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Calibres, compacta and diagonals
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Abstract. For a space Z let K(Z) denote the partially ordered set of all compact
subspaces of Z under set inclusion. If X is a compact space, ∆ is the diagonal in X2, and
K(X2 \∆) has calibre (ω1, ω), then X is metrizable. There is a compact space X such that
X2 \∆ has relative calibre (ω1, ω) in K(X2 \∆), but which is not metrizable. Questions
of Cascales et al. (2011) concerning order constraints on K(A) for every subspace of a
space X are answered.

Introduction. Let Z be a topological space and let K(Z) be the col-
lection of all compact subsets of Z. Then K(Z) is partially ordered by set
inclusion, ⊆. The purpose of this paper is to investigate the order properties
of K(Z), especially in the case when Z is the complement of ∆, the diagonal
in the square of a compact space X. This is motivated by Schneider’s the-
orem that if a space X is compact and K(X2 \∆) has countable cofinality,
then X is metrizable. (Schneider’s theorem is normally stated as: ‘a com-
pact space with Gδ-diagonal is metrizable’, but taking complements and
using compactness easily gives our formulation. Here and below, all spaces
are assumed to be T1 and regular.)

Let P be a partially ordered set. For cardinals κ ≥ λ ≥ µ we say that
P has calibre (κ, λ, µ) if for every subset S of P with cardinality ≥ κ, there
is a λ-sized subset S1 of S such that every subset of S1 with cardinality
≤ µ has an upper bound in P . Following convention, ‘calibre (κ, λ, λ)’ is
abbreviated to ‘calibre (κ, λ)’, and ‘calibre (κ, κ)’ to ‘calibre κ’. Note that if
P has countable cofinality, then it has calibre ω1 and hence calibre (ω1, ω).

Our main positive result (Theorem 2.1) is the following strengthening
of Schneider’s theorem: if X is a compact space such that K(X2 \ ∆) has
calibre (ω1, ω), then X is metrizable. The proof is direct and topological.
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Theorem 2.1 is also a natural strengthening of results of Cascales, Orihuela
and Tkachuk [2, 4]. To state these results, and to make the connection be-
tween our theorem and theirs, we remind the reader of the concept of a
Tukey quotient which comes from order theory.

For partially ordered sets P and Q, a function φ : P → Q is a Tukey
quotient, and we write P ≥T Q, provided φ maps cofinal sets to cofinal
sets. The existence, and non-existence, of Tukey quotients between natural
partial orders occurring in topology, analysis and set theory has been heavily
studied (see [9, 15], for example). In our context, where P and Q are both
of the form K(Z) for some space Z, and so both P and Q are Dedekind
complete, we have P ≥T Q if and only if there is a function φ : P → Q
which is order-preserving and such that φ(P ) is cofinal in Q.

In terms of Tukey quotients, Schneider’s theorem essentially says that if
X is compact and K(N) ≥T K(X2 \∆), then X is metrizable, while the rele-
vant theorem from [2] is that if X is compact and K(NN) ≥T K(X2\∆), then
X is metrizable. In [4] it is more generally shown that if X is compact and
K(M) ≥T K(X2 \ ∆), where M is some separable metrizable space, then
X is metrizable. (For a version of this theorem valid for compact spaces
of uncountable weight see [1], and see [3] for a recent survey of these and
related results.) The proofs given of the latter two results are elegant but
indirect. The proof in [2] passes through consideration of the space C(X) of
all continuous real-valued functions on X, with the supremum norm, and an
application of the Arzelà–Ascoli theorem. The proof in [4] utilizes Cp(X)
(i.e. C(X) with the pointwise topology), implicitly reproves part of the
Arzelà–Ascoli theorem and appeals to a non-trivial result of Baturov.

It is easy to see that if P has calibre (κ, λ, µ) and P ≥T Q, thenQ also has
calibre (κ, λ, µ). Let M be separable metrizable. Using the usual (Vietoris)
topology on K(M), it is straightforward (Lemma 1.6) to verify that K(M)
has calibre (ω1, ω). Hence if K(M) ≥T K(Z), then K(Z) has calibre (ω1, ω),
and thus the results of [2, 4] follow from Theorem 2.1.

Natural weakenings of the hypothesis in our main positive theorem lead
to additional results, open problems and further connections with the work
in [4]. We generalize calibres of partially ordered sets as follows. Let P be
a partially ordered set and P ′ a subset of P . For cardinals κ ≥ λ ≥ µ, it is
said that P ′ has relative calibre (κ, λ, µ) (in P ) if for every subset S of P ′

with cardinality ≥ κ, there is a λ-sized subset S1 of S such that every subset
of S1 with cardinality ≤ µ has an upper bound in P .

We say that a space Z has relative calibre (κ, λ, µ) if it has relative calibre
(κ, λ, µ) in K(Z). Clearly we have the following equivalence: a space Z has
relative calibre (κ, λ, µ) if and only if for any subset S of Z with |S| ≥ κ, there
is a λ-sized subset S1 contained in S such that for any S2 ⊆ S1 with |S2| ≤ µ,
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S2 is compact. For compact X we now see that X2\∆ has relative calibre ω1

if and only if X has a small diagonal. Whether or not every compact space
with a small diagonal is metrizable is a deep open problem, but positive
results follow from the continuum hypothesis [13] and the proper forcing
axiom (PFA) (see [7]). So, consistently at least, a compact space X with
X2 \∆ of relative calibre ω1 is metrizable. In our main negative result, we
show that—in contrast to the non-relative case—we cannot weaken ‘relative
calibre ω1’ to ‘relative calibre (ω1, ω)’. Indeed, Theorem 3.1 shows that, in
ZFC, there is a compact first countable, non-metrizable space X such that
X2 \∆ has relative calibre (ω1, ω).

Let P and Q be partially ordered sets, and let Q′ be a subset of Q.
A function φ : P → Q is a Tukey quotient relative to Q′, denoted P ≥T
(Q′, Q), provided φ is such that for each cofinal set C of P , the set φ(C) is
cofinal for Q′ (for every q in Q′ there is a p from C such that q ≤ φ(p)). For
our purposes, Q′ will be a space Y considered as a subset of K(Y ). In this
case it suffices for φ to be order-preserving and to map P to a set cofinal for
Y , in other words: φ is order-preserving and φ(P ) is a (compact) cover of Y .
In this case we abbreviate ‘P ≥T (Y,K(Y ))’ to ‘P ≥T Y ’. Note that when
Y = K(X), we apparently have two meanings for ‘P ≥T K(X)’ depending
on whether we treat K(X) as a space or a partial order, but in fact they
coincide (see Lemma 1.1).

The paper [4] is mainly devoted to the study of spaces X for which there
is a separable metrizable space M such that K(M) ≥T X. One interest-
ing result obtained in that paper is that consistently, if X is compact and
K(NN) ≥T X2 \ ∆, then X is metrizable. An intriguing open problem is
whether a compact space X must be metrizable if K(M) ≥T X2 \ ∆ for
some separable metrizable space M . It is easy to verify that if a partially
ordered set P has calibre (κ, λ, µ) and P ≥T Y , then Y has relative calibre
(κ, λ, µ) (in K(Y )). Hence if K(M) ≥T Y , where M is separable metrizable,
then Y has relative calibre (ω1, ω). Further, consistently (see Section 2.2 be-
low for details), K(NN) has calibre ω1, hence if K(NN) ≥T Y , then Y has
relative calibre ω1, and the result of [4] mentioned immediately above is a
consequence of Corollary 2.5.

The recent book [14] provides numerous applications for the metrizability
problem of compact spaces arising in functional analysis. Indeed many results
presented therein can usefully be rephrased in terms of Tukey quotients and
relative Tukey quotients.

The results above have mostly focused on when a specific subspace,
X2 \ ∆, of a square, X2, has some order condition on its compact sub-
sets. The third section of this paper considers what occurs if all subspaces
of a space have conditions imposed on the order structure of their compact
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subsets. We answer a number of problems from [4]. We also show that, for
example, it is consistent and independent that if X is compact and all sub-
spaces of X2 have relative calibre (ω1, ω), then X is metrizable. This should
be compared with our ZFC example, Theorem 3.1.

1. Preliminary lemmas. Here we collect together some miscellaneous
lemmas.

Lemma 1.1. Let P be a partial order and X a space. Then P ≥T
(K(X),⊆) if and only if P ≥T K(X) (where K(X) is considered as a topo-
logical space).

Proof. Suppose first that φ : P → (K(X),⊆) is a Tukey quotient. For
each p in P , let Kp = K(φ(p)). Then Kp is a compact subset of K(X), and if
p ≤ p′ then clearly Kp ⊆ Kp′ . Further if L is in K(X), then as φ(P ) is cofinal
in K(X), there is a p in P such that φ(p) ⊇ L. Then L is in K(φ(p)) = Kp,
and so the Kp’s cover K(X).

Conversely, suppose φ : P → K(K(X)) is order-preserving and φ(P )

covers K(X). Define φ̂ : P → K(X) by φ̂(p) =
⋃
φ(p). Then φ̂ is order-

preserving, and if L is a compact subset of X, then for some p in P , we
know L ∈ φ(p), and so L ⊆ φ̂(p).

Lemma 1.2. If K(X) has relative calibre (κ, λ, µ) in K(K(X)), then
K(X) has calibre (κ, λ, µ).

Proof. This follows from the fact that if S is a subset of K(X) and K
is an upper bound for S in K(K(X)) (i.e., {F} ⊆ K for each F ∈ S), then
K̂ =

⋃
K is an upper bound for S in K(X) (i.e., F ⊆ K̂ for each F ∈ S).

Lemma 1.3. If X has relative calibre (ω1, ω), then X has countable ex-
tent.

Proof. If X does not have countable extent, then there is an uncountable
closed discrete subspace S of X. Since any subset of S is also discrete and
closed in X, then no infinite subset of S can have compact closure. Hence,
X does not have relative calibre (ω1, ω).

Lemma 1.4. If X is Fréchet–Urysohn and has countable extent, then X
has relative calibre (ω1, ω).

Proof. Let S be any uncountable subset of X. Then S is not a closed
discrete subspace, so there is an x ∈ X such that x ∈ S \ {x}. Hence, there
is an infinite sequence S1 contained in S \ {x} and converging to x. Then S1
has compact closure S1 = S1 ∪ {x}.

Combining Lemmas 1.2 and 1.4 gives:
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Lemma 1.5. If K(X) is Fréchet–Urysohn and has countable extent, then
K(X) has calibre (ω1, ω).

In the next result, b is the minimal size of an unbounded subset of
(NN, <∗), where for f and g in NN, we say f <∗ g if f(n) < g(n) for all
but finitely many n. Part (i) follows from the preceding lemma (if M is
separable metrizable then so is K(M)). See [10] for a proof of the second
part.

Lemma 1.6.
(i) If M is separable metrizable, then K(M) has calibre (ω1, ω).
(ii) K(NN) has calibre ω1 if and only if ω1 < b.

The following is similar to the well-known fact that the product of a
partial order with calibre ω1 and a partial order with calibre (ω1, ω) has
calibre (ω1, ω); verification is straightforward.

Lemma 1.7. If X has relative calibre ω1 and Y has relative calibre
(ω1, ω), then X × Y has relative calibre (ω1, ω).

Lemma 1.8. Suppose X =
⋃
n∈NXn and λ ≤ ω1. If each Xn has relative

calibre (ω1, λ), then so does X.

Proof. If S is an uncountable subset of X, then there is an n ∈ N such
that Sn = S ∩Xn is uncountable. So there is a λ-sized subset S′ of Sn with
compact closure in Xn. But then S′

X
= S′

Xn , so S′ has compact closure
in X.

Lemma 1.9. Suppose Y is an Fσ subset of X and λ ≤ ω1. If X has
relative calibre (ω1, λ), then so does Y .

Proof. By Lemma 1.8, it suffices to consider the case when Y is a closed
subset of X. But then the result follows immediately from the fact that
S
Y

= S
X for any S ⊆ Y .

2. Positive results for X2 \∆

2.1. Calibres

Theorem 2.1. Let X be a compact space. If K(X2 \ ∆) has calibre
(ω1, ω), then X is metrizable.

Proof. Our first goal will be to show that X is first countable. It suffices
to show X is hereditarily Lindelöf because then the points of X are Gδ, and
compactness of X then implies first countability.

If X is not hereditarily Lindelöf, then it contains an uncountable right-
separated sequence {yα : α ∈ ω1}. So each yα has an open neighborhood Uα
such that yβ 6∈ Uα for all β > α. For each α ∈ ω1, let Vα = X \ {yα}
and Nα = U2

α ∪ V 2
α , which is an open neighborhood of the diagonal. Then
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Kα = X2\Nα is in K(X2\∆). The family K = {Kα : α ∈ ω1} is uncountable,
so there is an infinite A ⊆ ω1 and a K ∈ K(X2 \∆) such that Kα ⊆ K for
all α ∈ A. Hence, N = X2 \ K is an open neighborhood of ∆ such that
N ⊆

⋂
α∈ANα. Without loss of generality, we may assume N =

⋃
W∈WW 2

for some open cover W of X.
We will show that eachW ∈ W contains at most one point of the infinite

set {yα : α ∈ A}. Indeed, if yα, yβ ∈W for some α, β ∈ A, then we see that

(yα, yβ) ∈W 2 ⊆ N ⊆
⋂
γ∈A

Nγ ⊆ Nα = U2
α ∪ V 2

α .

Now since yα 6∈ Vα, we must have yβ ∈ Uα, which gives β ≤ α. Similarly, we
have (yα, yβ) ∈ U2

β ∪ V 2
β , which implies that α ≤ β, and so α = β.

Hence,W has no finite subcover, which contradicts the compactness ofX.
So X is hereditarily Lindelöf, and thus first countable, as claimed.

Now, for each pair (U0, U1) of open sets of X with disjoint closures, pick
open sets V` = V`(U0, U1) for ` = 0, 1 such that U` ⊆ V` and V0 ∩ V1 = ∅.
Also, let C` = C`(U0, U1) = X \ V` for ` = 0, 1.

Let (U ′0, U
′
1) be another pair of open sets with disjoint closures, and let

V ′` = V`(U
′
0, U

′
1) for ` = 0, 1. We say the pairs (U0, U1) and (U ′0, U

′
1) are

comparable if U` ⊆ V ′` and U ′` ⊆ V` for ` = 0, 1. By an easy Zorn’s lemma
argument, there is a maximal incomparable collection S of such pairs.

For any subsets A,B ⊆ X, let R(A,B) = (A×B)∪ (B×A) ⊆ X2. Then
for any (U0, U1) ∈ S, define

K(U0, U1) = (V0 × V1) ∪R(U0, C0) ∪R(U1, C1).

Note that K(U0, U1) ∈ K(X2 \ ∆) since V0 ∩ V1 = ∅ and U` ∩ C` = ∅ for
` = 0, 1. Let K = {K(U0, U1) : (U0, U1) ∈ S}.

We will be done after proving the following two facts:

(A) K covers X2 \∆, and
(B) no infinite subset of K has an upper bound in K(X2 \∆).

Indeed, (B) shows that K must be countable since K(X2 \ ∆) has calibre
(ω1, ω). But then (A) shows thatX has aGδ diagonal, so Schneider’s theorem
implies X is metrizable.

Proof of (A). Take any (x0, x1) in X2 \∆. We can find open sets U0, U1

with disjoint closures and with x` ∈ U` for ` = 0, 1. If (U0, U1) ∈ S, then
x` ∈ U` ⊆ V` shows that (x0, x1) ∈ V0×V1 ⊆ K(U0, U1). Otherwise, (U0, U1)
is not in S, so by the maximality of S, we cannot add (U0, U1) to S. Thus,
there is a (U ′0, U

′
1) in S, with corresponding V ′` = V`(U

′
0, U

′
1) for ` = 0, 1,

that is comparable with (U0, U1). In particular, U` ⊆ V ′` , and so x` ∈ V ′` for
` = 0, 1, which shows that (x0, x1) ∈ V ′0 × V ′1 ⊆ K(U ′0, U

′
1). Hence, (A) is

proved.
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Proof of (B). Suppose {(U i0, U i1) : i ∈ N} is an infinite subset of S, and
the compact sets Ki = K(U i0, U

i
1) are all distinct. We have to show that

the Ki’s do not have a common upper bound in K(X2 \∆), i.e. that there is
no open neighborhood of the diagonal disjoint from

⋃
iKi. So it suffices to

show that there is a point (x∞, x∞) on the diagonal which is in the closure
of

⋃
iKi.
For each ` = 0, 1 and i ∈ N, let V i

` = V`(U
i
0, U

i
1) and Ci` = C`(U

i
0, U

i
1).

Since the elements of S are incomparable, for any i < j there exists a point
xi,j ∈ X witnessing one of the following four conditions:

(i) U i0 6⊆ V
j
0 , (ii) U i1 6⊆ V

j
1 ,

(iii) U j0 6⊆ V
i
0 , (iv) U j1 6⊆ V

i
1 .

Applying Ramsey’s theorem, we find an infinite subset M of N such that
one of the four conditions is witnessed by all xi,j with i, j ∈ M and i < j.
Without loss of generality, we can then assume that M = N, so there is one
of the four conditions which is witnessed by all of the xi,j . The following
construction does not depend on which of the conditions is satisfied.

Recall that X is first countable, so if a point is in the closure of a set, it
is the limit of a sequence on that set. Also X is compact, so every infinite
subset has an accumulation point (and so a proper limit point).

Hence, we may inductively construct a descending sequence of infinite
subsets N ⊇ S1 ⊇ S2 ⊇ · · · such that {xi,j}j∈Si converges to some point
xi,∞ ∈ X for each i ∈ N.

For each m ∈ N, fix a jm ∈ Sm such that j1 < j2 < · · · . Let J = {jm :
m ∈ N}. Then we can find an infinite subset J ′ ⊆ J such that {xj,∞}j∈J ′
converges to some limit point x∞.

Take any open neighborhoodW of x∞. Pick an i∈J ′ such that xi,∞∈W .
Note that for each m ≥ i, we have jm ∈ Sm ⊆ Si, and so J ′ ∩ Si is infinite.
As {xj,∞}j∈J ′ converges to x∞ ∈ W and {xi,j}j∈Si converges to xi,∞ ∈ W ,
we can find a j ∈ J ′∩Si with j > i such that xj,∞ ∈W and xi,j ∈W . There
must then be a k ∈ Sj such that k > j and xj,k ∈W .

So we have found i < j < k such that xi,j and xj,k are both in W , and
as noted above, one of the four conditions (i)–(iv) is witnessed by both xi,j
and xj,k. If it is (i) or (ii), then for some ` ∈ {0, 1}, we have xi,j ∈ U i`\V

j
` ⊆ C

j
`

and xj,k ∈ U j` \V
k
` ⊆ U

j
` . If condition (iii) or (iv) is witnessed instead, then for

some ` ∈ {0, 1}, we have xi,j ∈ U j` \V
i
` ⊆ U

j
` and xj,k ∈ Uk` \V

j
` ⊆ C

j
` . In any

case, (xi,j , xj,k) ∈ R(U j` , C
j
` ) ⊆ Kj . Therefore (xi,j , xj,k) ∈ Kj ∩ (W ×W ).

Hence, every basic open neighborhood W × W of (x∞, x∞) meets
some Ki, and (x∞, x∞) is in the closure of the union of all Ki, as required
to complete the proof of (B).
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LetM be separable metrizable. By Lemma 1.5, K(M) has calibre (ω1, ω),
and hence if K(M) ≥T K(Z), then K(Z) has calibre (ω1, ω). We deduce:

Corollary 2.2 (Cascales et al. [2, 4]). Let X be a compact space. If
K(M) ≥T K(X2\∆), whereM is separable metrizable, then X is metrizable.

We give an application of Theorem 2.1 in the spirit in which Cascales
and Orihuela originally proved their result [2]. Here Ck(X) denotes C(X)
with the compact-open topology.

Theorem 2.3. If K(X) has calibre (ω1, ω), then every compact subset of
Ck(X) is metrizable.

Proof. For any space X, the family of all sets B(0,K, 1/n) = {f ∈
C(X) : |f(x)| < 1/n for all x ∈ K}, where K ∈ K(X) and n ∈ N, is a
local base at the constant zero function, 0. Note that K(X)×N ≥T (T0,⊇),
where T0 = {T : 0 ∈ T and T is open in Ck(X)}, under the natural map
(K,n) 7→ B(0,K, 1/n).

Suppose K(X) has calibre (ω1, ω). Then from the previous paragraph,
we see that so does T0 under reverse inclusion. For any T in T0, the set
UT =

⋃
{(T + f) × (T + f) : f ∈ C(X)} is an open neighborhood of

the diagonal in Ck(X)2. For a compact subset K of Ck(X), the family
{UT ∩ (K × K) : T ∈ T0} is easily seen to be a base around the diago-
nal, ∆, of K2. Hence, taking complements, we deduce that K(K2 \∆) has
calibre (ω1, ω), and so Theorem 2.1 shows that K is indeed metrizable.

As a simple consequence, we observe that for any cardinal κ, every com-
pact subset of Ck(κ) is metrizable. Note that the previous results [2, 4] are
restricted to cardinals with cofinality no more than the continuum. So we
have a small example of the value of our calibre result over Tukey quotients
from K(M), where M is separable metrizable.

2.2. Relative calibres. A space X is said to have a small diagonal if
every uncountable S contained in X2 \∆ contains an uncountable subset S1
whose closure misses the diagonal. If X is compact then S1 is a compact
subset of X2 \∆. The next lemma is then immediate.

Lemma 2.4. Let X be compact. Then X2 \ ∆ has relative calibre ω1 if
and only if X has a small diagonal.

It is known that, under various set-theoretic hypotheses including
PFA [7], a compact space with a small diagonal is metrizable.

Corollary 2.5. Consistently, if X is compact and X2 \∆ has relative
calibre ω1, then X is metrizable.

We can now recover a result from [4], albeit with a stronger set-theoretic
assumption, PFA rather than MA + ¬CH.
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Theorem 2.6. (PFA) If X is compact and K(M) ≥T X2 \ ∆, where
K(M) has calibre ω1, then X is metrizable. In particular, this holds when M
is the space of irrationals, NN.

This is because under PFA we have ω1 < b, so K(NN) has calibre ω1 (see
Lemma 1.6(ii)), and thus X2 \ ∆ has relative calibre ω1. Note that in [10]
it is shown that consistently (in particular, under PFA) there are separable
metrizable spaces M that are not Polish but for which K(M) has calibre ω1.

For completeness, note that if X is compact, M is separable metrizable
and K(M) ≥T X2 \ ∆ then X is metrizable without any additional set-
theoretic hypothesis provided X is countably tight. See [3, Theorem 2.9] for
the case when M = NN, and [4] for general separable metrizable M .

3. A counterexample for X2 \∆
Theorem 3.1. There is a first countable, compact space X that is not

metrizable, but for which X2 \∆ has relative calibre (ω1, ω) in K(X2 \∆).

In Section 3.1, we will construct the above space X while assuming the
existence of a topology τ on the closed unit interval I = [0, 1] with certain
desirable properties. We will then define such a τ in Section 3.2 by slightly
modifying van Douwen’s construction of the space Λ in [6].

3.1. Constructing the counterexample. If τ is any topology on the
closed unit interval I, then define Xτ to be the space with underlying set
I × {0, 1} and with the topology generated by basic open sets of the form
U × {1}, where U ∈ τ , and (V × {0, 1}) \ (K × {1}), where V is open in
the usual topology on I and K is a τ -compact subset of I. As an aside,
notice that if τ is the discrete topology, then Xτ is the so-called Alexandrov
duplicate of the unit interval.

It is straightforward to verify the following lemma.

Lemma 3.2. If τ is a first countable, locally countable, locally compact
topology on I refining the usual topology, then Xτ is compact, first countable
and not metrizable.

For any set Z, a subset Y of Z ×Z is called small if there is a countable
subset C ⊆ Z such that Y ⊆ (C × Z) ∪ (Z × C). In other words, Y is
contained in the union of a countable family of ‘horizontal’ and ‘vertical’
lines. A subset Y is called big if it is not small.

In addition to the hypotheses of Lemma 3.2, τ will be made to also satisfy
the following two properties, the second of which follows from the first (see
Lemma 3.3):

(λ21) if F ⊆ I2 and F I×I is big, then F τ×τ is uncountable;
(λ1) if F ⊆ I and F I is uncountable, then F τ is uncountable.
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Lemma 3.3. If τ satisfies (λ21), then it also satisfies (λ1).

Proof. For any F ⊆ I, consider F∆ = {(x, x) : x ∈ F}. If F I is uncount-
able, then F∆

I×I is an uncountable subset of ∆, and so F∆
I×I is big since

any horizontal or vertical line meets ∆ in at most one point. Then by (λ21),
F∆

τ×τ is uncountable. It follows that F τ is also uncountable.

Proof of Theorem 3.1. Assuming τ has already been constructed to sat-
isfy (λ21) and the hypotheses of Lemma 3.2, we are now ready to show that
Xτ proves the theorem.

Let X = Xτ . Then by Lemma 3.2, it remains to show X2 \∆ has relative
calibre (ω1, ω).

Let A denote the interval I with the new topology τ . Notice that X2 \∆
is the union of four subspaces which are naturally homeomorphic to I2 \∆,
I × A, A× I and A2 \∆. By Lemma 1.8, it is sufficient to show that these
four spaces all have relative calibre (ω1, ω).

In fact, we will be done if we can prove both A and A2 have relative
calibre (ω1, ω). Indeed, I has every relative calibre, by compactness, so if A
has relative calibre (ω1, ω), then I×A and A×I have relative calibre (ω1, ω)
by Lemma 1.7. Also, ∆ is a Gδ subset of I2, which is compact, so Lemma 1.9
implies that I2\∆ has relative calibre (ω1, ω). Similarly, as τ refines the usual
topology on I, also ∆ is a Gδ subset of A2, so if we can show A2 has relative
calibre (ω1, ω), then A2 \∆ will have relative calibre (ω1, ω) as well.

We will first verify that A has relative calibre (ω1, ω). Fix an uncountable
subset S of A. As I is hereditarily separable, we can find a countable subset
C ⊆ S such that S ⊆ C

I . Then CI is uncountable, so (λ1) implies that CA

is uncountable. Hence, we can find an infinite sequence S1 ⊆ C converging
in A to a point x ∈ CA \C. The A-closure of S1 is therefore S1 ∪{x}, which
is compact.

Now we will check that A2 has relative calibre (ω1, ω). Suppose S ⊆ A2

is uncountable. If S is small, then we may assume that, without loss of
generality, S is contained in a horizontal or vertical line. Hence, we are done
since this line is just a homeomorphic copy of A, which has relative calibre
(ω1, ω). So we will instead assume that S is big. Choose a countable subset
C ⊆ S such that S ⊆ C

I×I . Then C
I×I is also big, so (λ21) implies that

C
A×A is uncountable. Hence, as in the proof for A, we can then find an

infinite sequence S1 in C converging in A2 to a point outside of C, so that
S1 has compact A2-closure.

3.2. Construction of τ . Now we will construct the topology τ on I
which was used in the previous section. It will be first countable, locally
countable, locally compact, will refine the usual topology on I, and sat-
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isfy (λ21). We point out that (λ21) is the natural dimension 2 ‘upgrade’ of (λ1).
Our construction is similar to that of the space Λ by van Douwen [6]. In-
deed, van Douwen introduces the condition (λ1) and a clearly stronger con-
dition (λω). Further, he proves that his space Λ satisfies a condition (λ2ω),
which is an ‘upgrade’ of (λω) to dimension 2. Unfortunately, (λ2ω) is a weak
upgrade and does not naturally imply (λ21). So we cannot simply adopt van
Douwen’s Λ, but instead opt to prove directly the existence of τ satisfy-
ing (λ21). In doing so we note that there is a gap in van Douwen’s construc-
tion. We explain below how the gap arises, why it cannot be bridged, and
detail how to detour around the gap.

Consider the family C of all countable subsets C ⊂ I2 such that CI×I

is big. Note that |C| ≤ c, so we can enumerate C = {Cγ : γ < c} in such
a way that each member of C is listed c times. Also, we may enumerate
I = {xα : α < c} with xα 6= xβ when α 6= β. Then define Xα = {xβ : β < α}
for each α < c.

Let π1, π2 : I2 → I be the natural projections. We will next construct
injections ψ1, ψ2 : c→ c\ω satisfying the following conditions for each γ ∈ c:

π1[Cγ ] ∪ π2[Cγ ] ⊆ Xψ1(γ) ∩Xψ2(γ),(1)

(xψ1(γ), xψ2(γ)) ∈ Cγ
I×I

,(2)

ψi(γ) 6= ψj(δ) for any i, j and δ 6= γ.(3)

Fix γ ∈ c and suppose we have already defined ψ1(δ) and ψ2(δ) satisfying the
above conditions for every δ < γ. Since Dγ = π1[Cγ ] ∪ π2[Cγ ] is countable,
we may write Dγ = {xβn : n ∈ N}. Since c has uncountable cofinality,
there is an α < c such that βn < α for all n ∈ N, i.e. Dγ ⊆ Xα. Let
αγ = min{α < c : Dγ ⊆ Xα}. So Dγ ⊆ Xα for all α ≥ αγ . Note that αγ ≥ ω
since Dγ is infinite.

Consider Ψγ = {ψi(δ) : δ < γ, i = 1, 2} and Sγ = {xβ : β ∈ αγ ∪ Ψγ}.
Then |Sγ | < c. The following lemma, which is proved in [6], shows that there
is a point (y1, y2) in Cγ

I×I such that y1, y2 6∈ Sγ .

Lemma 3.4. For any big closed Y ⊆ R2 and for any S ⊂ R with |S| < c,
there is a (y1, y2) ∈ Y such that {y1, y2} ∩ S = ∅.

Now for i = 1, 2, define ψi(γ) to be the unique element of c such that
yi = xψi(γ). Then (2) is satisfied immediately. Also, since yi 6∈ Sγ , we have
ψi(γ) 6∈ αγ ∪ Ψγ . Hence, ψi(γ) ≥ αγ , which implies that Dγ ⊆ Xψi(γ) for
i = 1, 2. So (1) is satisfied. And of course, ψi(γ) ≥ αγ ≥ ω shows that each
ψi(γ) is really in c \ ω, as desired.

So by transfinite induction, we have constructed ψ1, ψ2 : c → c \ ω
satisfying (1) and (2). Also, (3) is satisfied—and in particular, the ψi are
injections—since ψi(γ) 6∈ Ψγ for each i.
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Choose a countable base {Bi : i ∈ N} for I with B1 = I, and then
define Ej(x) =

⋂
{Bi : i ≤ j and x ∈ Bi} for each x ∈ I and j ∈ N. Then

{Ej(x) : j ∈ N} is a neighborhood base for x in I such that

(4) if y ∈ Ej(x) and i ≥ j, then Ei(y) ⊆ Ej(x).

Let Ψ ⊆ c \ ω be the union of the images of ψ1 and ψ2. By (2) and (3),
there are well-defined sequences sα = (siα)i∈N for each α ∈ Ψ satisfying:

siα ∈ Ei(xα) for each α ∈ Ψ and i ∈ N,(5)

if ψ1(γ) 6= ψ2(γ), then (siψ1(γ)
, siψ2(γ)

) ∈ Cγ for each i ∈ N,(6)

if α = ψ1(γ) = ψ2(γ) (1), then (s2i−1α , s2iα ) ∈ Cγ for each i ∈ N.(6′)

Conditions (1), (6) and (6′) imply that the sequence sα lies entirely in Xα

for each α ∈ Ψ , so the following construction by transfinite recursion makes
sense. For each α ∈ c \ Ψ , define Lj(xα) = {xα} for all j ∈ N. Now for any
α ∈ Ψ (so α ≥ ω), we may assume Li(x) has been defined for all x ∈ Xα

and i ∈ N, and so we define Lj(xα) = {xα} ∪
⋃
i≥j Li(s

i
α) for each j ∈ N.

The next facts easily follow by transfinite induction on α and by (4):

each Lj(x) is countable,(7)
Lj(x) ⊆ Ej(x),(8)
if y ∈ Lj(x), then Li(y) ⊆ Lj(x) for some i ∈ N.(9)

Since Lj+1(x) ⊆ Lj(x) for all x ∈ I and j ∈ N, we deduce from (9)
that {Lj(x) : x ∈ I, j ∈ N} is a base generating a new topology on I.
This new topology τ refines the usual topology on I because of (8), and
since {Lj(x) : j ∈ N} is a neighborhood base at x, we see that τ is first
countable. Also, τ is locally countable by (7). Additionally, it is easy to
check that each Lj(xα) is compact by transfinite induction, so τ is locally
compact.

Note that the sequence sα converges (with respect to τ) to xα for each
α ∈ Ψ , and so by (6) and (6′), we have (xψ1(γ), xψ2(γ)) ∈ Cγ

τ×τ for all γ ∈ c.
Since each member of C appears c times in the enumeration {Cγ : γ < c}, and
since (xψ1(γ), xψ2(γ)) 6= (xψ1(δ), xψ2(δ)) for γ 6= δ (as the ψi are injections), it
follows that Cτ×τ has cardinality c for each C ∈ C. This implies (λ21), so τ
has all the desired properties.

(1) In [6], it was asserted that we could always make ψ1(γ) < ψ2(γ), in which case (6′)
would be unnecessary. However, there is a γ such that Cγ ⊆ Q2 \∆ and Cγ

I×I
= Cγ ∪∆.

The rationals in [6] are each of the form xα for some α ∈ ω, and since ψ1, ψ2 : c→ c \ω, it
is seen xψi(γ) 6∈ Q so (xψ1(γ), xψ2(γ)) 6∈ Cγ . Hence, (2) implies (xψ1(γ), xψ2(γ)) ∈ ∆, so we
are forced to have ψ1(γ) = ψ2(γ). As Cγ ∩∆ = ∅, we cannot have (siψ1(γ)

, siψ2(γ)
) ∈ Cγ ,

which shows why a modified condition like (6′) is necessary.
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4. All subspaces of X and X2

4.1. Conditions on all subspaces of a space. Proposition 2.6 from [4]
states:

Proposition 4.1. If K(M) ≥T X, whereM is a separable metric space,
then there is a cover C of X and a countable collection N of subsets of X
such that:

(i) every element of C is ω-bounded (every countable subset has compact
closure),

(ii) N is a network for X modulo C (if an open set U contains some
C ∈ C, then there is an N ∈ N such that C ⊆ N ⊆ U).

The next result answers Problems 4.14–4.16 from [4].

Theorem 4.2. Let X be a space.

(i) If for every subspace A of X, there is some separable metric space
MA such that K(MA) ≥T K(A), then X is an ℵ0-space.

(ii) If for every subspace A of X, there is some separable metric space
MA such that K(MA) ≥T A, then X is a cosmic space.

Proof. We can deduce (i) from (ii) as follows. LetX be as in (i). From (ii),
we certainly know X is cosmic. So X has a coarser second countable topol-
ogy, and hence K(X) has a coarser second countable topology. From the
proposition above, K(X) has a cover C of ω-bounded sets and a countable
network N modulo C. As K(X) has a coarser second countable topology,
all the elements of C must be compact. Thus K(X) is Lindelöf Σ and has a
coarser second countable topology, so it is cosmic. However, K(X) is cosmic
if and only if X is an ℵ0-space.

We now prove (ii). Let X be as in its statement. Every subspace of X has
countable extent. Hence X is hereditarily ccc. If X is hereditarily Lindelöf,
then from the proposition above, it is hereditarily Lindelöf Σ. It follows that
X is cosmic [12]. Otherwise X contains a right-separated subspace A. Since
A is hereditarily ccc, it must also be hereditarily separable. We now work
inside A. By the proposition above, there is a collection C of ω-bounded
subsets of A and a countable network N for A modulo C. Take any C from C
and pick a countable dense subset D of C. Then C = D is compact. Hence
A is Lindelöf Σ. In particular, it is Lindelöf, which contradicts A being
right-separated.

Instead of a general separable metrizable space controlling the compact
subsets of a subspace of X, as in the preceding theorem, we can restrict
the MA to be the irrationals, NN. For metrizable X, we have a complete
characterization of such spaces.
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Proposition 4.3. Let X be a metrizable space. Then the following are
equivalent:

(i) for every subspace A of X, we have K(NN) ≥T K(A),
(ii) X is countable and Polish,
(iii) X is countable and scattered.

The proof of Proposition 4.3 is deferred until after Theorem 4.8.

Proposition 4.4. Let X be a metrizable space. Then X is countable if
and only if K(NN) ≥T A for each subspace A of X.

This result is part of Theorem 4.8 below.
Call a space X hereditarily relative calibre (κ, λ, µ) if each subspace of

X is relative calibre (κ, λ, µ). Note that X is hereditarily relative calibre
(ω1, ω) (respectively, ω1) if and only if for each uncountable S ⊆ X, there is
an infinite (respectively, uncountable) S1 ⊆ S with S1

S
= S1 ∩ S compact.

Observe that if X is a space such that ‘for every subspace A of X, there
is some separable metric space MA such that K(MA) ≥T A’, then it is also
true that ‘X is hereditarily relative calibre (ω1, ω)’. Similarly, observe that
consistently (precisely when ω1 < b), if X is a space such that ‘for every
subspace A of X, we have K(NN) ≥T A’, then it is also true that ‘X is
hereditarily relative calibre ω1’.

Call a space X hereditarily calibre (κ, λ, µ) if, for each subspace A of X,
the partial order K(A) has calibre (κ, λ, µ). Observe that if X is a space such
that ‘for every subspace A of X, there is some separable metric space MA

such that K(MA) ≥T K(A)’, then it is also true that ‘X is hereditarily calibre
(ω1, ω)’. Similarly, observe that consistently (precisely when ω1 < b), if X
is a space such that ‘for every subspace A of X, we have K(NN) ≥T K(A)’,
then it is also true that ‘X is hereditarily calibre ω1’.

Note also that ‘hereditarily calibre (κ, λ, µ)’ implies ‘hereditarily relative
calibre (κ, λ, µ)’. A further, and stronger, condition is that K(X) is heredi-
tarily relative calibre (κ, λ, µ).

Lemma 4.5. Let X be a space. If K(X) is hereditarily relative calibre
(κ, λ, µ), then X is hereditarily calibre (κ, λ, µ).

Proof. Take any subspace A of X. Since K(A) is a subspace of K(X), it
follows that K(A) has relative calibre (κ, λ, µ). So by Lemma 1.2, K(A) has
calibre (κ, λ, µ).

We now compare and contrast the situation when for every subspace A
of a space X, there is a separable metrizable MA such that K(MA) ≥T A,
versus all subspaces having a (relative) calibre.
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In the weakest case, there is a clear difference between the two scenar-
ios. The second part of Theorem 4.2 says that if each subspace A of X has
a separable metric space MA such that K(MA) ≥T A, then X is cosmic.
Weakening the hypothesis on X to being hereditarily relative calibre (ω1, ω)
does not suffice to deduce cosmicity of X. For example, the Sorgenfrey line
is not cosmic but is hereditarily ccc and first countable, and so it is heredi-
tarily relative calibre (ω1, ω) (since each subspace has countable extent and
is first countable). Nor, consistently at least, is it sufficient to strengthen
‘X hereditarily relative calibre (ω1, ω)’ to ‘K(X) hereditarily relative calibre
(ω1, ω)’.

Example 4.6. (b = ω1) There is an uncountable subspace X of the
Sorgenfrey line such that K(X) is first countable and hereditarily ccc (see
[8]). Hence K(X) is hereditarily relative calibre (ω1, ω) (and X is hereditarily
calibre (ω1, ω)), but X is not cosmic.

In [8] it is shown that under the Open Coloring Axiom (OCA), if K(X) is
first countable and hereditarily ccc, thenX is cosmic. However, the argument
given in that paper does not obviously show that OCA implies that ‘if K(X)
is hereditarily relative calibre (ω1, ω), then X is cosmic’.

Moving from the relative calibre (ω1, ω) case to relative calibre ω1, how-
ever, we get equivalence between calibres and Tukey quotient, and equiva-
lence to X being countable. We will use the following result:

Theorem 4.7 (Christensen [5]). If M is a separable metrizable space,
then K(NN) ≥T K(M) if and only if M is Polish, and K(NN) ≥T M if and
only if M is analytic.

Theorem 4.8. Let X be a space. Then the following are equivalent:

(i) X is hereditarily relative calibre ω1,
(ii) for every subspace A of X, we have K(NN) ≥T A,
(iii) X is countable.

Proof. It is vacuously true that (iii) implies (i). Condition (iii) also im-
plies (ii). Suppose X is countable and A is a subspace of X. Enumerate
A = {an : n ∈ N}. Define φ : K(NN) → K(A) by φ(K) = {a1, . . . , an(K)}
where n(K) = max{f(1) : f ∈ K}. Then φ is order-preserving and its image
is a compact cover of A.

Next, we will prove that (ii) implies (iii). So assume, for a contradiction,
that X satisfies (ii) but is uncountable. Then by Theorem 4.2, we know
X is cosmic. Hence it has a coarser separable metrizable topology τ . Since
any subset of X which is compact in the original topology is also compact
in τ , we see that (X, τ) also satisfies (ii). In particular, K(NN) ≥T (X, τ),



16 P. Gartside and J. Morgan

so (X, τ) is analytic by Christensen’s theorem quoted above. Hence (X, τ)
contains a non-analytic subspace A (because an uncountable analytic space
must contain a Cantor set, which contains non-analytic subspaces). But then
we cannot have K(NN) ≥T A.

We complete the proof by showing that the negation of (iii) implies the
negation of (i). Suppose X is an uncountable space. We have to show it
contains a subspace A which is not relative calibre ω1. Note that it suffices
to find a subspace A of X such that

(∗) A is uncountable, and all compact subsets of A are countable,

because then no uncountable subset of A can have compact closure in A.
If X itself satisfies (∗), then we are, of course, done. If not, then X

contains an uncountable compact subspace, and so, without loss of generality,
we can assume X is compact.

If X contains a right-separated subspace A of size ω1, then every compact
subset of A is contained in an initial (countable) interval, so A satisfies (∗),
and so we are done. If not then X is hereditarily Lindelöf. Since X is also
compact, we see that X is first countable. Hence, X has size the contin-
uum, c, and weight no more than c. Applying the fact that X is hereditarily
Lindelöf again, we see that X contains no more than c open subsets. So the
collection K of all uncountable compact subsets of X has |K| ≤ c. Observe
that each member of K has cardinality exactly c.

Next, we will follow the construction of Bernstein’s set to form an un-
countable subspace A ⊆ X that does not contain any element of K. Enumer-
ate K = {Kα : α < c}, possibly with repetitions. Using transfinite induction,
we will construct uncountable sequences {xα : α < c} and {yα : α < c}
such that each xα, yα ∈ Kα. We will also ensure that xα 6= xβ and yα 6= yβ
whenever α 6= β, and that xα 6= yβ for any α, β < c. Indeed, if β < c and
if we have already constructed xα and yα for each α < β, then we can find
distinct points xβ, yβ ∈ Kβ \ ({xα : α < β} ∪ {yα : α < β}) since |Kβ| = c
and β < c. Now let A = {xα : α < c}.

Then A is uncountable and does not contain any Kα since yα 6∈ A. Thus
A satisfies (∗), and the proof is complete.

Proof of Proposition 4.3. That condition (ii) follows from (i) is immediate
from Theorem 4.8 and Christensen’s Theorem 4.7, while (iii) is a consequence
of (ii) by a Baire category argument. If X is countable, metrizable and
scattered, then a straightforward argument by induction on the scattered
height shows that X is Polish, so (iii) implies (ii). And if X is countable and
Polish, then every subspace A of X is a Gδ subspace, hence also Polish, so
by Christensen’s theorem K(NN) ≥T K(A).
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Theorem 4.9. Let X be a metrizable space. Then the following are equiv-
alent:

(i) X is hereditarily calibre ω1,
(ii) either X is homeomorphic to the disjoint sum of a countable (possibly

empty) disjoint sum of convergent sequences and a countable (possibly
empty) discrete space, or ω1 < b and X is countable and scattered.

Proof. If X is homeomorphic to the disjoint sum of a countable (possi-
bly empty) disjoint sum of convergent sequences and a countable (possibly
empty) discrete space, then every subspace A of X is locally compact and
countable, and so it is easily seen that K(A) has calibre ω1.

Now suppose ω1 < b and X is countable and scattered. Take any sub-
space A of X. By the preceding theorem, K(NN) ≥T K(A). It follows from
ω1 < b that K(NN) has calibre ω1. Hence, K(A) also has calibre ω1, and so
(ii) implies (i).

For the converse, suppose that for every subspace A of X, the partial
order K(A) has calibre ω1. By Theorem 4.8, X is countable. Since K(Q)
does not have calibre ω1, the rationals Q do not embed in X. It follows
that X is scattered. If X has scattered height 0, then it is discrete. If X has
scattered height 1, then it is homeomorphic to the disjoint sum of a countable
(non-empty) disjoint sum of convergent sequences and a countable (possibly
empty) discrete space.

The remaining case is when X has scattered height at least 2. We have to
show that ω1 < b. From the scattered height restriction on X, it follows that
X contains a subspace A′ which is homeomorphic to a convergent sequence of
convergent sequences. Removing the limit points of the convergent sequences,
but not the point that the sequence of convergent sequences conveges to, we
obtain a subspace A of X which is homeomorphic to the metric fan, F .
By hypothesis, K(F ) has calibre ω1. As shown in [10], K(F ) and K(NN)
are Tukey equivalent, and so share the same calibres. Specifically, K(F ) has
calibre ω1 if and only if K(NN) has calibre ω1, and this in turn holds if and
only if ω1 < b.

Define K(1)(X) = K(X), and inductively, K(n+1)(X) = K(K(n)(X)).

Theorem 4.10. For any space X, the following are equivalent:

(i) K(n)(X) is hereditarily calibre ω1 for every natural number n,
(ii) K(X) is hereditarily relative calibre ω1,
(iii) K(X) is countable,
(iv) K(X) is countable and all compact subspaces of K(X) are finite,
(v) X is countable and all compact subspaces of X are finite.
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Proof. As noted previously, ‘hereditarily calibre ω1’ implies ‘hereditarily
relative calibre ω1’, so (ii) follows from (i). And by Theorem 4.8, (ii) is
equivalent to (iii).

If (iii) holds, then X is also countable, and we will show that all compact
subspaces of X must be finite as follows. Suppose X has an infinite com-
pact subspace K. Since K is countably infinite and compact, it contains an
infinite convergent sequence S. But then S has uncountably many compact
subspaces, which contradicts K(X) being countable. Hence, (iii) implies (v).

If X is countable, then it has only countably many finite subsets, so (v)
implies (iii). In fact, (v) implies (iv). To see this, assume (v) holds and K is
a compact subset of K(X). Then K̂ =

⋃
K is a compact subset of X, and

so is finite. Hence, K is also finite since it is a subset of the power set of K̂.
It remains to show that (iv) implies (i). Assume then that K(X) is count-

able and all its compact subspaces are finite. First note that (iv) trivially
implies (iii), and hence (iv) and (v) are equivalent. Thus for every natural
number n we see that K(n)(X) is countable and all its compact subspaces
are finite. So for a fixed n, every subspace of K(n)(X) is hemicompact, and
thus has calibre ω1.

4.2. Conditions on all subspaces of a compact square. We now
apply our results above to the case when an order condition is imposed on the
compact subsets of each subspace of the square of a compact space. Claim
(4) below answers Problems 4.17–4.20 from [4].

Theorem 4.11. Let X be compact.

(1) If X2 is hereditarily calibre (ω1, ω), then X is metrizable.
(2) It is consistent and independent that ‘X2 being hereditarily relative

calibre (ω1, ω) implies X is metrizable’.
(3) If X (and a fortiori X2) is hereditarily relative calibre ω1, then X is

countable and metrizable.
(4) If for every subspace A of X (and a fortiori X2) there is a separable

metrizable space MA such that K(MA) ≥T A, then X is metrizable.

Proof. If X2 is hereditarily calibre (ω1, ω), then in particular K(A) has
calibre (ω1, ω) when A = X2 \ ∆, so claim (1) follows from Theorem 2.1.
Claim (3) follows immediately from Theorem 4.8, while Theorem 4.2(ii) gives
claim (4).

Now suppose X2 is hereditarily relative calibre (ω1, ω). Then every sub-
space of X2 has countable extent (Lemma 1.3), so X2 is hereditarily ccc.
Under PFA [16] it follows that X2 is hereditarily Lindelöf, and X is metriz-
able. However, under the continuum hypothesis, Gruenhage [11] has con-
structed a compact, first countable, non-metrizable space X whose square
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is hereditarily ccc (hence hereditarily has countable extent). Combining the
first countability and hereditary countable extent of X2 with Lemma 1.4, we
deduce that X2 is hereditarily relative calibre (ω1, ω).
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