dβ
dα

(
β

α

)t
+
dγ
dα

(
γ

α

)t
=

Tt
dααt

− 1.

Hence, if the left-hand side of (5.32) is zero, then

x

(
T`
dαα`

− 1

)
+ z

(
Tn
dααn

− 1

)
= (x+ z)

(
Tm
dααm

− 1

)
.

Thus,

x
T`
dαα`

+ z
Tn
dααn

= (x+ z)
Tm
dααm

.

However, this is not possible by Lemma 1.

Factoring the second term in (5.33), we get

(5.34)
dγ
dα

(
γ

α

)`[
x+ z

(
γ

α

)n−`
− (x+ z)

(
γ

α

)m−`]
×
[
dβ
dγ

(
β

γ

)`x+ z
(β
α

)n−` − (x+ z)
(β
α

)m−`
x+ z

( γ
α

)n−` − (x+ z)
( γ
α

)m−` + 1

]
.

Below we work on the right-hand side of (5.32). We consider the follo-
wing facts: ∣∣∣∣dβdγ

∣∣∣∣ = 1,

∣∣∣∣dβdα
∣∣∣∣ =

∣∣∣∣dγdα
∣∣∣∣ < 1,

∣∣∣∣βα
∣∣∣∣ =

∣∣∣∣γα
∣∣∣∣ =

1

α3/2
.
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Furthermore, in order to use (5.30), we note that, more generally, we can
get slightly better inequalities than (5.7)–(5.9):

|s`| <
2.7x2

α3`
, |sn| <

2.7z2

α3n
, |sm| <

2.7(x+ z)2

α3m
,

where we have used 1.1 · κ2 < 2.7.
We have shown that the absolute value of the right-hand side of (5.32)

is less than

(5.35)
2.7x2

α3`
+

2.7z2

α3n
+

2.7(x+ z)2

α3m
+

7x2z2

α3(`+n)

+
4.8xz2

α(3`/2)+3n
+

4.8x2z

α(3n/2)+3`
+

4xz

α(3(n+`)/2)
.

We set

(5.36) χ := x+ z

(
γ

α

)n−`
− (x+ z)

(
γ

α

)m−`
.

Keeping in mind that the absolute value of (5.34) is less than the expression
in (5.35), we multiply by (dα/ρ)α3`/2 to obtain

(5.37) |χ| ·
∣∣∣∣(βγ

)`dβ
dγ

χ̄

χ
+ 1

∣∣∣∣ < 12x2z2

α3`/2
.

We now give lower bounds for each absolute value.
Since γ/α is an algebraic integer in L := Q(α, β), we have χ ∈ OL. Thus,

NL/Q(χ) ≥ 1. But

NL/Q(χ) =
∏
σ∈G
|σ(χ)|,

where G = Gal(L/Q). Hence,

|χ| >
∏
σ∈G
σ 6=(1)

|σ(χ)|−1.(5.38)

Now,

|σ(χ)| ≤ x+ z

∣∣∣∣σ(γα
)∣∣∣∣n−` + (x+ z)

∣∣∣∣σ(γα
)∣∣∣∣m−`.

We note that |σ(γ/α)| < α3/2 for all σ ∈ G. Thus

|σ(χ)| ≤ x+ zα3(n−`)/2 + (x+ z)α3(m−`)/2(5.39)

≤ n(1 + α3(n−`)/2 + 2α3(m−`)/2)

< nα2(n−`) < nα4·1016 logn = exp(2.44 · 1016 log n),

where we have used (5.31). Hence, returning to (5.38), we get

(5.40) |χ| > exp(−1.3 · 1017 log n).
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We now set

Λ5 := 1−
(
β

γ

)`(
−
dβ
dγ

)
χ̄

χ
.

We use one last time Matveev’s theorem (complex case), with the parame-
ters t := 2 and

η1 :=
β

γ
, η2 :=

(
−
dβ
dγ

)
χ̄

χ
, b1 := `, b2 := 1.

As before, we take K := Q(α, β), D = 6 and B := `. In addition, recall
that from the application of Theorem 3 to Λ4, we have h(β/α) < 0.31 and
h(−dβ/dγ) < 0.5. Then, by the properties of logarithmic height,

h(η2) ≤ h(−dβ/dγ) + 2h(χ).

We assume that d is the degree of χ over Q and use (5.39) to conclude that

h(χ) =
1

d

∑
σ∈G

log(max{1, |σ(χ)|})

≤ log
(

max
σ∈G
{1, |σ(χ)|}

)
< 2.44 · 1016 log n.

Hence, h(η2) < 5 · 1016 log n.

On the other hand,

|log η2| ≤ |log(−dβ/dγ)|+ 2|logχ| < 2 + 2|logχ|.(5.41)

Furthermore,

|logχ| ≤ log x+

∣∣∣∣log

(
1−

((
1 +

z

x

)(
γ

α

)m−`
− z

x

(
γ

α

)n−`))∣∣∣∣
≤ log x+

∞∑
k=1

∣∣∣∣(1 +
z

x

)(
γ

α

)m−`
− z

x

(
γ

α

)n−`∣∣∣∣k
< log log n+ 70.

In the above inequality, we have used the fact that x < 1016 log n (by (5.30))
and∣∣∣∣(1 +

z

x

)(
γ

α

)m−`
− z

x

(
γ

α

)n−`∣∣∣∣
≤
∣∣∣∣γα
∣∣∣∣m−`(1 +

z

x

(
1 +

∣∣∣∣γα
∣∣∣∣n−m))

=
1

α3(m−`)/2

(
1 +

z

x

(
1 +

1

α3(n−m)/2

))
<

2

α3/2
+

1

α3
< 0.963.

By (5.41), we conclude that log(η2) < 2 log log n + 150. So, we can take
A1 := 2 and A2 := 3 · 1017 log n.



350 C. A. Gómez Ruiz and F. Luca

Applying Theorem 3 (complex case) with the above information, we
obtain the following lower bound for |Λ5|:

(5.42)

∣∣∣∣(βγ
)`dβ
dγ

χ

χ
+ 1

∣∣∣∣ > exp(−1.7 · 1032 log n log `).

Combining (5.37), (5.40) and (5.42), we get

(5.43) exp(−2 · 1032 log n log `) < |χ| ·
∣∣∣∣(βγ

)`dβ
dγ

χ̄

χ
+ 1

∣∣∣∣ < 12x2z2

α3`/2
.

We now take logarithms on both sides, and consider the bounds on x and z
given in (5.30), to obtain

`

log `
< 2.2 · 1032 log n.(5.44)

We use the fact that

(5.45)

(
A > 3 and

t

log t
< A

)
⇒ t < 2A logA.

Taking A := 2.2 · 1032 log n, we deduce from (5.44) and (5.45) that

` < 2(2.2 · 1032 log n) log(2.2 · 1032 log n)

< 4.4 · 1032(log n)(75 + log log n).

Thus, by (5.31), we get

n < 2 · 1016 log n+ ` < 2 · 1016 log n+ 4.4 · 1032(log n)(75 + log log n),

which leads to n < 3 · 1036 and later to ` < 3 · 1036.

Repeating the arguments concerning continued fractions, we return to
the linear form associated to Λ4 (given in (5.28)), where we assume again
that m−` > 390. Applying Lemma 3 with M := 3·1036 (current bound on `),
we obtain q77 > 6M , ε = 0.2423 . . . and m− ` ≤ 293, which was confirmed
with Mathematica. Since we have assumed in fact that m − ` > 390, we
conclude that m− ` ≤ 390.

We use the facts that n− ` = (n−m)+(m− `) and x(m− `) = z(n−m)
(by (5.2)) to derive the following result.

Lemma 8. Let (`,m, n, x, y, z) be a solution of (5.4) with 3 ≤ ` < m < n
and dx+y+zα α`x+my+nz = 1. Assume further that m − ` < ` and υp(Tm) <
5υp(T`)/6 for some p ∈ P . Then max{x, |y|, z} < n and

` < n < 3 · 1036, m− ` ≤ 390, n− ` ≤ 6(m− `) ≤ 2340.

As before, our next step is to reduce the above bounds. To this end, we
return to inequality (5.37), which we rewrite as
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|Λ5| =
∣∣∣∣(βγ

)`(
−
dβ
dγ

)
χ̄

χ
− 1

∣∣∣∣ < 12x2z

|χ̃|
α−3`/2(5.46)

<
3 · 102(m− `)3

|χ̃|
α−3`/2,

where χ̃ corresponds to the simplification of z in χ (see (5.36)). Moreover,

χ̃ =
x

z
+

(
γ

α

)n−`
−
(
x

z
+ 1

)(
γ

α

)m−`
=

(
n− `
m− `

− 1

)
+

(
γ

α

)n−`
−
(
n− `
m− `

+ 1

)(
γ

α

)m−`
.

The previous calculations lead us to note that the upper bound in in-
equality (5.46) is only determined by the values

` < 3 · 1036, 1 ≤ m− ` ≤ 390, m− ` ≤ n− ` ≤ 6(m− `) ≤ 2340.

Before continuing, we note that

min
1≤m−`≤390

m−`<n−`≤2340

|χ̃| > 2.5 · 10−3.

Thus, assuming that ` > 40, we conclude from (5.46) that |Λ5| < 1/2.

Now, taking logw = log |w|+i argw with −π < argw ≤ π (the logarithm
of the complex number w), we get

log(1 + w) =
∞∑
n=1

(−1)n−1
wn

n
for w ∈ C with |w| < 1.

From the above formula, one easily shows that |log(1 + w)| ≤ 2|w| if |w| ≤
1/2. Hence, with w = Λ5, and recalling that the complex logarithm is addi-
tive modulo 2πi, we deduce from (5.46) that

(5.47)

∣∣∣∣` log
β

γ
+ log

(
dβ
dγ

χ̃

χ

)
− 2πki

∣∣∣∣ < 6 · 102(m− `)3

|χ̃|
α−3`/2

for some k ∈ Z. We note that β/γ and (−δβ/dγ)χ̃/χ are complex numbers
of absolute value 1. Moreover,

β

γ
= e2θi, −dα

dγ

χ̃

χ
= e(2δ+2ω+π)i,

where θ, δ and ω are the arguments of β/γ, δβ/dγ and χ̃/χ, respectively.

We see from inequality (5.47) that

|2θ`i+ (2δ + 2ω + π)i− 2πk i| < 6 · 102(m− `)3

|χ̃|
α−3`/2.
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Dividing both sides by 2πi, we get

(5.48)

∣∣∣∣ θπ `− k +

(
δ + ω

π
+

1

2

)∣∣∣∣ < 3 · 102(m− `)3

π|χ̃|
α−3`/2.

We note that the left-hand side is nonzero, and the fact that T is nonde-
generate ensures that θ/π is an irrational number.

A new implementation of Lemma 3 in (5.48) for m − ` ∈ [3, 390] and
n− ` ∈ [m− `, 6(m− `)], with

γ :=
θ

π
, µ :=

δ + ω

π
+

1

2

and

A :=
3 · 102(m− `)3

π|χ̃|
, B := α3/2, M := 3 · 1036,

yields ` ≤ 130. Then, by Lemma 8, we get n− ` < 2340, and so n < 2470.

We return one more time to (5.28), where we now assume thatm−` > 40,
and take M := 130. We conclude that m − ` ≤ 40. Finally, we return to
(5.46), where we now assume that ` > 20, to conclude that |Λ5| < 1/2
given that n < 2340. We apply Lemma 3 in (5.48) with m− ` ∈ [3, 40] and
n− ` ∈ [m− `, 6(m− `)] and with M := 130 (current bound on `). A quick
calculation with Mathematica reveals that ` ≤ 40, so n ≤ 6(m−`)+` ≤ 280.

Summarizing all the cases, we have

` < m < n ≤ 280.

Using the primitive prime factors of T`, Tm and Tn, we check that the only
solutions of (5.4), corresponding to x+ z = |y| (see (5.1)), are

T 2
13 = T17 T9, T 2

16 = T15T17, T 2
12 = T15T9.

This completes the proof of the Main Theorem.
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[7] C. A. Gómez Ruiz and F. Luca, Multiplicative independence in k-generalized Fi-
bonacci sequences, preprint, 2015.

[8] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in
the logarithms of algebraic numbers, Izv. Math. 64 (2000), 1217–1269.

[9] W. R. Spickerman, Binet’s formula for the Tribonacci sequence, Fibonacci Quart. 20
(1982), 118–120.

Carlos Alexis Gómez Ruiz
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