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Abstract. We study the Borel reducibility of Borel equivalence relations on the gen-
eralized Baire space κκ for an uncountable κ with κ<κ = κ. The theory looks quite
different from its classical counterpart where κ = ω, although some basic theorems do
generalize.

1. Introduction. Classical descriptive set theory deals in particular
with classification problems by translating them into questions of Borel re-
ducibility. The space ωω with the standard product topology is called the
Baire space. A standard Borel space is a space equipped with a Borel struc-
ture which arises from some Polish topology on that space. For equivalence
relations E and E′ on standard Borel spaces B and B′ respectively, we
say that E is Borel reducible E′ if there is a Borel map f : B → B′ which
is injective on the equivalence classes, i.e. induces a one-to-one map from
B/E to B′/E′. As shown below, these notions naturally generalize to the
setting where ω is replaced by an uncountable regular cardinal κ satisfying
κ<κ = κ. The notion of a standard Borel space also generalizes, along with
the generalization of Borel sets.

The results of this paper can be split into four main themes. First we
show that every equivalence relation induced by a Borel action of a “small”
group (of size ≤ κ) is Borel reducible to a generalized counterpart of the
equivalence relation known as E0 in the classical case (Theorem 2). In the
classical case this result holds for hyperfinite equivalence relations, but not
for general countable ones. Also in the generalized context not all Borel
equivalence relations with classes of size ≤ κ have to be induced by a Borel
action of such a small group, even if we restrict ourselves to smooth (re-
ducible to identity) equivalence relations with classes of size 2 (Theorem 3).
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Second, we show that the counterparts of E0 and E1 are Borel bireducible
(Theorem 5), which is not the case in the classical setting where E1 is not
reducible to any equivalence relation induced by a Polish group action while
E0 is.

Third, E0 is strictly below id+ with respect to Borel reducibility, where
id is the identity relation on 2κ and E 7→ E+ is the analogue of H. Friedman–
Stanley jump operator [FS89] (Theorem 7). This is also true for the classical
counterpart, but as follows from the above, this is also true with E0 replaced
by E1, which is not true in the classical setting.

Finally, if M is a Borel class of structures of size κ such that ∼=M, the
isomorphism relation onM, is Borel (in particular ifM is the class of models
with domain κ of a classifiable complete first order theory [FHK11]), then
∼=M is Borel reducible to the equivalence on 2κ modulo the non-stationary
ideal restricted to a regular cardinal µ < κ (Corollaries 14 and 15).

2. Basic notions. The generalized Baire space κκ consists of all func-
tions from κ to κ where κ is an uncountable cardinal which satisfies κ<κ = κ.
The topology on this space is generated by the open sets

[p] = {η ∈ κκ | η ⊃ p}

where p ∈ κ<κ. The resulting collection of open sets is closed under inter-
sections of length < κ. The class of κ-Borel sets in this space is the smallest
class containing the basic open sets and closed under taking unions and in-
tersections of length κ (apart from definitions, we always drop the prefix
“κ-”). More generally, for a topological space X, by Xκ we mean the space
equipped with the κ-product topology, i.e. the least topology containing the
standard Tychonoff topology and closed under intersections of size < κ.

In this generalized setting, let us define a space equipped with a κ-algebra,
i.e. a set of subsets which is closed under κ-unions, complements and κ-inter-
sections, to be a standard Borel space if it is Borel isomorphic to a Borel
subset of κκ. In this paper the κ-algebra will always be generated by the
open sets in the topology of X. A subset of a standard Borel space B is said
to be analytic, or Σ1

1, if it is a projection of a Borel subset B′ ⊂ B×κκ. This
has various equivalent definitions, as in the classical case (see e.g. [FHK11]).

In this paper we often work with spaces of the form (2α)β for some
ordinals α, β ≤ κ. If x ∈ (2α)β, then technically x is a function β → 2α and
we denote by xγ = x(γ) the value at γ < β. Thus xγ is a function α→ 2 for
each γ and we denote its value at δ < α by xγ(δ) or x(γ)(δ). The lengthier
notation for x ∈ (2α)β is (xγ)γ<β as a β-sequence of functions α → 2. For
α, β < κ and p ∈ (2α)β define a basic open set of (2κ)κ by

[p] = {η ∈ (2κ)κ | ∀γ < β ∀δ < α (η(γ)(δ) = p(γ)(δ))}.
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We say that a topological space is κ-Baire if the intersection of κ-many
dense open sets is never empty. The generalized Baire space is κ-Baire
[MV93]. If X is a topological space, we say that A ⊆ X is κ-meager
if its complement contains an intersection of κ-many dense open sets. Thus,
X is κ-Baire if and only if X is itself not meager. The complement
of a meager set is called co-meager. A set A ⊆ X has the Baire prop-
erty if there exists an open set U such that the symmetric difference U 4A
is meager. As in the classical setup, Borel sets have the Baire property
[HS01].

A function is Borel if the inverse image of every Borel set is Borel. As
in the classical setup, a Borel function is Baire and is continuous on a co-
meager set [FHK11]. An equivalence relation E on a standard Borel space B
is said to be Borel reducible to an equivalence relation E′ on a standard
Borel space B′ if there is a Borel map f : B → B′ which is injective on
the equivalence classes, i.e. induces an injection from B/E to B′/E′. Two
equivalence relations are Borel bireducible if one is reducible to the other
and vice versa.

3. Equivalence relations induced by a group action

Definition 1. Suppose G is a topological group which is also a standard
Borel space. All groups considered in this paper are such. Let X be a Borel
subset of κκ. An action ρ : G×X → X is Borel if it is Borel as a function.
This action induces an equivalence relation on X in which two elements
x and y are equivalent if there exists g ∈ G such that ρ(g, x) = y. For
example, if the action is Borel, then it is easy to see that this equivalence
relation is Σ1

1. This equivalence relation is denoted by EXG,ρ, or just EXG if
the action is clear from the context.

Here are some examples of equivalence relations which are, up to Borel
bireducibility, induced by a Borel action on a standard Borel space:

• id, the identity relation.
• id+, the jump of identity. This is an equivalence relation on (2κ)κ

where (xα)α<κ and (yα)α<κ are equivalent if the sets {xα | α < κ}
and {yα | α < κ} are equal (cf. Definition 6). This is not defined as an
equivalence relation induced by a Borel action, but is easily seen to be
Borel bireducible with id+

∗ which is an equivalence relation on (2κ)κ

where (xα)α<κ and (yα)α<κ are equivalent if there exists a permutation
s ∈ Sκ (Sκ is the group of all permutations of κ) such that xα = ys(α)
for all α. The latter is induced by a Borel action of Sκ.
• E0, an equivalence relation on 2κ, where (η, ξ) ∈ E0 if there exists
α < κ such that for all β > α we have η(β) = ξ(β).
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• E1, an equivalence relation on (2κ)κ, where (xα)α<κ and (yα)α<κ are
equivalent if there exists α < κ such that for all β > α we have
xβ = yβ. This is induced by the action of the Borel group

G = {(xα)α<κ ∈ (2κ)κ | ∃γ < κ ∀α > γ ∀β < κ (xα(β) = 0)}.
The addition of the group is coordinatewise addition modulo 2 and it
acts on the ambient space (2κ)κ by translation.

Since all the topologies in this paper are closed under intersections of
length < κ, we replace “finite” by “less than κ” when referring to product
topologies below.

Theorem 2. Let G be a discrete group of cardinality ≤ κ and let it act
in a Borel way on a Borel subset X ⊆ 2κ. Let EXG be the (Borel) equivalence
relation induced by this action. Then EXG ≤B E0.

Proof. Let P(G) be the set of all subsets of G. Each element A ∈ P(G)
can be identified with a function η ∈ 2G such that for all g ∈ G, g ∈ A ⇔
η(g) = 1. Then 2G can be identified with 2µ where µ is the cardinality
of G via a bijection G → µ. If µ = κ, then the topology on P(G) is in
this way induced from 2κ. If µ < κ, then the topology on P(G) is discrete.
Further, equip P(G)κ with the “κ-product topology”, i.e. the open sets are
of the form

∏
i<α Ui ×

∏
α≤j<κ P(G) where α < κ and Ui are open subsets

of P(G).
The group G acts on P(G)κ coordinatewise by multiplication on the

right, g · (Xi)i<κ = (Xig)i<κ. This gives rise to the equivalence relation

E
P (G)κ

G .

Claim 2.1. EXG ≤B E
P(G)κ

G .

Proof. Let π : κ→ 2<κ be a bijection. Let x ∈ X and for each α < κ let

Zα(x) = {g ∈ G | gx ∈ [π(α)]}.
This defines a reduction: an element x ∈ X is mapped to (Zα(x))α<κ. Sup-
pose there is g0 ∈ G such that y = g0x for some x, y ∈ X. Then

Zα(x) = {g ∈ G | gx ∈ [π(α)]} = {gg0 ∈ G | gy ∈ [π(α)]} = Zα(y)g0.

On the other hand, suppose that there exists g ∈ G such that Zα(x) =
Zα(y)g for all α < κ. It is enough to show that g−1y ∈ [p] for all basic
open neighborhoods [p] of x. So suppose U = [p] is a basic neighborhood
containing x and let α = π−1(p). Now obviously 1G ∈ Zα(x), so 1G ∈ Zα(y)g
and thus g−1 ∈ Zα(y), i.e. g−1y ∈ [p]. 2.1

For a set S, FS is the free group generated by elements of S. F∅ = F0 is
the trivial group.

Claim 2.2. E
P(G)κ

G ≤B E
P(Fκ)κ
Fκ

.
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Proof. Since G has size ≤ κ and Fκ is a free group on κ generators,
there is a normal subgroup N ⊆ Fκ such that G ∼= Fκ/N (see e.g. [Rot95,
Chapter 11]). Assume without loss of generality that G = Fκ/N . Let pr be
the canonical projection map Fκ → Fκ/N . For (Aα)α<κ ∈ P(G)κ, let

F ((Aα)α<κ) = (pr−1[Aα])α<κ.

This is clearly a continuous reduction. 2.2

Claim 2.3. E
P(Fκ)κ
Fκ

≤B E0.

Proof. Thinking of Fα as a subgroup of Fκ for all α < κ, we see that
the action of Fκ on P(Fκ)κ induces a canonical action of Fα on P(Fα)α.
Denote Xα = P(Fα)α for all α ≤ κ and let ∗ denote the action of all the
groups of the form Fα. After natural identifications we have Xα ⊂ Xβ ⊂ Xκ

for all α < β < κ. Fix a well-ordering <α of Xα for each α < κ. For all
α < β ≤ κ and x ∈ Xβ, denote by x � α the element of Xα which is the
canonical restriction of x to Xα.

Fix x ∈ Xκ. For each α, let x(α) be the <α-least element of

{g ∗ (x�α) | g ∈ Fα}

and let H(x) = (x(α))α<κ. We claim that for all x, y ∈ Xκ, y = g ∗ x for
some g ∈ Fκ if and only if there exists β < κ such that for all α > β,
x(α) = y(α).

Assume first that such a g ∈ Fκ exists. Then g ∈ Fβ for some β < κ,
and g ∈ Fα for all α > β. Thus, it is obvious that x(α) = y(α) for α > β,
because for these α,

{g ∗ (x�α) | g ∈ Fα} = {g ∗ (y �α) | g ∈ Fα}.

Assume now that there exists β < κ such that x(α) = y(α) for all α > β.
Then for each α > β there exists gα ∈ Fα such that x�α = gα ∗ (y �α). For
each α > β, let γ(α) be the least ordinal such that gα ∈ Fγ(α). If α is a limit
ordinal, then γ(α) < α and so there is γ0 and a stationary S0 ⊆ limκ such
that for all α ∈ S0 we have gα ∈ Fγ0 . Since |Fγ0 | < κ, there is a stationary
S ⊆ S0 and g∗ ∈ Fγ0 such that for all α ∈ S we have gα = g∗. Since S is
unbounded, this obviously implies that y = g∗ ∗ x.

Fix bijections fα : Xα → κ and map each x ∈ Xκ to the sequence
(fα(x(α)))α<κ; denote this mapping by G. By the above we have x = g ∗ y
for some g ∈ Fκ if and only if (G(x), G(y)) ∈ E0. It remains to show that
G is continuous.

Suppose x ∈ Xκ and take an open neighborhood U of G(x). Then there
is β such that

{η ∈ κκ | ∀α < β (η(α) = fα(x(α)))} ⊆ U.



290 S.-D. Friedman et al.

Now, the set {y ∈ Fκ | y �β = x�β} is mapped inside U and contains x, so it
remains to show that this set is open; but this follows from the definition of
the topology on Xκ = P(Fκ)κ, in particular from the fact that the collection
of open sets is closed under intersections of length < κ. 2.3

This completes the proof of Theorem 2.

Theorem 3. (V = L) There is a Borel equivalence relation E whose
classes have size 2, which is smooth (i.e. Borel reducible to id) yet not in-
duced by a Borel action of a group of size ≤ κ.

Proof.

Claim 3.1. There is an open dense set O ⊆ 2κ and a bijection f : O →
2κ \O such that the graph of f is Borel, but f is not Borel as a function on
any non-meager Borel set. However, the inverse of f is Borel.

Proof. We let O be the complement of a certain closed set of “master
codes” for size κ initial segments of L. This is defined as follows. Let L
be the language of set theory augmented by constant symbols ᾱ for each
ordinal α < κ. Also let T0 denote the theory ZFC− (ZFC minus the power
set axiom) plus V = L plus the statement “there are only boundedly many
ordinals β such that Lβ satisfies ZFC−”. We consider complete, consistent
theories T which extend T0 and which in addition satisfy the following:

(1) There is no ω-sequence of formulas ϕn(x) (mentioning constants ᾱ
for α < κ) such that for each n both the sentence “∃!x ϕn(x)” and
the sentence “∃x, y (ϕn(x) ∧ ϕn+1(y) ∧ y ∈ x)” belong to T .

(2) For each β < κ and formula ϕ(x) (mentioning constants ᾱ for α < κ)
if the sentences “∃!x ϕ(x)” and “∃x (ϕ(x) ∧ x < β̄)” both belong to
T then so does the sentence “∃x (ϕ(x) ∧ x = γ̄)” for some γ < β.

By identifying sentences of L with ordinals less than κ, we can regard
theories in L as subsets of κ. Now let C ⊆ 2κ be the set of theories T
as above. Then C is a closed set, because if T fails to satisfy any of the
properties above, the failure is witnessed by T �α for some α. On the other
hand “inconsistency of a theory” is a dense property, so the complement
of C is dense. Therefore the complement is dense and open, and so C is
nowhere dense.

The theories in C are exactly the first-order theories of models of the
form Lβ in which the constant symbol ᾱ is interpreted as the ordinal α for
each α < κ and in which the axioms of T0 hold. For given a theory T in C,
we can form a model of T out of terms built from T -definable functions ap-
plied to constants ᾱ, α < κ, identifying two such terms when T proves them
equal. We also define the ∈-relation on terms using T . The result is a well-
founded model by (1) above which can be identified with some Lβ, with ᾱ
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denoting α for each α < κ by (2) above. Conversely, given a model Lβ of T0
in which ᾱ is interpreted as α for α < κ, it is clear that T = the theory of Lβ
with parameters less than κ belongs to C. For each T in C let M(T ) denote
the model Lβ of T described above, in which every element is definable from
parameters less than κ, and ᾱ is interpreted as α for each α<κ.

We are ready to define the function f : O → C where O is the comple-
ment of C in 2κ. List the elements of O in <L-increasing order as x0, x1, . . .
and list the elements of C in <L-increasing order as y0, y1, . . .; then set
f(xi) = yi for each i < κ+. Note that f strictly increases L-rank because no
model M(T ) for T in C is the limit of such models. It follows that the inverse
of f is Borel: Given y ∈ C we can identify M(y) in a Borel way and then
obtain f−1(y) (viewed as a subset of κ) as the set of γ < κ such that M(y)
satisfies the sentence “γ̄ belongs to the ith element in the <L-increasing
enumeration of O = 2κ \C where i is the order type of the set of L-ranks of
elements of C”. Thus the graph of f is Borel. If B is a non-meager Borel set
and g is a Borel function then we claim that g cannot agree with f on B:
Indeed, let β0 be so that Lβ0 models ZFC− and contains Borel codes for both
B and g, and let x ∈ B ∩ O be κ-Cohen generic over Lβ0 . Then f(x) = T
is the theory of a model M(T ) = Lβ where β is greater than β0. But g(x)
belongs to Lβ0 [x], which by the genericity of x is a model of ZFC−, while
Lβ0 [f(x)] does not satisfy ZFC− as f(x) = T codes the model Lβ. 3.1

Define xEy if and only if x = y, y = f(x) or x = f(y). Now E has a
Borel transversal, i.e., a Borel function t such that xEt(x) for all x and xEy
if and only if t(x) = t(y) for all x, y: Given x ∈ 2κ, first decide in a Borel
way if x is in O or not. If yes, then let t(x) = x, otherwise find f−1(x) in a
Borel way (since f−1 is Borel) and let t(x) = f−1(x). This t(x) is a Borel
transversal. It follows that E is smooth.

Finally, suppose E is given by a Borel action of some group G of size at
most κ. Then for each x ∈ O choose gx ∈ G such that f(x) = gx ·x; then for
some fixed g ∈ G, f(x) = g · x for non-meager many x ∈ O, contradicting
the fact that f is not Borel on any non-meager Borel set.

Question 4. Is there a Borel equivalence relation with classes of size κ
which is not reducible to E0?

4. E1 and Eclub. Let E1 be the equivalence relation on (2κ)κ where
(xα)α<κ and (yα)α<κ are equivalent if there exists β < κ such that xγ = yγ
for all γ > β.

Theorem 5. E1 and E0 are bireducible.

Proof. It is obvious that E0 ≤B E1, so let us look at the other direction.
To simplify notation, we think of E0 on κκ: two functions η and ξ are
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E0-equivalent if the set {α < κ | η(α) 6= ξ(α)} is bounded. It is easy to see
that E0 on 2κ is bireducible with this equivalence relation.

For all limit α < κ, define Eα1 to be the equivalence relation on (2α)α

approximating E1, i.e. (xi)i<αE
α
1 (yi)i<α if for some β < α, xi = yi for all

i > β. Now define the reduction F : (2κ)κ → κκ so that for all (xi)i<κ ∈
(2κ)κ, F ((xi)i<κ)(α) = 0 if α is not limit, and otherwise it is a code for the
Eα1 -equivalence class of (xi �α)i<α.

Clearly F is continuous and if (xi)i<κE1(yi)i<κ, then also F ((xi)i<κ) and
F ((yi)i<κ) are E0-equivalent (if β < κ witnesses the first equivalence, it also
witnesses the second).

Also if (xi)i<κ and (yi)i<κ are not E1-equivalent, then for all α < κ there
are γ, β < κ such that β > α and xβ(γ) 6= yβ(γ). Let f(α) be max{β, γ}.
Now if α∗ < κ is limit and such that for all α < α∗, f(α) < α∗, then
clearly (xi � α∗)i<α∗ and (yi � α∗)i<α∗ are not Eα

∗
1 -equivalent, and thus

F ((xi)i<κ)(α∗) 6= F ((yi)i<κ)(α∗). Since the set of such α∗ is unbounded,
F ((xi)i<κ) and F ((yi)i<κ) are not E0-equivalent.

Definition 6. If E is an equivalence relation on 2κ, its jump is the
equivalence relation on (2κ)κ denoted by E+, defined as follows. Two se-
quences (xα)α<κ and (yα)α<κ are E+-equivalent if

{[xα]E | α < κ} = {[yα]E | α < κ}
where [x]E is the E-equivalence class of x. Since (2κ)κ is homeomorphic to 2κ

we can assume without loss of generality that E+ is also defined on 2κ.

For an ordinal α < κ+ define Eα+ by transfinite induction. To begin,
define E0+ = E. If Eα+ is defined, then E(α+1)+ = (Eα+)+.

Suppose α is limit and Eβ+ is defined as an equivalence relation on
{β} × 2κ for β < α. Let X = α × 2κ. Denote Xβ = {β} × 2κ, thus X =⋃
β<αXβ. Let h be a homeomorphism X → 2κ. Two functions η and ξ

are defined to be Eα+-equivalent if h−1(η) and h−1(ξ) both belong to the
same Xβ and are Eβ+-equivalent. This is called the join of the equivalence
relations {Eβ+ | β < α} and is denoted

⊕
β<αE

β+.

Theorem 7. E0 <B id+.

Proof. Recall that, as in Definition 1, id+ can be replaced by the equiv-
alence relation on (2κ)κ where (xα)α<κ and (yα)α<κ are equivalent if there
exists a permutation s ∈ Sκ such that xα = ys(α) for all α. The reduction is
defined by

E0 ≤B id+ : η 7→ (p+ η)p∈2<κ ,

where + is coordinatewise sum modulo 2.

To show that id+ 6≤B E0, we will show that id+ 6≤B E1, and the result
will follow from Theorem 5. Suppose f : (2κ)κ → (2κ)κ is a Borel reduction
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from id+ to E1. There is a co-meager set D on which f is continuous.
Without loss of generality assume that D =

⋂
i<κDi where Di are dense

open such that for all limit j we have Dj =
⋂
i<j Di.

For every i < κ we will define ordinals γi together with sequences
xi = (xiα)α<γi and yi = (yiα)α<γi where each xiα, y

i
α ∈ 2γi and permutations

πi ∈ Sγi . These will satisfy the following requirements for every i < j < κ:

(1) πi ⊆ πj .
(2) γi < γj ,

(3) For all α < γi we have xiα ⊆ x
j
α and yiα ⊆ y

j
α.

(4) For all α < γi we have xiα = yiπi(α).

(5) Let [(xiα)α<γi ] be the set of all x = (xα)α<κ ∈ (2κ)κ such that
xiα ⊆ xα for all α < γi (recall the definition of [p] in Section 2).
If i is a successor, then there exist β > i, δ < κ and p, q ∈ (2δ+1)β+1

such that
f [[(xiα)α<γi ] ∩D] ⊆ [p], f [[(yiα)α<γi ] ∩D] ⊆ [q]

and pβ 6= qβ.
(6) [(xi+1

α )α<γi+1 ] ⊆ Di and [(yi+1
α )α<γi+1 ] ⊆ Di.

This will lead to a contradiction as follows. Let x̃ = (x̃α)α<κ be such that
for every α we have x̃α � γi = xiα if γi > α. This is possible by (2) and (3).
Analogously define ỹ. Now by (1) we can define π =

⋃
i<κ πi which by (4)

witnesses that x̃ and ỹ are id+-equivalent. By (6) they are in D and by con-
tinuity on D and by (5) the images f(x̃) and f(ỹ) cannot be E1-equivalent.

Claim 7.1. For every α, β < κ and p ∈ (2α)β there are x∗, y∗ ∈ [p] ∩D
such that x∗ is not id+-equivalent to y∗.

Proof. We will define sequences (ξk)k≤κ and (ηk)k≤κ and ordinals εk
such that for all k < κ we have ξk, ηk ∈ (2εk)εk , for k1 < k2 we have
εk1 < εk2 , ξk1 ⊆ ξk2 and ηk1 ⊆ ηk2 (meaning that for all α < εk1 we have
ξk2(α) � εk1 = ξk1(α) and ξk1 6= ξk2 and the same for ηk1 ( ηk2), and the
unions ξκ =

⋃
k<κ ξk and ηκ =

⋃
k<κ ηk are in D and not id+-equivalent.

Let ε0 = max{α, β} and extend p to q such that q ∈ (2ε0)ε0 in an arbitrary
way. Let ξ0 = η0 = q. If ξk and ηk are defined, first extend ξk to an element

ξ′k+1 ∈ (2ε
′
k+1)ε

′
k+1 (for suitable ε′k+1 > εk) such that [ξ′k+1] ⊆ Dk. Then

extend the first component of ηk so that it differs in a diagonal way from
every component of ξ′k+1. Next, extend the result to ηk+1 ∈ (2εk+1)εk+1 (for
suitable εk+1 > ε′k+1) so that [ηk+1] ⊆ Dk and εk+1 > ε′k+1. Finally extend
ξ′k+1 to an element of (2εk+1)εk+1 so that the first component of ηk+1 is still
diagonally different from every component of ξk+1; technically this means
that ηk+1(0)(α) 6= ξk+1(α)(α). At limit k just take the natural limits of the
sequences. In this way at the κth limit, ξκ and ηκ are as required, so we can
define x∗ = ξκ and y∗ = ηκ. 7.1
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To start off the induction, let γ−1 = 0, let x−1 and y−1 be empty se-
quences and let the permutation π−1 be the empty function. Conditions (5)
and (6) are not satisfied, but we are not concerned with that, because γ−1,
x−1, y−1 and π−1 are not going to be included into our final sequence whose
indexation will start from 0. Suppose that γi, x

i, yi and πi are defined for
some i, and let x∗ and y∗ be sequences in [xi] ∩D and [yi] ∩D respectively
which are not id+-equivalent. This is possible by Claim 7.1.

Let β and δ be such that f(x∗)(β)(δ) 6= f(y∗)(β)(δ); these exist because
f is assumed to be a reduction and f(x∗) and f(y∗) are not E1-equivalent.
Now by continuity in D there is γ∗ > max{γi, β, δ} such that

f [[(x∗α �γ
∗)α<γ∗ ] ∩D] ⊆ [(f(x∗)α �δ + 1)α<β+1],

f [[(y∗α �γ
∗)α<γ∗ ] ∩D] ⊆ [(f(y∗)α �δ + 1)α<β+1]

and (6) is satisfied for (x∗α � γ∗)α<γ∗ and (y∗α � γ∗)α<γ∗ . Now we want to
glue a part of (x∗α � γ

∗)α<γ∗ to the end of (y∗α � γ
∗)α<γ∗ and vice versa: Let

ε = γ∗ − γi, the order type of γ∗ \ γi, and let γi+1 = γ∗ + ε. Define xi+1
α

and yi+1
α for all α < γi+1 depending on α as follows. If α < γ∗, let xi+1

α

be x∗α � γi+1 and yi+1
α be y∗α � γi+1. If α = γ∗ + δ for some δ < ε, then let

xi+1
α be y∗γi+δ and yi+1

α be x∗γi+δ. This gives us also the permutation πi+1

extending πi.
If j is limit, then just define πj =

⋃
i<j πi, x

j
α =

⋃
i′<i<j x

i
α and yjα =⋃

i′<i<j y
i
α for some i′ such that γi′ > α and γj = supi<j γi and γj =

supi<j γi. Conditions (1)–(6) are easily seen to be satisfied. Note that (5) is
not required at the limits.

Definition 8. For a regular cardinal µ < κ and λ ∈ {2, κ} let Eλµ-cub
be the equivalence relation on λκ such that η and ξ are Eλµ-cub-equivalent if
the set {α | η(α) = ξ(α)} contains a µ-cub, i.e. an unbounded set which is
closed under µ-cofinal limits. If T is a countable complete first-order theory,
denote by ∼=T

κ the isomorphism relation on the models of T of size κ.

In the following we show that

(1) The αth jump of identity for α < κ+ is reducible to Eκµ-cub for every
regular µ < κ,

(2) Every Borel isomorphism relation is reducible to Eκµ-cub for every
regular µ < κ,

(3) If T is a countable complete first-order classifiable (superstable with
NDOP and NOTOP) and shallow theory, then ∼=κ

T ≤B Eκµ-cub.

Definition 9. Fix a limit ordinal α ≤ κ and let t be a subtree of α<ω

with no infinite branches. Let h be a function from the leaves of t to 2<α.
Then (t, h) determines the set B(t,h) as follows: p ∈ 2α belongs to B(t,h) if
player II has a winning strategy in the game G(p, t, h): The players start at
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the root and then alternately, player I being first, choose a successor of the
node they are at and then move to that successor. Eventually they reach a
leaf l and player II wins if h(l) ⊂ p. We say that (t, h) is a Borel code for α.

If α = κ, it is easy to see by induction on the rank of the tree that B(t,h)

is a usual Borel set, and conversely, if B ⊂ 2κ is any Borel set, then there is
a Borel code (t, h) for κ such that B = B(t,h).

If t is replaced by a more general κ+κ-tree (subtree of κ<κ without
branches of length κ), then the sets obtained in this way are the so called
Borel∗ sets (cf. [Bla81, MV93, Hal96, FHK11]).

Suppose (t, h) is a Borel code for κ and α < κ. Say that α is good for
(t, h) if all p ∈ t that are leaves in t ∩ α<ω are also leaves in t, and for all
those leaves we have h(p) ∈ 2<α. It is standard to verify that the set of good
α for a fixed (t, h) is a cub set.

For a good α, define the αth approximation of (t, h), denoted (t, h) �α,
to be the pair (t �α, h �α) where t �α = t ∩ α<ω and h �α = h � (t �α). This
is well defined by the definition of good ordinals for (t, h). It is obvious that
if (t, h) is a Borel code for κ and α < κ is good for (t, h), then (t, h)�α is a
Borel code for α.

By replacing 2<α with (2<α)2 for the range of h and making necessary
changes we can define Borel codes for subsets of (2α)2. Note that the game
G(p, t, h) is determined for all p ∈ 2α (this is not the case for general Borel∗

sets). Make a similar definition for codes of Borel subsets of 2κ × 2κ.

Lemma 10. Suppose that B = B(t,h) is a Borel subset of 2κ × 2κ. Then

(η, ξ) ∈ B ⇔ (η �α, ξ �α) ∈ B(t,h)�α for cub-many α,

(η, ξ) /∈ B ⇔ (η �α, ξ �α) /∈ B(t,h)�α for cub-many α.

Proof. Suppose (η, ξ) ∈ B and let σ be a winning strategy of player II
in G((η, ξ), t, h). Let C be the set of those limit α which are good for (t, h)
and for which t �α is closed under σ. Clearly (η �α, ξ �α) ∈ B(t,h)�α for all
α ∈ C and C is cub.

Conversely, if (η, ξ) /∈ B, then player I has a winning strategy τ in
G((η, ξ), t, h) and by closing under τ we obtain the needed cub set again.

Lemma 11. Let S be the set of Borel equivalence relations E such that
for some Borel code (t, h), E = B(t,h) and B(t,h)�α is an equivalence relation
for cub-many good α < κ. Then S contains id and is closed under jump and
the join operation

⊕
as in the definition of iterated jump, Definition 6.

Proof. Let (pβ,γ)γ<κ be the enumeration of all p ∈ 2<κ with dom p > β.
Clearly id =

⋂
β<κ

⋃
γ<κ[(pβ,γ , pβ,γ)]. This can be translated into a Borel

code as follows: Let t = κ∪κ2 be ordered as the subtree of κ<κ and h(β, γ) =
(pβ,γ , pβ,γ) for all β, γ < κ. Informally, first player I chooses a length β and
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player II has to produce a sequence p of length at least β such that the
payoff pair belongs to the basic open set determined by (p, p). The set of α
such that for all β, γ < α we have pβ,γ ∈ 2<α is cub, and for those α the set
B(t,h)�α is the identity on 2α.

Suppose E is an equivalence relation, without loss of generality on 2κ,
which is in S, and (t, h) is a code for E witnessing that E = B(t,h) and
that C is a cub set of those α for which B(t,h)�α is an equivalence relation
on 2α. Note that C is a subset of the good ordinals for (t, h). Denote for
simplicity Eα = B(t,h)�α for α ∈ C. Then E+ can be defined as follows:
((xi)i<κ, (yi)i<κ) ∈ E+ if and only if

(1) ∀i < κ ∃j < κ ((xi, yj) ∈ E) ∧ ∀j < κ ∃i < κ ((xi, yj) ∈ E).

Let us translate this into a Borel code of E+ in a standard way. For k ∈ {1, 2}
let tk be the subtree of κ<ω defined by

{p ∈ κ<ω | p ⊂ (k, 0, α, β)_q, (α, β) ∈ κ2, q ∈ t}.
Each leaf l of tk determines a branch η of tk, which in turn determines
ordinals α = α(l) and β = β(l) such that η(2) = α and η(3) = β. Let ιαβ,k
be the inclusion of t into tk taking p to (k, 0, α, β)_p. Let hk(l), k = 1, 2, be
the open subsets of ((2κ)κ)2 defined by

h1(l) = {((xi)i<κ, (yj)j<κ) | (xα(l), yβ(l)) ∈ h(ι−1αβ,1(l))},

h2(l) = {((xi)i<κ, (yj)j<κ) | (xβ(l), yα(l)) ∈ h(ι−1αβ,2(l))}.

Now let t+ = t1 ∪ t2; then ∅ is the root of t+. Let h+(l) equal hi(l) if l
is a leaf of ti for i ∈ {1, 2}. It is now easy to verify that player II has a
winning strategy in G((η, ξ), t+, h+) if and only if (η, ξ) ∈ E+. The first
move of I corresponds to the conjunction in formula (1). In the next move
II has only one choice, namely to go to the node (k, 0) where (k) is the
node picked by I. The following move of player I corresponds to one of the
universal quantifiers in (1). The next move of player II corresponds to one
of the existential quantifiers in the formula and after her move the players
are essentially at the root of t, so the rest of the game corresponds to the
atoms (xi, yj) ∈ E of formula (1).

Suppose α is in C and consider (t+, h+)�α. Then B(t+,h+)�α is the set

∀i < α ∃j < α ((xi, yj) ∈ Eα) ∧ ∀j < α ∃i < α ((xi, yj) ∈ Eα),

which can be seen through the same translation procedure as above. This
is by definition a code for the jump of Eα when α ∈ C, and is therefore an
equivalence relation.

Similarly suppose that Ei ∈ S are equivalence relations for i < κ and
witnessing codes (ti, hi) are given together with Ci, cub sets of good ordinals
for (ti, hi) such that B(ti,hi)�α is an equivalence relation for each α ∈ Ci.
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Denote this equivalence relation by Eαi . Assume without loss of generality
that the domain of Ei is {i} × 2κ. Let t⊕ be the tree defined by

{p ∈ κ<ω | p ⊂ (0, i)_q, i < κ, q ∈ ti}.
If l is a leaf of t⊕, then it is a leaf of {i} × ti for some i. Denote by l′ the
corresponding leaf of ti. Let h⊕(l) be equal to {i} × hi(l′). The idea is that
if η(0) 6= ξ(0), then (η, ξ) /∈ B(t⊕,h⊕), and otherwise (η, ξ) /∈ B(t⊕,h⊕) holds if
and only if (η, ξ) ∈ B(ti,hi) where i = η(0) = ξ(0). This is easy to check and
implies that t⊕, h⊕ is a code for

⊕
i<κEi. By 4i<κCi we mean the diagonal

intersection of the cub sets:

4i<κCi = {α | ∀i < α (α ∈ Ci)}.
If Ci are all cub sets, then 4i<κCi is also cub (cf. [Kun80]). If α ∈ 4i<κCi,
then it is good for all (ti, hi) with i < α, Eαi is defined, and B(t⊕,h⊕)�α is
therefore

⊕
i<αE

α
i .

It follows that S contains all iterates of the jump id+β, β < κ+.

Theorem 12. Let E be an equivalence relation in S (as defined in the
formulation of Lemma 11). Then E is reducible to Eκµ-cub for any regular
µ < κ (cf. Definition 8).

Proof. Let E be B(t,h) where (t, h) witnesses that E belongs to S. To each
η assign the function fη where fη(α) is a code for the B(t,h)�α equivalence
class of η �α (if cf(α) = µ andB(t,h)�α is an equivalence relation, 0 otherwise).
By Lemma 10, if ηEξ then fη(α) = fξ(α) for µ-cub-many α, and if ¬ηEξ
then fη(α) 6= fξ(α) for µ-cub-many α.

Corollary 13. The iterated jumps idα+ of the identity are reducible to
Eκµ-cub for each regular µ < κ.

Corollary 14. If M is a Borel class of models of size κ such that
∼=M, the isomorphism relation on M, is Borel, then ∼=M is Borel reducible
to Eκµ-cub for all regular µ < κ.

Proof. Using similar techniques to those in classical descriptive set the-
ory ([Fri00]; for a proof see also [Gao08, Lemma 12.2.7]) one can show that
a Borel isomorphism can be reduced to an iterated jump of identity.

Corollary 15. Suppose T is a countable complete first-order classifiable
(superstable with NDOP and NOTOP) and shallow theory.Then ∼=κ

T ≤BEκµ-cub.
Proof. By [FHK11, Theorem 68] the isomorphism relation of a classifi-

able shallow theory is Borel, so we apply Corollary 14.

We have shown in [FHK11, Theorem 75] that under certain cardinality
assumptions on κ, a complete countable first-order theory T is classifiable if
and only if for all regular µ < κ, E2

µ-cub 6≤B ∼=κ
T . Clearly E2

µ-cub ≤B Eκµ-cub.
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Question 16. Is Eκµ-cub reducible to E2
µ-cub?

If the answer to Question 16 is “yes”, then using [FHK11, Theorem
75] we obtain: Suppose T1 and T2 are complete first-order theories with T1
classifiable and shallow and T2 non-classifiable. Also suppose that κ = λ+ =
2λ > 2ω where λ<λ = λ. Then ∼=κ

T1
is Borel reducible to ∼=κ

T2
.

Acknowledgements. The first and third authors wish to thank the
FWF (Austrian Science Fund) for its support through Einzelprojekt P24654-
N25. The second author’s research was partially supported by the Academy
of Finland through its grant WBS 1251557.

References

[Bla81] D. Blackwell, Borel sets via games, Ann. Probab. 9 (1981), 321–322.
[Fri00] H. M. Friedman, Borel and Baire reduciblity, Fund. Math. 164 (2000), 61–69.
[FS89] H. Friedman and L. Stanley, A Borel reducibility theory for classes of countable

structures, J. Symbolic Logic 54 (1989), 894–914.
[FHK11] S. D. Friedman, T. Hyttinen, and V. Kulikov, Generalized descriptive set theory

and classification theory, Centre de Recerca Màthematica, CRM, Barcelona,
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