
COLLOQU IUM MATHEMAT ICUM
VOL. 142 2016 NO. 2

UPPER ESTIMATES ON SELF-PERIMETERS
OF UNIT CIRCLES FOR GAUGES

BY

HORST MARTINI (Chemnitz) and ANATOLIY SHCHERBA (Cherkasy)

Abstract. Let M2 denote a Minkowski plane, i.e., an affine plane whose metric is
a gauge induced by a compact convex figure B which, as a unit circle of M2, is not
necessarily centered at the origin. Hence the self-perimeter of B has two values depending
on the orientation of measuring it. We prove that this self-perimeter of B is bounded from
above by the four-fold self-diameter of B. In addition, we derive a related non-trivial result
on Minkowski planes whose unit circles are quadrangles.

1. Basic notions and main results. Let A2 be an affine plane. In what
follows, we identify the points of A2 with their position vectors. Denote by
R2 := (A2, | · |) the adjoint Euclidean plane with the Euclidean norm | · |
which we use as an auxiliary metric. Let B be a compact convex figure on
A2 containing the origin O as an interior point. By ∂B and int(B) we denote
the boundary and the interior of B, respectively. Each pair (B;O) uniquely
defines a convex distance function or gauge gB (x). Namely, if x ∈ A2, x 6= O,
and x̂ ∈ ∂B is on the ray

−→
Ox, then

(1) gB(x) = |x|/|x̂| > 0.

The distance function gB(x) defines the distance between x, y ∈ A2 by

(2) ρB(x; y) = gB(y − x).

Definition 1.1. An affine plane A2 with metric ρB given by (2) and (1)
is called a Minkowski plane M2. The point O is called the origin ofM2. The
figure B is called the normalizing figure or unit circle (or gauge) of M2.

We note that the notion of “Minkowski plane” is frequently used also
for the case of normed planes, where B has to be centered at O (see [18],
[13], and [12]). However, it is to be noted for historical correctness that
H. Minkowski, giving the axiomatic foundations of the relevant theory, also
considered the general (non-symmetric) case.
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In the following, we write ab,
−→
ab, and (ab) for the segment, ray, and line

determined by two distinct points a, b ∈ A2 (with a as starting point in the
second case), and we denote by ∠abc the (oriented) angle with apex b. For
triangles we write4abc, for quadrangles abcd, and a polygonal arc is denoted
by âbc, with vertices a, b, c. The symbols ∼ and ≈ are used for similarity and
homothety, respectively, and ‖ stands for parallelity.

For a given segment ab in M2, the distance ρB (a; b) is called the length
of this segment.

Definition 1.2. For a given segment ab (a 6= b) the position vector of
the point b̂− a ∈ ∂B defined by

(3) b̂− a = (b− a)/ρB(a; b)

is called the normalizing vector of the segment.

LetK be a compact, convex figure inM2. Denote by L+
B(K) the length of

∂K measured counter-clockwise, and by L−B(K) the length of ∂K measured
clockwise. Clearly, affine transformations of the plane preserve the collinear-
ity of vectors (see [6, pp. 75–76]). Thus, from (1) and (2) it follows that the
length of ρB(a; b) and L±B(K) are affine invariants of the plane M2 (see also
[13, p. 5]).

It is known that if M is a convex figure inside K, then (see [7, p. 110]
and [18, p. 112]) then

(4) L∓B(M) ≤ L∓B(K).

In what follows, we call L−(B) = L−B(B) the first self-perimeter of the unit
circle B, and L+(B) = L+

B(B) denotes its second self-perimeter. Gołąb [2]
proved that if B is symmetric with respect to the origin O (i.e., M2 is a
normed plane), then L−(B) = L+(B) =: L(B), with the sharp estimates

(5) 6 ≤ L(B) ≤ 8.

If B is not centred at O, then still L∓(B) ≥ 6. The equality L−(B) = 6
or L+(B) = 6 holds if and only if B is an affinely regular hexagon (see [3],
[16], [17], and [11]). Simple examples show that there is no absolute constant
that bounds the self-perimeters L∓(B) for non-symmetric normalizing fig-
ures from above. Grünbaum [4] proved that it is possible to choose the origin
O inside B in such a way that the self-perimeters satisfy

(6) L∓(B) ≤ 9.

The estimate (6) cannot be improved if B is a triangle 4, i.e., in fact
minO∈int(M) L

∓(4) = 9. Further results in this direction were derived in
[3], [16], [17], [9], and [10].
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Definition 1.3. The value
(7) D(B) = max

x,y∈B
ρ(x; y)

is called the self-diameter of the normalizing figure B of M2.
In the present paper we give upper estimates on the self-perimeters

L∓(B) in terms of the self-diameter D = D(B) of the unit circle B of a
Minkowski plane M2. Our main results are summarized in the following
theorems.

Theorem 1.1. If B is a unit circle of self-diameter D = D(B), then

(8) L∓(B) ≤ 4D(B).

We note that Theorem 1.1 is an almost immediate extension of the re-
sult of Gołąb [2], and it is sharp for centrally symmetric figures. On the
other hand, our next theorem generalizes all three results: of Gołąb [2], of
Grünbaum [4], and our Theorem 1.1.

Theorem 1.2. If P4 is a normalizing quadrangle of diameter D=D(P4),
then

(9) L∓(P4) ≤ 2(D(P4))2/(D(P4)− 1).

This estimate is sharp.

It should be noticed that (9) implies (8), (6), and the right-hand inequal-
ity of (5) for all polygons with at most four vertices.

The proof of Theorem 1.2, via special constructions, can be reduced to the
case when the quadrangle is a trapezium. These constructions are interesting
in their own right, and we collect the related results in the following theorem.

Theorem 1.3. For a normalizing quadrangle P4 there is a trapezium T
such that

(i) O ∈ int(T );
(ii) the self-diameters of P4 and T satisfy

(10) D(T ) ≤ D(P4);

(iii) the self-perimeters of P4 and T satisfy

(11) L−(T ) ≥ L−(P4).

2. Proofs and further results. To prove these theorems, we need some
additional properties of self-diameters of normalizing figures. Without loss
of generality, we consider the normalizing figure B as lying in the adjoint
Euclidean plane R2. We intend to prove that the diameter D(B) uniquely
defines the factor of symmetry k = k(B) of the figure B with respect to the
origin O ∈ int(B). The factor of symmetry (cf. Definition 2.2 below) was
introduced by H. Minkowski and B. Neumann (see [14], [15], and [5, §6]).
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Definition 2.1. A chord nm of the unit circle B is called central if it
passes through the origin O ∈ int(B).

Set
g(nm) = min{|Om|/|On|; |On|/|Om|} ≤ 1,

where n,m ∈ ∂B and O ∈ nm. Geometrically, g(nm) is the ratio in which
O divides the central chord nm of the figure B.

Definition 2.2. We define the factor of symmetry of the unit circle B
by

(12) k = min
nm

g(nm).

The support function hk(u), |u| = 1, of a compact convex figure K ⊂ R2

is defined by
hK(u) = max{〈x, u〉 : x ∈ K},

where 〈·, ·〉 means the scalar product of the Euclidean plane R2 (see [1]
and [7]).

B. Grünbaum [5, §6] remarks that the factor of symmetry k(B) can,
equivalently to (12), be defined as follows:

(13) k = min
|u|=1
{hB(u)/hB(−u);hB(−u)/hB(u)}.

Proposition 2.1. The diameter D = D(B) and the factor of symmetry
k = k(B) of the unit circle B satisfy

(14) D(B) = 1 + 1/k.

Proof. Let nm be a central chord of B that provides the minimum
in (12), and set k = |Om|/|On|. By (7) we have

D = max
x,y∈B

ρ(x; y) ≥ ρB(n;m) = (|nO|+ |Om|)/|Om| = 1 + 1/k.

To prove (14) it is sufficient to show that D ≤ 1 + 1/k. Denote by pq the
chord of B that provides the maximum in (7), i.e., D = ρB(p; q) = |pq|/|On|,
where n = q̂ − p (see (3)). Set {m} = (pO) ∩ ∂B. Since B is convex, there
exists {l} = On ∩ qm. The homothety 4mOl ≈ 4mpq implies

(15) D = |pq|/|On| ≤ |pq|/|Ol| = |pm|/|Om| = ρB(p;m) ≤ D.
For the central chord pm it follows from (15) and (12) that

D = (|pO|+ |Om|)/|Om| = 1 + 1/k.

Corollary 2.1. If nm denotes a central chord of the unit circle B,
then max ρB(n;m) = D(B).

Corollary 2.2. If pq is a chord of the unit circle B such that
ρB(p; q) = D(B), then the central chord pm has length ρB(p;m) = D(B),
and qm ⊂ ∂B.
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Indeed, (14) and (15) imply

1 + 1/k = D(B) = ρB(p; q) = |pq|/|On| = |pm|/|Om| = |pq|/|Ol|.

In this case l = n = q̂ − p ∈ qm, and the convexity of B implies qm ⊂ ∂B.

Proposition 2.2. Let nm be a central chord of the unit circle B that
provides the equality ρB(n;m) = D(B). If H(m) is a supporting line of B at
m ∈ ∂B, then the line H(n) that passes through n ∈ ∂B in such a way that
H(n) ‖ H(m) is also a supporting line for B.

Proof. By (14) we have |Om|/|On| = k, where k = k(B) is the factor
of symmetry. Assume that H(n) ‖ H(m) is not a supporting line for B.
Then there is a point a ∈ ∂B such that a 6= n and aO ∩ l(n) = b 6= a. Write
{c} = H(m)∩(aO) and {e} = Oc∩∂B. The homothety4Onb ≈ 4Omc and
the inequality |Ob| < |Oa| imply k = |Om|/|On| = |Oc|/|Ob| > |Oe|/|Oa|.
Since ae is a central chord, we get a contradiction to (12).

Corollary 2.3. Suppose that the polygon B with vertices a1, . . . , al (in
this order) is taken as a unit circle and aibi are central chords of it (1≤ i≤ l).
Then the factor of symmetry k(B) is equal to

(16) k = min{|Obi|/|Oai| : 1 ≤ i ≤ l},

where the lengths of segments are given with respect to the auxiliary Euclidean
metric.

Proof. Denote by nm a central chord of length ρB(n;m) = D, hence
yielding |Om|/|On| = k. The existence of such a chord is guaranteed by
Corollary 2.1. Consider first the case when m is one of the vertices of B, say
m = a2. Then the lines (a1a2) and (a2a3) are supporting ones for B atm. By
Proposition 2.2, there are two different supporting lines H1,2(n) at n ∈ ∂B
such that H1(n) ‖ (a1a2) and H2(n) ‖ (a2a3). Therefore, n is also a vertex
of B and (16) is fulfilled.

Now it is sufficient to consider the case when m and n do not coincide
with a vertex of B. Suppose, for definiteness, that n is an interior point
of a1a2. By Proposition 2.2, the supporting line H(m) is parallel to a1a2.
The line H(m) contains one of the sides of B. Write {ci} = H(m) ∩ (aiO)
and {bi} = ∂B ∩ (aiO) (i = 1, 2). The homothety 4Onai ≈ 4Omci implies

k = |Om|/|On| = |Oci|/|Oai| ≥ |Obi|/|Oai|.

Since aibi are central chords of B, (12) implies |Obi|/|Oai| = |Oci|/|Oai| = k
and ci = bi. Moreover, the segment b1b2 is contained in ∂B.

Proposition 2.3. Suppose that O ∈ int(B1 ∩B2), where B1 and B2 are
compact, convex figures on R2 with factors of symmetry k(Bi) = ki (i = 1, 2).
Then the factor of symmetry of the compact convex figure B = B1 ∩ B2
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satisfies

(17) k(B) ≥ k0 = min{k1; k2}.
Proof. Denote by hi(u) (|u| = 1) the support functions for Bi (i = 1, 2).

Then the support function for B is hB(u) = min{h1(u);h2(u)} (|u| = 1). If{
hB(u) = h1(u),

hB(−u) = h1(−u),
or

{
hB(u) = h2(u),

hB(−u) = h2(−u),

for some fixed unit vector u, then by (13) we have

k0 ≤ hB(u)/hB(−u) ≤ 1/k0.

Suppose, for definiteness, that hB(u) = h1(u) and hB(−u) = h2(−u). Then,
again by (13), we have

k0 ≤ h1(u)/h1(−u) ≤ h1(u)/h2(−u) = hB(u)/hB(−u)

≤ h2(u)/h2(−u) ≤ 1/k0,

and (17) follows.

Corollary 2.4. Suppose that O∈M2 is an interior point of the segment
nm. Denote by H(n;m) the strip between two parallel lines H(n) ‖ H(m)
through n and m, respectively. If k(B) = k and

(18) k1 ≤ |Om|/|On| ≤ 1/k1

with respect to an auxiliary Euclidean metric, then the factor of symmetry
of the convex figure B̃ = B ∩H(n;m) satisfies

(19) k(B̃) ≥ min {k; k1} .
Proposition 2.4. If the unit circle of M2 is the triangle B = 4a1a2a3,

then the factor of symmetry k(B) = k satisfies 0 < k ≤ 1/2, and the oriented
self-perimeters satisfy the following sharp estimates:

(20) 5 + 4k + 1/k ≤ L∓(B) ≤ 3 + 2(1/k + k/(1− k)).

Proof. The factor of symmetry k and the self-perimeter of B ⊂ M2

are invariant with respect to the choice of an auxiliary Cartesian metric in
the adjoint plane R2. Therefore, we may assume that 4a1a2a3 is a right
triangle. Denote by N the barycenter of 4a1a2a3. Then we have 4a1a2a3 =
4a1a2N ∪4a2a3N ∪4a3a1N . Write

{b1} = a2a3 ∩ (a1O), {b2} = a3a1 ∩ (a2O), {b3} = a1a2 ∩ (a3O).

Let us prove that ifO ∈ 4a3Na2, then k = |Ob1|/|Oa1|. By Corollary 2.3,
it is sufficient to show that

|Ob1|/|Oa1| ≤ |Ob2,3|/|Oa2,3|.
We present the proof for the first of them. Write {M} = a1b1 ∩ (a3N) and
{c} = a1a3 ∩ (a2M). Since 4a1a2a3 is a right triangle, we have 4a2Ma1 ≈
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4cMb1 and |Mb1|/|Ma1| = |cM |/|Ma2|. Take g ∈ a3b1 such that cg ‖ a1b1
and {e} = cg ∩ a2b2. The homothety 4a2OM ≈ 4a2ec implies

|Ob1|/|Oa1| ≤ |Mb1|/|Ma1| = |cM |/|Ma2| = |eO|/|a2O| ≤ |b2O|/|a2O|.
Let {P} = a2a3∩(a1N), Q ∈ NP , and OQ ‖ a2a3. Then4a1b1P ≈ 4a1OQ,
and therefore

k = |Ob1|/|Oa1| = |PQ|/|a1Q| ≤ |PN |/|a1N | = 1/2.

Observe that, by duality, it is sufficient to prove (20) for L−(B) only. Mark
the vertices of 4a1a2a3 clockwise. Write {S} = Na3 ∩ (OQ) and {T} =
Na2 ∩ (OQ). For every V ∈ ST , set {W} = a2a3 ∩ (a1V ). Evidently,
|VW |/|V a1| = |Ob1|/|Oa1| = k. Denote by L−V (B) the first self-perimeter
of 4a1a2a3 in case when the origin O ∈ M2 is located at V . The function
f(V ) = L−V (B) is strictly convex downwards for V ∈ ST . This is a special
case of a more general statement from [8]: the self-perimeter L±V (B) is a
strictly convex function of its center V , for any normalizing figure B of the
plane M2.

Since f(V ) is convex and symmetric with respect to Q ∈ ST , we have

min
V ∈ST

L−V (B) = L−Q(B), max
V ∈ST

L−V (B) = L−S (B) = L−T (B).

We calculate L−S (B) in the adjoint plane R2 with the Cartesian coordinate
system such that the vertices of the relevant triangle get the coordinates

a3(0; 0), a1(0; 1 + k), a2(1 + k; 0).

Then the points S, T , and Q get the coordinates S(k; k), T (1 − k; k), and
Q(1/2; k), respectively. It is easy to see that

ρS(a3; a1) = (1 + k)/(1− k), ρS(a1; a2) = ρS(a2; a3) = (1 + k)/k.

Therefore, L−(B) ≤ L−S (B) = 3 + 2(1/k + k/(1 − k)). For L−Q(B) we have
ρQ(a1; a2) = (1+k)/k and ρQ(a2; a3) = ρQ(a3; a1) = 2(1+k). Hence L−(B)
≥ L−Q(B) = 5 + 1/k + 4k. Evidently, the estimates in (20) are sharp, i.e.,
they can be achieved.

Corollary 2.5. If the normalizing quadrangle P4 degenerates to a tri-
angle, then the estimate (9) is still valid.

Evidently, for 0 < k ≤ 1/2 we have 2k/(1− k) ≤ 2k + 1. This inequality
together with (20) and (14) implies L∓(4) ≤ 4+2(1/k+k) = 2D2/(D−1).

The following example shows the sharpness of (9). The unit circle in this
example is a quadrangle with given factor of symmetry.

Example 2.1. Endow a plane R2 with a Cartesian coordinate system,
origin O(0; 0), and a trapezium a1a2a3a4 with vertices

a1(−k;−1), a2(−k; k), a3(t; k), a4(1;−1), k ∈ (0; 1], t ∈ [k2; 1],

as a normalizing figure B.



186 H. MARTINI AND A. SHCHERBA

To find the factor of symmetry k(a1a2a3a4), mark the points b1(k2; k) ∈
a2a3 and b3(−k;−k2/t) ∈ a1a2. Since |Oa2|/|Oa4| = k, |Ob1|/|Oa1| = k,
and |Ob3|/|Oa3| = k/t (∈ [k; 1/k]), by (16) we have k(a1a2a3a4) = k. To
find the self-perimeter L−(a1a2a3a4), evaluate the lengths of the sides of
the trapezium using (1) and (3). Evidently, we have (â1 − a4)(−k; 0) and
(â2 − a1)(0; k), and hence ρ(a4; a1) = ρ(a1; a2) = (1 +k)/k. Mark the points

c1(t; 0), c2(1; 0), c3(0;−1), â3 − a2 = c4 ∈ a3a4, â4 − a3 = c5 ∈ a4a1.

Via the similarities 4Oc3c5 ∼ 4a3c1c4 ∼ 4a4c2c4, we find the points
c4((k+t)/(k+1); 0) and c5((1−t)/(k+1);−1). Then ρ(a2; a3) = ρ(a3; a4) =
1 + k and L−(a1a2a3a4) = 4 + 2(k + 1/k). In accordance with (14) we have
L−(a1a2a3a4) = 2D2/(D − 1).

Denote by d(K1;K2) the Hausdorff distance between compact, convex
sets K1 and K2 in R2 (see, for instance, [5, §2]),

d(K1;K2) = min{λ ≥ 0 : K1 ⊂ K2 + λE, K2 ⊂ K1 + λE},

where E is the unit circle of R2. A sequence of figures B1, B2, . . . converges
to the figure B if d(Bν ;B)→ 0 as ν →∞.

Proof of Theorem 1.1. For a compact, convex figure B with interior
points, we apply a classical theorem on the approximation of B by poly-
gons (see [1, §27]). There is a sequence B1, B2, . . . of convex polygons which
contain B and converge to it. By continuity for self-perimeters in M2, we
have

lim
v→∞

L∓(Bv) = L∓(B), lim
v→∞

D(Bv) = D(B).

Thus (8) is enough to prove our statement for a polygon B. Consider the
centrally symmetric figure ∆B = 1

2B+ 1
2(−B) (called the central symmetral

of B), where (−B) = (−1)B. We can assume that B is a polygon with
non-parallel sides. Then any side of ∆B is parallel either to a side of B or
to a side of −B, and its length is half the length of the corresponding side
of B or −B. Thus, for a normalizing figure C centered at O we have

(21) L∓C(∆B) = L∓C(B).

According to Definition 2.2, for the symmetry coefficient k the inclusion
−B ⊆ 1

kB holds. From this and from (14) we obtain

∆B =
1

2
(B −B) ⊆ 1

2

(
1 +

1

k

)
B =

1

2
DB,

i.e.,DB contains B+(−B) (the difference body of B). Therefore, the distance
functions gB and g∆B satisfy

gB(x) =
D

2
gDB/2(x) ≤ D

2
g∆B(x)
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(note that g∆B is an even function). Choosing in (21) the figure C = ∆B,
we obtain

L∓(B) = L∓B(B) ≤ D

2
L∓∆B(∆B).

Applying (5) to the centrally symmetric figure ∆B, we come to (8), and
Theorem 1.1 is proved.

To prove Theorem 1.3 we need some auxiliary statements.

Proposition 2.5 (see [13] for details). The equality in the triangle in-
equality ρB(a; c) ≤ ρB(a; b) + ρB(b; c) for a Minkowski plane is only possible
if the segment xy, where x = b̂− a and y = ĉ− b, lies on the boundary of
the unit circle B.

If the normalizing figure inM2 is a polygon Pn, then we mark its vertices
clockwise: Pn = a1 . . . an. For completeness, we formulate here the analogues
of Proposition 2 and Definitions 2 and 3 from [9] (see also [10, §3]).

Proposition 2.6. Suppose the normalizing figure P4 = a1a2a3a4 is not
a trapezium. Then one can always choose an auxiliary metric and the order
of the vertices inM2 in such a way that the coordinates of the vertices become

a1(−(1 + y)x/y; 1), a2(1; 1), a3(1; 0), a4(0;−y),

where x and y are some positive numbers.

Definition 2.3. A normalizing quadrangle a1a2a3a4 ⊂ M2 is called
canonically given if it meets the requirements of Proposition 2.6.

Remark 2.1. In the notation of the canonically given quadrangle the
first vertex is uniquely determined, i.e., if a1a2a3a4 is canonically given,
then a2a3a4a1 is not.

Definition 2.4. If a1a2a3a4 is a canonically given quadrangle, then the
point of intersection of the two lines through a4 and a3 which are parallel to
a3a2 and a2a1, respectively, is called the center of the quadrangle.

Remark 2.2. In the auxiliary metric used for proving Proposition 2.6,
the center g of the canonically given quadrangle P4 = a1a2a3a4 coincides
with the origin of the Cartesian coordinate system, i.e., g = (0, 0). We note
that we will use also other auxiliary metrics on R2, with g 6= (0, 0); see, for
example, the proof of Lemma 2.4.

Let {m} = a1a3∩a2a4. The diagonals a1a3 and a2a4 split the quadrangle
a1a2a3a4 into four triangles, 4a1ma4, 4a2ma1, 4a3ma2, 4 a4ma3.

Proposition 2.7. Let a1a2a3a4 be a canonically given normalizing quad-
rangle. Let aibi be its central chords (0 ≤ i ≤ 4). With respect to our auxiliary
metric, the factor of symmetry k = k(a1a2a3a4) can be evaluated as follows:
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(a) if the origin O is in 4a1a2a4, then

(22) k = min{|Obi|/|Oai| : i 6= 3};
(b) if O ∈ 4a2a3a4, then

(23) k = |Ob1|/|Oa1|.
Proof. If O ∈ 4a1ma4, then b1 ∈ a3a4, b2,3 ∈ a4a1, and b4 ∈ a1a2.

Find points e1 ∈ (a1O) with a4e1 ‖ a1a2 and e2 ∈ (a3O) with b2e2 ‖ a3a2.
Since a1a2a3a4 is canonically given, we have b1 ∈ Oe1 and e2 ∈ Ob3. The
homothety 4Oa2a3 ≈ 4Ob2e2 implies

(24) |Ob2|/|Oa2| = |Oe2|/|Oa3| ≤ |Ob3|/|Oa3|.
If O ∈ 4a2ma1, then b1 ∈ a2a3, b2 ∈ a4a1, and b3,4 ∈ a1a2. Find e3 in
(Oa3) with a4e3 ‖ a1a2. Since a1a2a3a4 is canonically given and 4Ob4b3 ≈
4Oa4e3, we have |Ob4|/|Oa4| = |Ob3|/|Oe3| ≤ |Ob3|/|Oa3|. From this, to-
gether with (24) and (16), we obtain (22).

If O ∈ 4a3ma2, then b1,4 ∈ a2a3, b2 ∈ a3a4, and b3 ∈ a1a2. Find points
ei that satisfy e4 = (a1a2) ∩ (a4b4); e1 ∈ (a1b1), b2e1 ‖ a1a2; e3 ∈ (a4b4),
a3e3 ‖ a1a2; e2 ∈ (a1b1), a4e2 ‖ a3a2. The canonicity of a1a2a3a4 implies
b4 ∈ Oe4, b1 ∈ Oe1, e3 ∈ Oa4, and e2 ∈ Oa1. The homotheties 4Ob1b4 ≈
4Oe2a4, 4Oe4b3 ≈ 4Oe3a3, and 4Oe1b2 ≈ 4Oa1a2 yield

|Ob1|/|Oa1| ≤ |Ob1|/|Oe2| = |Ob4|/|Oa4| ≤ |Oe4|/|Oa4|
≤ |Oe4|/|Oe3| = |Ob3|/|Oa3|

and |Ob1|/|Oa1| ≤ |Oe1|/|Oa1| = |Ob2|/|Oa2|. Combining this with (16), we
get (23).

If O ∈ 4a4ma3, then b1,2 ∈ a3a4, b3 ∈ a4a1, and b4 ∈ a2a3. Find
points ei that satisfy e1 ∈ (a2b2), b1e1 ‖ a1a2; e2 ∈ (a4b4), b2e2 ‖ a1a2;
e3 ∈ (a3b3), b2e3 ‖ a2a3; e4 ∈ (a4b4), b1e4 ‖ a4a1. The canonicity of a1a2a3a4

implies e1 ∈ Ob2, e2 ∈ Oa4, e3 ∈ Ob3, and e4 ∈ Ob4. The homotheties
4Ob1e1 ≈ 4Oa1a2, 4Ob2e3 ≈ 4Oa2a3, and 4Ob1e4 ≈ 4Oa1a4 yield

|Ob1|/|Oa1| = |Oe1|/|Oa2| ≤ |Ob2|/|Oa2| = |Oe3|/|Oa3| ≤ |Ob3|/|Oa3|;
|Ob1|/|Oa1| = |Oe4|/|Oa4| ≤ |Ob4|/|Oa4|.

In combination with (16), we get (23).

Our treatments essentially depend on the possible location of the origin
O inside a canonically given quadrangle a1a2a3a4. Denote by g the centre
of the quadrangle a1a2a3a4 and draw the lines (a3g) and (a4g). Set {u} =
a4a1 ∩ (a3g) and {w} = a1a2 ∩ (a4g).

Definition 2.5. We use the following notation for normalizing vectors
of the sides of a canonically given quadrangle P4 = a1a2a3a4:

c1 = â1 − a4, c2 = â2 − a1, c3 = â3 − a2, c4 = â4 − a3.
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Observe that Definition 2.5 implies c1 ∈ a1a2 and c4 ∈ a4a1.
Set {v} = a1a3 ∩ a4w and {n} = a2a4 ∩ a3u. Remember that we have

already defined the points {g} = a3u ∩ a4w and {m} = a1a3 ∩ a2a4. The
chords a3u, a4w and the diagonals a1a3, a2a4 split the canonically given
quadrangle a1a2a3a4 into nine parts: six triangles 4a1wv, 4a3ma2, 4uga4,
4a4gn, 4a4na3, 4nma3 and three quadrangles a1vgu, wa2mv, vmng. In
view of Proposition 2.7 and Definition 2.5, the location of the origin O inside
one of these parts uniquely defines the locations of ci on the sides of a1a2a3a4

and implies either (22) or (23) for the factor of symmetry k(a1a2a3a4).

Definition 2.6. We say that a normalizing quadrangle P4 is majorized
by a trapezium T if the trapezium meets all the requirements of Theorem 1.3,
i.e., O ∈ int(T ) and the inequalities (10) and (11) are satisfied.

Remark 2.3. In accordance with (14), it is possible to replace the in-
equality (10) in Definition 2.6 by the condition k(P4) ≤ k(T ) on the respec-
tive factors of symmetry.

Remark 2.4. Let l0 be a line through the origin O ∈ int(B). Let B′
be a figure axially symmetric with respect to l0. Then L∓(B) = L±(B′). In
what follows, we refer to this fact as duality. Due to duality, it is sufficient to
prove Theorem 1.3 for the first self-perimeter L−(P4) of the quadrangle P4.

Remark 2.5. In what follows, we mark the lengths and self-perimeters
with respect to an old and new normalizing figure B with subscript “old”
or “new”, respectively. Namely, if P is an old normalizing polygon and P ′ is
the new one, then we write L−(P ) = L−old(P ) in case B = P , and L−(P ′) =
L−new(P ′) in case B = P ′.

The following two corollaries are consequences of our main theorems.

Lemma 2.1. If O ∈ 4a1wa4 ∪4a4ga3, then the canonically given quad-
rangle a1a2a3a4 can be majorized by some trapezium T .

Proof. Observe that 4a1wa4 = 4a1va4 ∪4a1wv.

1. If O ∈ 4a1va4, then the normalizing vectors ci and the endpoints
bi of the central chords aibi are located as follows: c3 ∈ a4a1, c2 is on the
polygonal arc â2a3a4, b1 ∈ a3a4, b2,3 ∈ a4a1, b4 ∈ a1a2 (see Definition 2.5
and (22)). Find points a5 and b5 that satisfy a5 ∈ (a2b1), a4a5 ‖ a1a2, and
{b5} = a1a2 ∩ (a5O). Taking the trapezium a1a2a5a4 as a new normalizing
figure of M2, we see that (â1 − a4)new = (â1 − a4)old = c1, (â2 − a1)new =

c′2 ∈ a2b1 ⊂ a2a5 and |Oc′2| ≤ |Oc2|, where a2b1 subtends the arc â2a3b1.
Then

ρold(a4; a1) = ρnew(a4; a1), ρold(a1; a2) ≤ ρnew(a1; a2).

Let c′4 = â4 − a5 and c′5 = â5 − a2 = b̂1 − a2. Since c3,4, c
′
4,5 ∈ a4a1, by
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Proposition 2.5 we have ρold(a2; a3)+ρold(a3; a4)=ρold(a2; a4)=ρnew(a2; a4)
= ρnew(a2; a5) + ρnew(a5; a4).

The homothety 4Oa5a4 ≈ 4Ob5b4 implies |Ob5|/|Oa5| = |Ob4|/|Oa4|.
The segments aibi (i = 1, 2, 4) are central chords of a1a2a3a4 and a1a2a5a4.
By (22), we have k(a1a2a5a4) = k(a1a2a3a4) = k. Therefore, the trapezium
T = a1a2a3a4 majorizes a1a2a3a4.

2. If O ∈ 4a1wv, then the points ci and bi are located as follows:
c3 ∈ a4a1, b1 ∈ a2a3, b2 ∈ a4a1, b3,4 ∈ a1a2, c2 ∈ a2b1 ⊂ a2a3. By Proposi-
tion 2.5, ρ(b1; a4) = ρ(b1; a3) + ρ(a3; a4) and L−(a1a2a3a4) = L−(a1a2b1a4).
The segments aibi (i = 1, 2, 4) are central chords of a1a2a3a4 and a1a2b1a4.
Therefore, k(a1a2b1a4) = k.

The quadrangle a1a2b1a4 is evidently a canonical one. Denote by g1 its
center and set {v1} = a4w∩a1b1. By construction, O ∈ 4a1v1a4 ⊂ a1a2b1a4,
which corresponds to the first case considered above.

3. If O ∈ 4a4ga3, then the points ci, bi are located as follows: c2,3 ∈ a3a4,
b3 ∈ a4a1, b1 ∈ a3a4, and b4 is on the polygonal arc â1a2a3. Canonicity of
a1a2a3a4 implies the existence of a5 ∈ a1a2 such that a3a5 ‖ a4a1. The
trapezium a1a5a3a4 can be taken as a new normalizing figure of M2, and
then â5 − a1 = c2, â1 − a4 = c1 ∈ a1a5 ⊂ a1a2, â3 − a5 = c′3 ∈ c2c3 ⊂ a3a4.
By Proposition 2.5 we have

ρold(a1; a2) + ρold(a2; a3) = ρold(a1; a3)

= ρnew(a1; a3) = ρnew(a1; a5) + ρnew(a5; a3)

and L−(a1a2a3a4) = L−(a1a5a3a4).
To estimate the factor of symmetry k(a1a5a3a4), we use Corollary 2.4.

We have (a1a4) ‖ (a5a3). Choosing in (18)

k1 = min{|Ob3|/|Oa3|; |Oa3|/|Ob3|}, k1 ≥ k,
we infer from (19) that k(a1a5a3a4) ≥ k. Therefore, the trapezium T =
a1a5a3a4 majorizes a1a2a3a4. Lemma 2.1 is proved.

Lemma 2.2. If O ∈ wa2a3v, then the canonically given normalizing
quadrangle a1a2a3a4 can be majorized by some trapezium T .

Proof. Observe that the trapezium wa2a3v equals wa2mv ∪4a2a3m.

1. If O ∈ wa2mv, then the normalizing vectors ci and the ends bi of the
central chords aibi are located as follows: c2 ∈ a2a3, c3 ∈ a3a4, b1 ∈ a2a3,
b2 ∈ a4a1, b3,4 ∈ a1a2. Remember that in this case formula (22) is satisfied.
Find a point a5 such that a4a5 ‖ a2a1 and a5a1 ‖ a3a2. For the polygonal
arc â3a5a1, we consider {b6} = (a2O) ∩ â3a5a1. Then either b6 ∈ a5a1

or b6 ∈ a3a5. If b6 ∈ a5a1, then the end b5 of the central chord a5b5 in
the trapezium a1a2a3a5 is in a1a2. The homotheties 4Oa4a5 ≈ 4Ob4b5 and
4Oa2b1 ≈ 4Ob6a1 imply |Ob5|/|Oa5| = |Ob4|/|Oa4| and |Ob6|/|Oa2| =
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|Oa1|/|Ob1|. The segment a3b3 is a central chord in a1a2a3a5. Then formula
(16) implies k(a1a2a3a5) = k. If b6 ∈ a3a5, then the central chord a5b5 is such
that b5 ∈ a2a3. Find a point ei on the line (a2b6) that satisfies b5e3 ‖ a3e1 ‖
a5e2 ‖ a1a2. The homotheties 4Oa3e1 ≈ 4Ob3a2, 4Oa4e2 ≈ 4Ob4a2, and
4Oa5a1 ≈ 4Ob5b1 imply

|Oa3|/|Ob3| = |Oe1|/|Oa2| ≤ |Ob6|/|Oa2| ≤ |Oe2|/|Oa2| = |Oa4|/|Ob4|;
|Ob1|/|Oa1| = |Ob5|/|Oa5|.

By formula (16), we have k(a1a2a3a5) ≥ k.
To estimate the self-perimeter of the trapezium a1a2a3a5, set â1 − a5 =

c′1 ∈ a1a2. The similarity 4a1a4a5 ∼ 4Oc1c
′
1 implies

ρold(a4; a1) = |a4a1|/|Oc1| = |a5a1|/|Oc′1| = ρnew(a5; a1).

We have (â3 − a2)new = c′3 ∈ Oc3, (â2 − a1)new = c2 ∈ a2a3 and hence

ρold(a2; a3) ≤ ρnew(a2; a3), ρold(a1; a2) = ρnew(a1; a2).

Set â4 − a3 = c4 ∈ a4a1, (â5 − a3)new = c5 ∈ a5a1, and {e4} = Oc4 ∩ a1a3.
Find a point e5 that satisfies e5 ∈ a1a5 and c4e5 ‖ a4a5. The point a1 is the
centre of the homothety 4e4c4e5 ≈ 4a3a4a5. Set {e6} = (c4e5)∩ (Oc5) and
consider the homothety 4e4c4e5 ≈ 4Oc4e6. Then c5 ∈ Oe6 and

ρold(a3; a4) = |a3a4|/|Oc4| = |a3a5|/|Oe6| ≤ |a3a5|/|Oc5| = ρnew(a3; a5).

Therefore, L−(a1a2a3a5) ≥ L−(a1a2a3a4), and the trapezium a1a2a3a5 ma-
jorizes the given quadrangle a1a2a3a4.

2. If O ∈ 4a2a3m, then the points ci and bi are located as follows:
c2 ∈ a2a3, c3 ∈ a3a4, b1,4 ∈ a2a3, b2 ∈ a3a4, b3 ∈ a1a2. By formula (23), the
factor of symmetry is k = |Ob1|/|Oa1|. In complete analogy with item 1, we
construct the trapezium a1a2a3a5 (a4a5 ‖ a2a1) and obtain the inequality
L−(a1a2a3a5) ≥ L−(a1a2a3a4). Find {b′2} = a3a5 ∩ (a2O) such that

|Oa3|/|Ob3| ≤ |Ob′2|/|Oa2| ≤ |Ob2|/|Oa2|.

We have {b5} = (Oa5) ∩ (a2a3), 4Oa5a1 ≈ 4Ob5b1, and |Ob5|/|Oa5| = k.
Thus, the quadrangle a1a2a3a4 is majorized by the trapezium T = a1a2a3a5.
Lemma 2.2 is proved.

To study the case O ∈ 4nma3, we need the following statement.

Proposition 2.8. Let 4abc be a triangle in the adjoint plane R2. Let
the points d ∈ bc, e ∈ ca, and f ∈ ab be such that de ‖ ba, df ‖ ca, and
O ∈ df . Set {h} = (bO)∩ (de), q ∈ dh∩ de, and {p} = bq ∩ df . Take t = |eq|
as a parameter. Then the function y(t) = 1/|Op| is downwards convex over
the interval (t1; t2), where t2 = |ed| and t1 = 0 if de ⊂ dh, while t1 = |eh| if
dh ⊂ de.
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Proof. Set {l} = ac ∩ (bq). The homothety 4bpf ≈ 4bla implies
|pf | = |fb| · |al|/|ab|. Since 4leq ≈ 4lab and |eq| = t, we have |ab|/t =
|al|/|el| = |ae|/|el|+ 1. Therefore, 1/|el| = (|ab| − t)/(t · |ae|). The similarity
4bpf ∼ 4qle implies 1/|pf | = t/(|el| · |fb|) = (|ab| − t)/(|fb| · |ea|). Set
α = |ae| · |fb|, γ = |Of |, β = |ab| > |af | = |ed| ≥ t. Then |pf | = α/(β − t).
Observe that |pf | ≥ |Of |, and hence t ≥ β − α/γ. If O = f , then γ = 0,
and the function y(t) = 1/|Op| = 1/|pf | = (β − t)/α is linear with respect
to the parameter t. If O 6= f , then use the equality |Op| = |pf | − γ to de-
duce y(t) = 1/|Op| = −1/γ + α · γ−2/(t − (β − α/γ)). This means that for
t > β − α/γ the graph of y(t) is strictly downwards convex, namely the arc
of a hyperbola.

Definition 2.7. Define r, z, s in such a way that r ∈ a4a1, a2r ‖ a3a4,
{z} = a1a3 ∩ a2r, and {s} = a2r ∩ n̂gw, where n̂gw is a polygonal arc (the
existence of r follows from the canonicity of a1a2a3a4).

In what follows, we use the figure G = a2a3a4r ∩4gva3. Observe that

(25) G =


4gva3 if s ∈ vw,
gsza3 if s ∈ gv,
4sza3 if s ∈ gn.

We will consider the cases when O ∈ G or O /∈ G.
Again, the next three corollaries follow from our main theorems.

Lemma 2.3. If O ∈ G, then the canonically given normalizing quadrangle
a1a2a3a4 is majorized by some trapezium T .

Proof. We restrict our considerations to the most general case of (25),
when G = gsza3. Since r ∈ a4a1, we have 4nma3 ⊂ G and G = 4nma3 ∪
gszmn. Observe that â4 − a3 = c4 ∈ a4r, â2 − a1 = c2 ∈ a2a3. Set {a7} =
(Oc2) ∩ (a4a3) and find points a5,6 that satisfy a5,6 ∈ (a4a3), a2a5 ‖ a1a4,
and a2a6 ‖ Oa4. Write

(26) a8 =

{
a7 if a7 ∈ a4a5,
a5 if a5 ∈ a4a7.

Let M ∈ a6a8, and take t = |a4M | as a parameter. Then t ∈ [t1; t2],
where t1 = |a4a6| and t2 = |a4a8|. Set t0 = |a4a3|. If t = t0, then M = a3.
Take a canonically given quadrangle a1a2Ma4 as the new normalizing fig-
ure of M2. Consider the self-perimeter L−(a1a2Ma4) as a function f(t)
of t, i.e., f(t) = L−(a1a2Ma4) for t ∈ [t1; t2]. We have â3 − a2 = c3 ∈
a3a4, and write (â5 − a2)new = c5 and (M̂ − a2)new = cM . Since 4a1b1a4

is non-degenerate and Oc5 ‖ a1a4, by construction c5 ∈ b1a4 ⊂ a3a4.
Moreover, cM ∈ a4c5 ⊂ a4a3. The similarity 4a2Ma3 ∼ 4OcMc3 implies
ρnew(a2;M) = |a2M |/|OcM | = |a2a3|/|Oc3| = ρold(a2; a3).
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The function ρnew(M ; a4) = |Ma4|/|Oc4| = t/|Oc4| is linear in t, where
c4 = ( ̂a4 −M)new = â4 − a3 ∈ a4a1. Evidently, (â1 − a4)new = c1 ∈ a1a2

and ρnew(a4; a1) = ρold(a4; a1). From (26) it follows that (â2 − a1)new = c′2
∈ a2M . By Proposition 2.8, if we take b = a2, p = c′2, q = M , and
e = a4, then we get the downwards convex function y(t) = 1/|Oc′2| and
ρnew(a1; a2) = |a1a2|/|Oc′2|. Set

(27) a9 =

{
b1 if a6 ∈ a4b1,
a6 if b1 ∈ a4a6,

and t3 = |a4a9|. Then t1 = |a4a6| ≤ |a4a9| = t3 < |a4a3| ≤ |a4a8| = t2.
Thus, the function f(t) = L−(a1a2Ma4) is downwards convex for t ∈ [t3; t2].
Therefore,

(28) max
[t3;t2]

f(t) = max {f(t3); f(t2)} .

Consider the following four possible maxima of f(t) on [t3; t2] according to
the conditions (26)–(28).

1. Suppose that t = t3, a9 = b1, and fmax = f(t3). If O ∈ gszmn, then all
the chords aibi (i 6= 3) remain central chords for the new canonical a1a2b1a4.
If O ∈ 4nma3 ⊂ 4a4a2a3, then k(a1a2b1a4) = |Ob1|/|Oa1| by (23). Thus,
by (16) we have k(a1a2b1a4) = k(a1a2a3a4). By construction, cM ∈ Ma4,
c′2 ∈ a2M , O ∈ a1b1 (a diagonal of a1a2b1a4), and hence a1a2b1a4 has all the
properties of the normalizing quadrangle of Lemma 2.2.

2. Suppose that fmax = f(t3) and a9 = a6. By construction, the new
normalizing quadrangle a1a2a6a4 is canonically given, we have b1 ∈ a6a4

and c′6 = (â6 − a2)new = a4, and the central chords aibi in this quadrangle
are central for a1a2a3a4. Hence (22) and O ∈ 4a1a2a4 imply k(a1a2a6a4) =
k(a1a2a3a4). Since c′6 = a4, the quadrangle a1a2a6a4 has all the properties
of the normalizing quadrangles of Lemma 2.1.

3. Suppose that fmax = f(t2) and a8 = a5. By construction, a1a2a5a4 is a
trapezium, the segments a1b1 and a2b2 are central chords for a1a2a3a4 as well,
(â2 − a1)new = c′2 ∈ a2a5, and the central chord a5b5 is such that b5 ∈ a4a1. If
O ∈ 4nma3 ⊂ 4a4a2a5, then by (23) we have k(a1a2a5a4) = |Ob1|/|Oa1| =
k(a1a2a3a4). If O ∈ gszmn ⊂ 4a4a1a2, then 4Oa5a2 ≈ 4Ob5b2 im-
plies |Ob5|/|Oa5| = |Ob2|/|Oa2|. By (16) and (22) we have k(a1a2a5a4) =
k(a1a2a3a4), and T = a1a2a5a4 is a majorizing trapezium.

4. Let fmax = f(t2) and a8 = a7. Here we use the properties of the
trapezium T from case 3, for which k(a1a2a5a4) = k(a1a2a3a4). The chord
a1b1 remains central for the quadrangle a1a2a7a4. If O ∈ 4a4a2a7, then by
(23) we have k(a1a2a7a4) = k(a1a2a3a4). If O ∈ gszmn, then the chords
a1b1, a2b2, and a4b4 are central for a1a2a7a4 ⊃ a1a2a3a4. By (22), we have
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k(a1a2a7a4) = k. Since a7 = c′2 = (â2 − a1)new, the new canonically given
normalizing quadrangle a1a2a7a4 meets all the requirements of Lemma 2.1,
and Lemma 2.3 is proved.

To study the case O /∈ G in a canonically given quadrangle a1a2a3a4, we
introduce the following definitions (see (25)).

Definition 2.8. A canonically given normalizing quadrangle a1a2a3a4

is called a quadrangle of first special type if

1) the origin satisfies

(29) O ∈ Ω ≡ 4ra1a2 ∩4gva3 6= ∅,
2) the factor of symmetry satisfies

(30) k(a1a2a3a4) = |Ob2|/|Oa2| = |Ob4|/|Oa4|.
Definition 2.9. A canonically given normalizing quadrangle a1a2a3a4

is called a quadrangle of second special type if (29) holds, but

(31) k = k(a1a2a3a4) = |Ob1|/|Oa1| = |Ob2|/|Oa2|.
Lemma 2.4. If a normalizing quadrangle a1a2a3a4 is of first special type,

then it is majorized by some trapezium T .

Proof. By (29), we have O ∈ 4a4a1a2, and (22) yields k ≤ |Ob1|/|Oa1|.
Moreover, â2 − a1 = c2 ∈ a2a3, b1 ∈ a3a4, a2r ‖ a3a4, and b2 ∈ ra1 ⊂
a4a1, â4 − a3 = c4 ∈ ra1. Choose a Cartesian coordinate system of R2 in
such a way that b4a4 ⊂ Ox, b2a2 ⊂ Oy and O(0; 0), a4(1; 0), b4(−k; 0),
a2(0; 1), b2(0;−k). Here we use an auxiliary metric where the centre g of
the canonically given quadrangle a1a2a3a4 does not in general coincide with
the origin O of R2 (see Remark 2.2). Since {a1} = (a1a2) ∩ (a1a4), we have
a1(−k/(1−k);−k/(1−k)). Find a5,6 ∈ R2 such that a5a4 ‖ a2b2, a2a5 ‖ a1a4,
a6 ∈ a5a4, and a2a6 ‖ a4b4. It is easy to see that a5(1; 1 + k), a6(1; 1). The
vertex a3 is from 4a2a5a6, because by (29) we have c4 ∈ a4b2, c3 ∈ a3a4,
and a1a2a3a4 is canonically given.

Consider now a3 as one of the points M(a; b) ∈ 4a2a5a6. We also make
the restriction c2 ∈ a2M . The coordinates of c2(x2; y2) satisfy{

y = x/k,

y − 1 = (b− 1)/a · x,
1

x2
=

1

k
+

1− b
a

,

and we have

ρ(a1; a2) = −x1/x2 = k/(1− k) · (1/k + (1− b)/a)

= 1/(1− k) + k(1− b)/(a(1− k)).

The coordinates of M̂ − a2 = cM (x3; y3) satisfy y = (b − 1)/a · x, y =
b/(a− 1) · (x− 1) and hence 1/x3 = 1 + (a− 1) · (1− b)/(ab) and ρ(a2;M) =
a/x3 = a + (a − 1) · (1 − b)/b. The point c4(x4; y4) is on the lines y =
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b/(a − 1) · x and y + k = kx, and hence −1/y4 = 1/k + (1 − a)/b and
ρ(M ; a4) = −b/y4 = b/k+ 1−a. The value ρ(a4; a1) does not depend on the
location of M ∈ 4a2a5a6. Let us define a function

f(a; b) = ρ(a1; a2) + ρ(a2;M) + ρ(M ; a4), M(a; b) ∈ 4a2a5a6.

Thus, f(a; b) = 2 + 1/(1 − k) + k(1 − b)/(a(1 − k)) − a + (a − 1)/b + b/k,
where b ≥ 1 and 0 < a ≤ 1.

We calculate the derivatives:

f ′a = − k

1− k
· 1− b
a2
− 1 +

1

b
, f ′b = − k

1− k
· 1

a
− a− 1

b2
+

1

k
.

The stationary points of f(a; b) are

(32)


[
b = 1,

b = 1−k
k a2,

k
1−k ·

1
a + a−1

b2
= 1

k ,

[
b = 1,
a
b + a−1

b2
= 1

k ,

[
b = 1,

a = b2+k
k(b+1) .

We calculate the second derivatives:

f ′′aa =
2k

1− k
· 1− b
a3

, f ′′bb = 2 · a− 1

b3
, f ′′ab =

k

1− k
· 1

a2
− 1

b2
.

We consider separately the case b = (1−k)/k ·a2. In this case f ′′ab = (b−1)/b2

and

4(a; b) = f ′′aa · f ′′bb − [f ′′ab]
2 = 4 · k

1− k
· (b− 1)(1− a)

a3 · b3
− (b− 1)2

b4

= 4 · (b− 1)(1− a)

b4 · a
− (b− 1)2

b4
.

Taking into account (32), we obtain

4(a; b) =
b− 1

b4

[
4

a
− (3 + b)

]
=
b− 1

b4

[
4k(b+ 1)

b2 + k
− (3 + b)

]
.

Since b > 1 ≥ k, we have b2 + k > k(b+ 1) and 3 + b > 4k(b+ 1)/(b2 + k).
The inequality 4(a; b) < 0 implies that f(a; b) achieves its maximum only
at the boundary of 4a2a5a6. Observe that if b = 1, then M(a; 1) ∈ a2a6.

We describe in detail the boundary of a polygon Σ that contains the
vertex M ∈ Σ ⊂ 4a2a5a6 of the canonically given quadrangle a1a2Ma4 of
first special type. By (29), we have b1 ∈Ma4 and c2 ∈ a2M . Find a point e0

such that e0 ∈ (a1O), O ∈ a1e0, and |Oe0|/|Oa1| = k. Let e3 be such that
e3 ∈ a2a5, Oe3 ‖ a1a2. Set {e1} = (a4e0) ∩ (a2a6), {e2} = (Oe3) ∩ (a4e0),
{e4} = (a4e0) ∩ (a2a5), and {e5} = (Oe3) ∩ a2a6. We have |Ob1|/|Oa1| ≥ k
and hence M ∈ 4a4e4a5. If e1 /∈ e5a6, then Σ = e5e3a5a6. If e4 ∈ e3a5, then
Σ = e1e4a5a6. If e1 ∈ e5a6 and e4 /∈ e3a5, then Σ = e2e3a5a6e1. Observe
that, by (22), k(a1a2Ma4) = k(a1a2a3a4) = k for the quadrangle of first
special type, namely k(a1a2Ma4) = min{k; |Ob1|/|Oa1|} = k. We estimate
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the self-perimeter L−(a1a2Ma4) when M ∈ ∂Σ for the most general case
when Σ is a pentagon, i.e., ∂Σ = e2e3 ∪ e3a5 ∪ a5a6 ∪ a6e1 ∪ e1e2.

1. Suppose that M ∈ e2e3. Then in the canonically given quadrangle
a1a2Ma4 we have c2 = M . Such quadrangles were described in Lemma 2.1,
and hence the conclusion of Lemma 2.4 holds.

2. Suppose thatM ∈ e3a5. Then a2M ‖ a1a4, and the majorizing trapez-
ium is T = a1a2Ma4.

3. Suppose that M ∈ a5a6. Then a2b2 ‖ Ma4 and r = b2. The case O ∈
a2r ⊂ a2Ma4r was considered in Lemmas 2.1–2.3, and hence the conclusion
of Lemma 2.4 holds.

4. Suppose that M ∈ a2a6. Then a2M ‖ Oa4 and M̂ − a2 = cM = a4.
Thus, O ∈ a4w ⊂ 4a4a1w, and we can apply Lemma 2.1.

5. Suppose that M ∈ e1e2. Then e0 = b1 and |Ob1|/|Oa1| = k. To
study the properties of the quadrangle a1a2Ma4 of first special type, it is
convenient to use another adjoint plane R2, namely such that a1(−1; 0),
a4(0;−1), b1(k; 0), and b4(0; k). Set {a7} = (a4b1) ∩ (Oc2), c2 ∈ a2M , and
a2 ∈ (a1b4). Let a2(x2; y2), a7(x7; y7), and M(a; b). Then (see (30))

|Ob1|/|Oa1| = |Ob2|/|Oa2| = |Ob4|/|Oa4| = k.

Set t = y2/x2. Then a2 belongs to the lines y = tx and y = kx+1. The point
b2(x3; y3) belongs to the lines y = tx and y = −x−1. Solving the systems, we
find x2 = 1/(t−k) and x3 = −1/(t+1). The ratios |Ob2|/|Oa2| = −x3/x2 =
(t−k)/(t+1) = k imply t = 2k/(1−k) and x2 = (1−k)/(k+k2). The point
a7 is on the lines y = kx and y = 1/k · x− 1, and therefore x7 = k/(1− k2).
By (29), we have ̂(M − a2) = cM ∈Ma4, c2 ∈ a2M , and hence x2 ≤ a ≤ x7.
In terms of k the latter means that (1− k)/(k + k2) ≤ a ≤ k/(1− k2). The
solution in a exists if (1 − k)2 ≤ k2, i.e., k ∈ [1/2; 1]. By the hypothesis,
O ∈ Ω ⊂ 4ra1a2, where ra2 ‖ Ma4. The case O ∈ sz (see (25)) was
considered in Lemma 2.3. Suppose that O /∈ sz. Since the slope of a2b2 is
equal to t = 2k/(1 − k) and the slope of a4M is equal to 1/k, we have
1/k > t. In terms of k the latter inequality means that 2k2 + k− 1 < 0, i.e.,
k ∈ (0; 1/2). Thus O ∈ sz, and case 5 is settled.

Hence Lemma 2.4 is proved.

Lemma 2.5. If a normalizing quadrangle a1a2a3a4 is of second special
type, then it is majorized by some trapezium T .

Proof. By (29), we have c2 ∈ a2a3, c3 ∈ a3a4, c4 ∈ rb2 ⊂ a4a1,
and a2r ‖ a3a4. By (31), |Ob1|/|Oa1| = |Ob2|/|Oa2| = k ≤ |Ob4|/|Oa4|, and
hence 4Ob1b2 ≈ 4Oa1a2. Find points a5, b5, a6, e1 that satisfy a4 ∈ a1a5,
{b5} = a1a2 ∩ (a5O), |Ob5|/|Oa5| = k; a6 ∈ (b2b1), a2a6 ‖ a1a4; and {e1} =
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a2b1 ∩ Oc2 (the chords aibi are central ones). Set {a7} = (a2a6) ∩ (a5b1),
{e2} = (Oe1)∩(a5b1), and {e3} = (Oe1)∩a2a6. By construction, the trapez-
ium b1e1e3a6 contains the point a3 of the initial quadrangle a1a2a3a4.

Define a polygon Σ depending on the location of a7 with respect to the
segment a2e3:

(33) Σ =


b1e2e3a6 if a7 ∈ a2e3,
b1e1e3a6 if a2 ∈ a7e3,
b1a7a6 if a7 ∈ e3a6.

Take a point M ∈ Σ and find a point e4 such that e4 ∈ (Mb1) and Oe4 ‖
a2M . Set {a8} = (Mb1)∩ a1a5 and {b8} = (a8O)∩ a1a2. We have O ∈ a1b1.
The non-degeneracy of 4a1b1a8 implies c6 = â6 − a2 ∈ b1a4. Consider the
quadrangle a1a2Ma8 of second special type in the capacity of a normalizing
quadrangle of M2. Observe that if M = a3 ∈ Σ, then it coincides with the
initial one, i.e., a1a2a3a4. Canonicity of a1a2Ma8 and the inclusions a8 ∈
a5b2 ⊂ a5a1 and b8 ∈ b5a2 ⊂ a1a2 yield k = |Ob5|/|Oa5| ≤ |Ob8|/|Oa8| ≤
|Oa2|/|Ob2| = 1/k. The latter inequality and the equalities (22) and (31)
imply k(a1a2Ma8) = k(a1a2a3a4) = k.

To estimate the self-perimeter L−(a1a2Ma8), we calculate the lengths
of the sides by using (1)–(3). For the normalizing vectors we have c′2 =

(â2 − a1)new ∈ a2M , c8 = ̂a8 −M ∈ a8a1 ⊂ a5a1, c1 = â1 − a4 = â1 − a8,
and M̂ − a2 = cM ∈ b̂1a8a1, where b̂1a8a1 is again a polygonal arc. If cM
is in b1a8, then cM = e4 and ρ(a2;M) = |a2M |/|Oe4|. If cM ∈ a8a1, then
cM ∈ Oe4 and ρ(a2;M) ≥ |a2M |/|Oe4|. Define a function of M ∈ Σ by

f(M) = ρ(a1; a2) + ρ(M ; a8) + ρ(a8; a1) + |a2M |/|Oe4|,
where the distance function is meant with respect to a1a2Ma8. We have
a3 ∈ Σ, and by (29) we get â3 − a2 = c3 ∈ b1a4. Hence

(34) max
Σ

f(M) ≥ L−(a1a2a3a4).

Evidently,

(35) f(M) ≤ L−(a1a2Ma8), M ∈ Σ.
We want to prove that f(M) attains its maximum at the boundary of the
polygon Σ, i.e., when M ∈ ∂Σ. We choose a Cartesian system of coordi-
nates in the adjoint plane R2 in such a way that O(0; 0), a2(0; 1), a1(−1; 0),
b1(k; 0), b2(0;−k), and we set M(a; b) (see Remark 2.2). Since a1a2a6b2 is a
parallelogram, 4b1a2a6 is in the first quadrant and 0 ≤ a, b ≤ 1. The case
b = 0 means that M = b1 and hence O ∈ a1M . Also this case was consid-
ered in Lemma 2.2. If a = 0, then M = a2 and a1a2Ma8 = a1a2b1a8. For
the canonically given quadrangle a1a2b1a8 we have O ∈ a1b1. This case was
considered in Lemma 2.2. Thus, we suppose that a, b ∈ (0; 1]. Taking into
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account that M ∈ b1e1e3a6, we find the abscissa of {c′2} = (Oe1) ∩ a2M by
solving the system y = x, y−1 = (b−1)/a·x, i.e., (1+(1−b)/a)·x = 1. Hence
ρ(a1; a2) = |a1a2|/|Oc′2| = 1 + (1 − b)/a. The point {e4} = (Oe4) ∩ (Mb1)
is defined by y = x · (b − 1)/a and y = b · (x − k)/(a − k). Thus, for
e4 = (xe; ye) we have 1/xe = 1/k + (a − k)(1 − b)/(kba) and |a2M |/|Oe4|
= a/xe = a/k + (a− k)(1− b)/(kb).

Set {bM} = a8a1 ∩ (MO). The similarity 4Ma8bM ∼ 4Oc8bM implies
ρ(M ; a8) = |Ma8|/|Oc8| = |MbM |/|ObM | = 1 + |OM |/|ObM |.

The point bM (xb; yb) is on the lines y = b · x/a and y + k = −kx. Hence
−1/xb = (k + b/a)/k and ρ(M ; a8) = 1 + a + b/k. The points {c1} =
(Oc1) ∩ a1a2 and {a8} = (Mb1) ∩ (a1b2) can be found as solutions of the
systems y = x + 1, y = −kx and y + k = −kx, y = b(x − k)/(a − k),
respectively. If one writes c1(xc; yc) and a8(x8; y8), then −1/xc = 1 + k and
x8 = k · (b− (a− k))/(b+ k(a− k)). Finally,

ρ(a8; a1) = |a8a1|/|Oc1| = −(1 + x8)/xc = b(1 + k)2/(b+ k(a− k)).

We express the function f(M) by means of the coordinates of M(a; b):
f(a; b) = 2 + (1− b)/a+ (a+ b)/k + (a− k) · (1− b)/(kb)

+ a+ b(1 + k)2/(b+ k(a− k)).

Evidently, f ′a = 1− (1− b) · a−2 + 1/(kb)− (1 + k)2 · b · k · (b+ k(a− k))−2.
Then
(36) f ′′aa = 2 · (1− b) · a−3 + 2(1 + k)2 · b · k2 · (b+ k(a− k))−3.

Find a point c′1 that satisfies c′1 ∈ a1a2 and b1c′1 ‖ a2a6 ‖ b2a1. In a paral-
lelogram b1c

′
1a2a6, the equation of the side (b1c′1) is y = −k(x− k). By the

hypothesis, M(a; b) ∈ Σ ⊂ 4b1a2a6 ⊂ b1c
′
1a2a6, and hence b > −k(a − k).

Combining 0 < a, b ≤ 1 and the equality (36), we get f ′′aa > 0. Thus, the
function f = f(M), where M ∈ Σ, can achieve its maximal value only at
∂Σ. To estimate fmax from above, consider, in accordance with (33), the
following five cases:

1. If M ∈ a6b1, M 6= b1, then a1a2Ma8 = a1a2Mb2 is a trapezium.
2. If M ∈ e3a6, then a8a1 ‖ a2M and a1a2Ma8 is a trapezium.
3. If M ∈ e1e3, then M = c′2 = â2 − a1, and the canonically given quad-

rangle a1a2Ma8 meets the requirements of Lemma 2.1. By the inequalities
(34) and (35) we have L−(a1a2a3a4) ≤ f(M) ≤ L−(a1a2Ma8). Thus, for
the quadrangle a1a2a3a4 there exists a majorizing trapezium T .

4. IfM ∈ b1e1 andM 6= b1, then the quadrangle a1a2Ma8 degenerates to
4a1a2a8. By Corollary 2.5, we have L−(4) ≤ 2D2/(D−1). A suitable choice
of the adjoint plane R2 transforms the isosceles trapezium T = a1a2b1b2
into the trapezium from our Example 2.1, showing the sharpness of (9)
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(for t = k2). Thus L−(4) ≤ 2D2/(D − 1) = L−(T ), and a1a2b1b2 is the
majorizing trapezium.

5. If M ∈ b1e2, M 6= b1, then a8 = a5 and a1a2Ma8 = a1a2Ma5. Here
|Ob1|/|Oa1| = |Ob2|/|Oa2| = |Ob5|/|Oa5| = k, c′2 = â2 − a1 ∈ a2M , and
c8 = ̂a5 −M = c5 ∈ a5a4. Since a4 ∈ b2a5, there is a point r′ ∈ a5r such
that a2r

′ ‖ Ma5 and O ∈ 4a1a2r
′. If M̂ − a2 = cM ∈ Ma5, then the

canonically given quadrangle a1a2Ma5 is of first special type as described
in Lemma 2.4. If cM ∈ a5a1, then the normalizing quadrangle meets the
requirements of Lemma 2.1, and Lemma 2.5 is proved.

Proof of Theorem 1.3. If the normalizing quadrangle P4 = a1a2a3a4 is
a trapezium, then the statement of the theorem is obvious. By Proposi-
tion 2.6, we may restrict our considerations to canonically given quadran-
gles a1a2a3a4 ⊂ M2. According to Definition 2.4, denote by g the center of
a1a2a3a4. Set {u} = a4a1∩(a3g), {w} = a1a2∩(a4g), and {v} = a1a3∩a4w.
We have a2r ‖ a3a4, where r ∈ a4a1. The theorem is already proved in Lem-
mas 2.1–2.3 for three particular locations of the origin O inside a1a2a3a4.
Namely, ifO ∈ 4a1wa4∪4ga3a4∪wa2a3v∪ra2a3a4, then for the normalizing
quadrangle a1a2a3a4 there is a majorizing trapezium T (see Definition 2.6).
Keep the notation for the polygon Ω ≡ 4ra1a2 ∩4gva3 in correspondence
with (29). If Ω = ∅, then the proof is complete. If O ∈ Ω, then the proof is
completed by Lemmas 2.4 and 2.5 for normalizing quadrangles a1a2a3a4 of
first and second special type (see Definitions 2.8 and 2.9).

Introducing some auxiliary metric for M2, i.e., the metric of the adjoint
plane R2, we now prove the theorem in the case of O ∈ Ω for an arbitrary
canonically given normalizing quadrangle a1a2a3a4. Since Ω ⊂ 4a1a2a4,
we consider two cases in accordance to (22): either k(a1a2a3a4) = k =
|Ob2|/|Oa2|, or min{|Ob1|/|Oa1|; |Ob4|/|Oa4|} = k < |Ob2|/|Oa2|.

1. Suppose that k = |Ob2|/|Oa2| ≤ |Ob1|/|Oa1| and O ∈ Ω. Find a point
e1 that satisfies e1 ∈ Ob1 and b2e1 ‖ a1a2, i.e., 4Oa1a2 ≈ 4Oe1b2. Set
{e2} = Ob1 ∩ a3u and

e3 =

{
e1 if e1 ∈ b1e2,
e2 if e2 ∈ b1e1,

{e4} = a4a1 ∩ (a3e3).

If e3 = e2, then e4 = u. To apply Proposition 2.8, we introduce the following
notation:

â3 − a2 = c3 ∈ a3a4, {d} = (Oc3) ∩ (a1a4), b := a3, h := b3, e := a1,

where h ∈ ed. Find points c and a that satisfy c ∈ (bd), a1c ‖ a2b; a ∈ (a1c),
and ab ‖ ed. Write {f} = ab ∩ (dO), t1 = |a1b3| = |eh| > 0, and t2 = |a1d|.
Let q ∈ e4d ⊂ hd. If one writes t3 = |ee4| and t = |eq|, then t1 ≤ t3 ≤ t ≤ t2.
Set {p} = Od∩a3q. For the new canonically given quadrangle a1a2a3q ⊂M2
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we have p = (â3 − a2)new ∈ a3q and ρnew(a2; a3) = |a2a3|/|Op|. By Proposi-
tion 2.8, the function y(t) = |a2a3|/|Op| is downwards convex for t ∈ [t3; t2].
Set c1 = â1 − q = â1 − a4 ∈ a1a2, c2 = â2 − a1 ∈ a2a3, cq = q̂ − a3 ∈
qa1 ⊂ da1, and c4 = â4 − a1 ∈ a4a1 ⊂ da1. Since 4a3a4q ∼ 4Oc4cq,
we have ρnew(a3; q) = |a3q|/|Ocq| = |a3a4|/|Oc4| = ρold(a3; a4) = const,
t ∈ [t3; t2]. The function ρnew(q; a1) = |qa1|/|Oc1| = t/|Oc1| is linear in t,
and ρnew(a1; a2) = ρold(a1; a2). Thus, the self-perimeter function f(t) ≡
L−(a1a2a3q) is downwards convex in t ∈ [t3; t2]. Among the quadrangles
{a1a2a3q} we consider those for which k(a1a2a3q) ≥ k(a1a2a3a4). Take the
points a5 ∈ (a1a4) and {b5} = (a1a2) ∩ (a5O). If a5 ∈ a4e4, then the canon-
icity of a1a2a3a4 implies |Ob5|/|Oa5| ≥ |Ob4|/|Oa4| ≥ k. If a5 satisfies the
conditions a4 ∈ e4a5 and |a1a5| → ∞, then |Ob5|/|Oa5| → 0. By continuity,
there is a point a5 such that a4 ∈ a1a5 and |Ob5|/|Oa5| = k. Set

a6 =

{
d if d ∈ a4a5,
a5 if a5 ∈ a4d,

and t4 = |a1a6|, where t3 ≤ t4 ≤ t2. The convexity of f(t), t ∈ [t3; t4], implies

(37) max
[t3;t4]

f(t) = max{f(t3); f(t4)}.

Consider the following four possible maxima of f(t) in (37).

(a) Let fmax = f(t3) and e3 = e1. Then in a1a2a3e4 the central chord
a1e1 satisfies |Oe1|/|Oa1| = |Ob2|/|Oa2| = k, c2 ∈ a2a3, and c3 ∈ a3a4, and
the quadrangle is of second special type. Lemma 2.5 completes the proof.

(b) Let fmax = f(t3) and e3 = e2. Then a1a2a3e4 contains a trapezium
(e4 = u, a1a2 ‖ a3u).

(c) Let fmax = f(t4) and a6 = d. Then a1a2a3q = a1a2a3d, d = â3 − a2,
{w1} = a1a2 ∩ (dO), dw1 ‖ a4w, and O ∈ 4a1w1d. This case was considered
in Lemma 2.1.

(d) Let fmax = f(t4) and a6 = a5. Then a1a2a3q = a1a2a3a5 and
|Ob5|/|Oa5| = |Ob2|/|Oa2| = k, c2 ∈ a2a3, c3 ∈ a3a5, and r ∈ b2a4 ⊂ b2a5.
This means that a1a2a3a5 is a quadrangle of first special type. The result of
Lemma 2.4 completes the proof.

2. Suppose that |Ob2|/|Oa2| > k = k(a1a2a3a4). Take auxiliary points as
follows: e1 ∈ Ob1, |Oe1|/|Oa1| = k; e2 ∈ a4a1, e1e2 ‖ a1a2; e7 ∈ (a4a3), Oe7 ‖
a1a2; a8 ∈ a1a2, a8O ‖ a3a4; {r′} = a4a1 ∩ (a8O); {a5} = (a1a2) ∩ (e2O);
a6 ∈ (a1a2), a6F ‖ Oa4. Further, we use the point {F} = (a1b1) ∩ (a2a3).
Since O ∈ Ω, we have b1 ∈ a1F , a3 ∈ a2F , and b2 ∈ e2r

′ ⊂ a1r. Set
{a7} = (a1a2) ∩ (Fe7), a9 ∈ a1a2 and Fa9 ‖ a4a1; {ei} = (a4a3) ∩ (Fai),
where i = 5, 6, 7, 9. Write t1 = |a1a9| and t2 = min{|a1ai| : 5 ≤ i ≤ 7}.
Denote by a10 the point such that a10 ∈ (a1a2) and |a1a10| = t2. Canonicity
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of a1a2a3a4 yields

(38) a1a9 ⊂ a1a2 ⊂ a1a10 ⊂
⋂

5≤i≤7

a1ai.

Consider an arbitrary point M ∈ a9a10 and introduce a parameter t =
|a1M |, where t ∈ [t1; t2]. Set {N} = MF ∩ (a4a3). If |a1a2| = t0, then for
t = t0 ∈ [t1; t2] we have MN = a2a3. The canonically given quadrangle
a1MNa4 plays the role of a new normalizing figure of M2.

Let us show that the self-perimeter function

(39) f(t) ≡ L−(a1MNa4), t1 ≤ t ≤ t2,
is downwards convex in t. Evidently, (â1 − a4)new = c1 ∈ a1a9 ⊂ a1a2 and

(40) ρnew(a4; a1) = ρold(a4; a1).

By (38), we have cM = (M̂ − a1)new ∈ MN and c2 = â2 − a1 ∈ a2a3. The
factors of homothety for the triangles 4a1MF ≈ 4OcMF and 4a1a2F ≈
4Oc2F are the same, so (1) implies

ρnew(a1;M) = |a1M |/|OcM | = |a1F |/|OF |(41)
= |a1a2|/|Oc2| = ρold(a1; a2), M ∈ a9a10.

Set cN = (N̂ −M)new ∈ Na4 and c3 = â3 − a2 ∈ a3a4. Find a point τ
that satisfies τ ∈ (Oc3) and cNτ ‖ a1a2. The similarity 4FNa3 ∼ 4OcNc3

implies

ρnew(M ;N) = |MF |/|OcN | − |NF |/|OcN | = |MF |/|OcN | − |a3F |/|Oc3|.
Set γ1 = |a3F |/|Oc3|. Then
(42) ρnew(M ;N) = |MF |/|OcN | − γ1.

The similarity 4FMa2 ∼ 4OcNτ implies |MF |/|OcN | = |Fa2|/|Oτ |. This
ratio does not depend on the choice of the metric of R2, and hence we may
assume ∠a1a2a3 = π/2. Let ∠c3OcN = φ and ∠cNc3O = α. In 4OcNc3 we
find |Oc3| = |Oτ | · (1 + cotα · tanφ). From this and the equality ∠a2FM =
∠c3OcN = φ we conclude

|Fa2|/|Oτ | = (|Fa2|+ cotα · |Ma2|)/|Oc3|
= |Fa2|/|Oc3|+ cotα · (|a1a2| − t)/|Oc3| = γ2 − γ3 · t,

where γ2 = |Fa2|/|Oc3|+ cotα · |a1a2|/|Oc3| and γ3 = cotα/|Oc3| are con-
stants. By (42), the function

(43) ρnew(M ;N) = (γ2 − γ1)− γ3 · t, t ∈ [t1; t2],

is linear in t. By construction, b1 ∈ a4N and c4 = â4 − a3 = â4 −N . Then

ρnew(N ; a4) = |Na4|/|Oc4| = |a4b1|/|Oc4|+ |b1N |/|Oc4|(44)
≡ γ4 + |b1N |/|Oc4|.
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Find the points P and P1 that satisfy P ∈ FN , b1P ‖ a1a2; P1 ∈ b1F ,
PP1 ‖ Nb1. The homothety 4Fa1M ≈ 4Fb1P implies that |b1P | =
|a1M | · |b1F |/|a1F | = γ5t, where γ5 = |b1F |/|a1F | is a constant. We write
∠b1c3O = ω and ∠Pb1P1 = β. In 4b1PP1 we have ∠b1PP1 = π/2−ω
and ∠PP1b1 = π/2 + ω − β. The sine theorem implies |b1P |/cos(ω − β)
= |b1P1|/cosω = |PP1|/sinβ. From this and the homothety 4FP1P ≈
4Fb1N we obtain

|b1N | = |PP1| ·
|b1F |
|P1F |

=
|b1P | · sinβ
cos(ω − β)

· |b1F |
|b1F | − |b1P1|

=
|b1F | · sinβ

cosω
· |b1P | · cosω/cos(ω − β)

|b1F | − cosω · |b1P |/cos(ω − β)
.

From (44) we get

ρnew(N ; a4) = γ4 −
|b1F | · sinβ
|Oc4| · cosω

+
|b1F |2 · sinβ · cos(ω − β)/cos2 ω

|b1F | · cos(ω − β)/cosω − |b1P |
· 1

|Oc4|
.

Introducing positive constants

γ6 = |b1F | · sinβ/(cosω · |Oc4|),

γ7 = |b1F |2 · sinβ · cos(ω − β)/(cos2 ω · |Oc4|),

γ8 = |b1F | · cos(ω − β)/cosω,

we have

(45) ρnew(N ; a4) = γ4 − γ6 + γ7/(γ8 − γ5 · t).
Since |b1F | > |b1P1|, we have γ8−γ5 ·t > 0 for t ∈ [t1; t2]. The right-hand side
of (45) is a downwards convex function of t. By (40), (41), (43), and (45),
the function (39), that is, f(t) = L−(a1MNa4) (t1 ≤ t ≤ t2), is downwards
convex in t. Therefore, max f(t) = max{f(t1); f(t2)}. Consider the following
four possible maxima of f(t) on [t1; t2]:

(a) Suppose that fmax = f(t1) and a1MNa4 = a1a9e9a4 is a trapezium
(a4a1 ‖ e9a9). Since b1 ∈ a4e9, it follows that (e9O)∩(a4a1) = {b9} is in a4a1.
We have |Ob9|/|Oe9| ∈ [k; 1/k], and from (19) we get k(a1a9e9a4) ≥ k. The
trapezium T = a1a9e9a4 majorizes a1a2a3a4.

(b) Suppose that fmax = f(t2) and a10 = a7. Then a1MNa4 = a1a7e7a4.
In the canonically given quadrangle a1a7e7a4 the points c7 = â7 − a1 = e7,
ê7 − a7 ∈ e7a4, and the origin O meet the requirements of Lemma 2.1.

(c) Suppose that fmax = f(t2) and a10 = a6. Then a1MNa4 = a1a6e6a4.
In the canonically given quadrangle we have ê6 − a6 = a4, {w1} = a1a6 ∩
(a4O), w1a4 ‖ a6e6, and O ∈ 4a4a1w1. This case was considered in Lem-
ma 2.1.

(d) Suppose that fmax = f(t2) and a10 = a5. Then a1MNa4 = a1a5e5a4.
By construction, |Oe2|/|Oa5| = k, â5 − a1 = c5 ∈ a5e5, ê5 − a5 ∈ e5a4.
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Take r1 such that r1 ∈ a4a1, a5r1 ‖ e5a4 ‖ a3a4. Since a2 ∈ a1a5, we have
a1r1 ⊃ a1r and O ∈ 4r1a1a5. Moreover, if g1 is a center of the canonically
given a1a5e5a4, {w1} = a1a5 ∩ (a4g1), and {v1} = a4w1 ∩ a1e5, then the
inclusion a4a3 ⊂ a4e5 implies O ∈ 4g1v1e5. In analogy with (29), consider
Ω1 = (4r1a1a5)∩ (4g1v1e5) with O ∈ Ω1. Therefore, case (d) is reduced to
case 1 of the proof.

Thus, Theorem 1.3 is proved.

Remark 2.6. In what follows, we mark the vertices of the trapezium
T = a1a2a3a4 clockwise in such a way that a4a1 ‖ a2a3 and |a4a1| ≥ |a2a3|
with respect to the metric of the adjoint plane R2. In this case always c1 ∈
a1a2, c3 ∈ a3a4, and c4 ∈ a4a1.

Lemma 2.6. Let a1a2a3a4 be a normalizing parallelogram, {m} = a1a3∩
a2a4, and O ∈ 4a1a2m. Then the corresponding factor of symmetry satisfies

k = k(a1a2a3a4) = |Ob3|/|Oa3| = |Ob4|/|Oa4|,

and for the self-perimeter we get

(46) L−(a1a2a3a4) ≤ 4 + 2(1/k + k) = 2D2/(D − 1).

Proof. The central chords a3b3 and a4b4 form homothetic triangles
4Ob3b4 ≈ 4Oa3a4. Moreover |Ob3|/|Oa1| = |Ob4|/|Oa4|. We look for points
e3,4 that satisfy e3 ∈ a2b2, b3e3 ‖ a2a3 and e4 ∈ a1b1, b4e4 ‖ a1a4, respec-
tively. Since the chords aibi are central ones, we have e3 ∈ Ob2, e4 ∈ Ob1
and 4Ob4e4 ≈ 4Oa4a1, 4Ob3e3 ≈ 4Oa3a2. Therefore |Ob4|/|Oa4| =
|Oe4|/|Oa1| ≤ |Ob1|/|Oa1| and |Ob3|/|Oa3| = |Oe3|/|Oa2| ≤ |Ob2|/|Oa2|,
and hence k = |Ob3,4|/|Oa3,4|.

Denote by L−V (a1a2a3a4) the self-perimeter of the parallelogram a1a2a3a4

in case the origin O ∈M2 is at some point V . Find points e1, e2 that satisfy
e1 ∈ a1a3, e2 ∈ a2a4, e1e2 ‖ a1a2, and O ∈ e1e2. As mentioned in the proof
of Proposition 2.4, the function f(V ) = L−V (a1a2a3a4), where V ∈ e1e2,
is strictly downwards convex. By symmetry, maxL−V (a1a2a3a4) = f(e1) =
f(e2) = L−e (a1a2a3a4), where e = e2. In case O = e we have ρ(a4; a1)
= ρ(a1; a2) and ρ(a2; a3) = ρ(a3; a4). Using the homotheties 4a2Oc2 ≈
4a2a4a3 and 4a4Oc4 ≈ 4a4a2a1, where c2 = â2 − a1 ∈ a2a3, we calculate

ρ(a1; a2) = |a4a3|/|Oc2| = |a4a2|/|Oa2| = 1 + |Oa4|/|Oa2| = 1 + 1/k,

ρ(a3; a4) = |a2a1|/|Oc4| = |a4a2|/|Oa4| = 1 + |Oa2|/|Oa4| = 1 + k.

The latter equalities and (14) imply (46).

Lemma 2.7. Let the vertices of the normalizing trapezium a1a2a3a4 be
marked as in Remark 2.6, O ∈ 4a1a2a4, and â2 − a1 = c2 ∈ a3a4. If
M ∈ a2a3, then the self-perimeters of the trapeziums a1a2a3a4 and a1a2Ma4
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satisfy

(47) L−(a1a2a3a4) ≤ L−(a1a2Ma4).

Proof. By the hypothesis, â2 − a1 = c2 ∈ a3a4 and â3 − a1 = e1 ∈ c2c3

⊂ a3a4. Proposition 2.5 implies that ρold(a1; a2) +ρold(a2; a3) = ρold(a1; a3).
Set ̂a4 −M = c′4 ∈ a4a1. Then 4Oc′4c4 ∼ 4a4Ma3. If the trapezium
a1a2Ma4 is taken as a new normalizing figure of M2, then ρnew(a4; a1) =
ρold(a4; a1) and

(48) ρnew(M ; a4) = |Ma4|/|Oc′4| = |a3a4|/|Oc4| = ρold(a3; a4).

The endpoint b1 of the central chord a1b1 in the trapezium a1a2a3a4 belongs
to a3a4, i.e., b1 ∈ a3a4. We look for a point e2 on the chord Mb1 and, at the
same time, on the side of 4Ma3b1 such that e1e2 ‖ a3M ‖ a2a3.

The homotheties 4b1e1e2 ≈ 4b1a3M , 4b1Oe2 ≈ 4b1a1M , and 4Oe1e2

≈ 4a1a3M imply |a1a3|/|Oe1| = |a1b1|/|Ob1| = |a1M |/|Oe2|. For a new
normalizing trapezium a1a2Ma4, we have (â2 − a1)new = c′2 ∈ Ma4,
(M̂ − a2)new = cM ∈Ma4, and (M̂ − a1)new = e3∈Ma4, {e3} = Oe2∩Ma4.
By Proposition 2.5,

ρnew(a1; a2) + ρnew(a2;M) = ρnew(a1;M)

= |a1M |/|Oe3| ≥ |a1M |/|Oe2| = |a1a3|/|Oe1| = ρold(a1; a3).

From this and (48) we get (47).

Definition 2.10. A normalizing trapezium T = a1a2a3a4 is called dis-
tinctive if its vertices are marked in accordance with Remark 2.6, â2 − a1 =
c2 ∈ a3a4, and the central chords a1b1 and a2b2 are such that |Ob1|/|Oa1| =
|Ob2|/|Oa2|.

Lemma 2.8. The self-perimeter of a distinctive trapezium T = a1a2a3a4

satisfies

(49) L−(T ) ≤ 4 + 2(1/k + k),

where k = k(T ) is the factor of symmetry of T .

Proof. The cases of degeneration of T into a triangle or a parallelogram
were considered in Corollary 2.5 and Lemma 2.6. In what follows, we assume
that |a4a1| > |a2a3| > 0. By Definition 2.10, the central chords aibi satisfy

|Ob1|/|Oa1| = |Ob2|/|Oa2| = |Ob3|/|Oa3|, b1 ∈ a3a4, b2,3 ∈ a4a1, b4 ∈ a1a2.

We also have â3 − a1 = e1 ∈ c2b1 ⊂ c2c3 ⊂ a3a4. We first consider the
following particular cases.

1. Suppose that k = |Obi|/|Oai|, 0 ≤ i ≤ 4 (see (16)). Find a point
e2 that satisfies e2 ∈ a4a1 and a3e2 ‖ a2a1. We intend to calculate the
self-perimeter L−(a1a2a3a4).
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The homothety 4b4Oc1 ≈ 4b4a4a1 implies

(50) |a1a4| = |Oc1|·|b4a4|/|Ob4| = |Oc1|·(1+|Oa4|/|Ob4|) = |Oc1|·(1+1/k).

Therefore, ρ(a4; a1) = 1 + 1/k. Since 4a3c3O ≈ 4a3a4b3, we have

ρ(a3; a4) = |a3a4|/|Oc4| = |a3b3|/|Ob3| = 1 + |Oa3|/|Ob3| = 1 + 1/k.

By Proposition 2.5, ρ(a1; a3) = ρ(a1; a2)+ρ(a2; a3). The homothety 4b1Oe1

≈ 4b1a1a3 implies ρ(a1; a3) = |a1a3|/|Oe1| = |a1b1|/|Ob1| = 1+ |Oa1|/|Ob1|
= 1 + 1/k. Finally,

(51) L−(a1a2a3a4) = 3(1 + 1/k).

Let us prove (49) for case 1. Since c2 is in a3a4, we have |Oc1| ≥
|a2a3| = |a1e2| = |a1a4| − |e2a4|. Since 4a1c1O ≈ 4a1b4b1, we get |b4b1| =
|Oc1| · |a1b1|/|Oa1| = |Oc1|(1 + k). The figure a1b4b1b2 is a parallelogram,
|a1b2|= |b4b1|, and hence |b2a4|= |a1a4| − |a1b2|= |Oc1| · (1/k − k). Using
subsequently the homotheties 4a4b1b2 ≈ 4a4a3e2, 4a1a3e2 ≈ 4b3b1b2,
and 4Oa1a3 ≈ 4Ob1b3, we obtain |e2a4| = |b2a4| · |a3e2|/|b1b2| =
|b2a4| · |a1a3|/|b1b3| = |b2a4| · |Oa3|/|Ob3| = |b2a4|/k. Then we have |e2a4|
= |Oc1| · (1 − k2)/k2, and using (50) we obtain |Oc1| ≥ |a1e2| =
|Oc1| · (1 + 1/k) − |Oc1| · (1 − k2)/k2 ≥ 0. From this we obtain 1 ≥
(2k2 +k−1)/k2 ≥ 0 or 1/2 ≤ k ≤ (

√
5−1)/2. If k ≥ 1/2, then 1/k ≤ 2k+1,

and together with (51) this gives (49).

2. Suppose that k = |Ob4|/|Oa4| ≤ |Ob1|/|Oa1|. Write {e3} = a1b1∩a2a4,
and find a point e4 that satisfies e4 ∈ Ob1 and e4b4 ‖ a1a4.

2.1. If e3 ∈ e4b1, then

|Ob4|/|Oa4| = |Oe4|/|Oa1| ≤ |Oe3|/|Oa1| ≤ |Ob1|/|Oa1| = |Ob2|/|Oa2|.
In view of (16), the latter means that k(4a1a2a4) = k = k(T ). By Lem-
ma 2.7 and Corollary 2.5, inequality (47) implies (49).

2.2. If e4 ∈ e3b1, then take the point {a5} = a2a3∩(a4e4). By Lemma 2.7,
for the trapezium a1a2a5a4 we have L−(a1a2a3a4) ≤ L−(a1a2a5a4). Since
4Oe4b4 ≈ 4Oa1a4, we have k = |Oe4|/|Oa1| = |Ob4|/|Oa4| ≤ |Ob2|/|Oa2|
= |Ob3|/|Oa3| and k(a1a2a5a4) = k. Set {a6} = (a1a2)∩(a4a5). Find a point
e5 that satisfies e5 ∈ a1a4 and e4e5 ‖ a1a2. Write {a7} = (e5O)∩(a1a2). With
respect to the new normalizing trapezium a1a2a5a4 we have (â2 − a1)new =
c′2 ∈ a5a4, â5 − a2 = c5 ∈ a5a4, â1 − a4 = c1 ∈ a1a2, and (â4 − a5)new =
c′4 ∈ a4a1. If a6 ∈ a2a7, then the homothety 4Oe4e5 ≈ 4Oa1a7 implies
k(4a1a6a4) = k. By construction, a1a2a5a4 ⊂ 4a1a6a4, â6 − a1 = c′2, and
â4 − a6 = c′4. Therefore, (4) implies L−(a1a2a5a4) ≤ L−(4a1a6a4). The
latter inequality and Corollary 2.5 imply (49). If a7 ∈ a2a6, then find a point
a8 that satisfies a8 ∈ (a4a5) and a7a8 ‖ a1a4. Since 4Oa1a7 ≈ 4Oe4e5,
evidently k(a1a7a8a4) = k. In view of (4) and the relations (â7 − a1)new
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= c′2 ∈ a5a4, (â8 − a7)new = c5 ∈ a5a4, a1a7a8a4 ⊃ a1a2a5a4, the self-peri-
meter of the trapezium a1a7a8a4 satisfies L−(a1a7a8a4) ≥ L−(a1a2a5a4) ≥
L−(a1a2a3a4). Since |Obi|/|Oai| = k, i = 1, 4, 7, 8, by construction case 2.2
is reduced to case 1.

3. Suppose that k = |Ob1|/|Oa1| ≤ |Ob4|/|Oa4|. Set {e6} = Ob4 ∩
a1a3, and find a point e7 that satisfies e7 ∈ Ob4 and b1e7 ‖ a4a1, where
4Oa4a1 ≈ 4Oe7b1. Observe that c2,3 ∈ a3a4. The normalizing vector for
the point M ∈ a2a3 is M̂ − a1 = cM ∈ a3a4, and by Proposition 2.5 we have
ρ(a1; a3) = ρ(a1;M)+ρ(M ; a3). With respect to the new normalizing trapez-
ium a1Ma3a4 ⊂M2 we have (â1 − a4)new = c′1 which is Oc1∩a1M , |Oc′1| ≤
|Oc1|, and ρnew(a4; a1) ≥ ρold(a4; a1). Evidently, ρnew(a3; a4) = ρold(a3; a4).
Thus

(52) L−(a1a2a3a4) ≤ L−(a1Ma3a4), M ∈ a2a3.

3.1. If e6 ∈ b4e7, then the central chords a1b1, a3b3, a4e6 of 4a1a3a4 sat-
isfy k = |Ob1|/|Oa1| = |Ob3|/|Oa3| = |Oe7|/|Oa4| ≤ |Oe6|/|Oa4|. By (16),
we have k(4a1a3a4) = k, and by (52) withM = a3 we have L−(a1a2a3a4) ≤
L−(4a1a3a4). With Corollary 2.5, we get (49).

3.2. If e7 ∈ b4e6, then let {a5} = a2a3 ∩ (a1e7) and {b5} = (a5O)∩ a4a1.
The self-perimeter of the new normalizing trapezium a1a5a3a4 ⊂M2 satisfies
(52) with M = a5. The central chords a1b1, a5b5, a3b3, and a4e7 satisfy
k = |Ob1|/|Oa1| = |Ob5|/|Oa5| = |Ob3|/|Oa3| = |Oe7|/|Oa4|. Thus, case 3.2
is reduced to case 1, and Lemma 2.8 is proved.

Proof of Theorem 1.2. Let k(P4) and k(T ) be the factors of symmetry
for a given normalizing quadrangle P4 and its majorizing trapezium T , re-
spectively. The latter exists by Theorem 1.3. In view of (14), condition (10)
is equivalent to k(P4) ≤ k(T ). If (49) holds for an arbitrary trapezium, then
the estimate (9) for the first self-perimeter holds due to the inequalities

L−(P4) ≤ L−(T ) ≤ 4 + 2(1/k(T ) + k(T ))(53)

≤ 4 + 2(1/k(P4) + k(P4)) = 2D2/(D − 1).

The inequality (9) for the second self-perimeter L+(P4) follows by duality.
Denote the vertices of the trapezium T in accordance with Remark 2.6,

i.e., T = a1a2a3a4, a4a1 ‖ a2a3 and |a4a1| ≥ |a2a3| in the adjoint plane R2.
Find a point u ∈ a4a1 such that ua3 ‖ a1a2. Write {m} = a1a3 ∩ a2a4 and
{n} = ua3 ∩ a2a4. The chord ua3 and the diagonals a1a3 and a2a4 split T
into six parts: a1a2a3a4 = 4a2a3m ∪4a1a2m ∪ a1mnu ∪4una4 ∪4nma3

∪4a4na3.
Our reasonings depend on the possible location of the origin O ∈ M2

with respect to the above mentioned parts of T .
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1. Suppose that O ∈ 4a2a3m ⊂ 4a2a3a4. Similarly to (23) (Proposi-
tion 2.7), we have k = |Obi|/|Oai|, i = 1, 4, where aibi are central chords
in T . Take a point a5 in such a way that a1a5a3a4 is a parallelogram. Se-
lect M ∈ b4a5. Introduce a parameter t = |b1M | and set t1 = |b1b4| and
t2 = |b1a5|. Observe that t1 ≤ t ≤ t2. Consider the new normalizing trapez-
ium a1Ma3a4 ⊂M2, and define the self-perimeter function

f(t) = L−(a1Ma3a4), t ∈ [t1; t2].

Write (â1 − a4)new = c′1 ∈ a1M, (M̂ − a1)new = cM ∈ b4b1 ⊂ a2a3, and
̂a3 −M = â3 − a2 = c3 ∈ a3a4. Evidently, ρnew(a3; a4) = ρold(a3; a4). The
similarity 4a1Ma2 ∼ 4OcMc2 implies ρnew(a1;M) = |a1M |/|OcM | =
|a1a2|/|Oc2| = ρold(a1; a2). The function ρnew(M ; a3) = |Ma3|/|Oc3| =
(t + |b1a3|)/|Oc3| is linear in t. The homothety 4a1Mb1 ≈ 4a1c

′
1O yields

ρnew(a4; a1) = |a1a4|/|Oc′1| = |a1a4|·|a1b1|/(|Oa1|·t). Thus, the function f(t)
is downwards convex on [t1; t2], and hence max f(t) = max{f(t1); f(t2)}.

(a) If fmax = f(t2), then a1Ma3a4 = a1a5a3a4 is a parallelogram. We
have O ∈ 4a3ma2 ⊂ 4a3m

′a5, where {m′} = a1a3 ∩ a5a4. Since k =
|Ob4|/|Oa4|, by Lemma 2.6 we have k(a1a5a3a4) = k and (46) holds. In
combination with (53) we get (9).

(b) If fmax = f(t1), then a1Ma3a4 = a1b4a3a4. The line through a4

parallel to a1b4 is a supporting one for the trapezium a1b4a3a4. We have
|Ob4|/|Oa4| = k = k(a1a2a3a4) by hypothesis, and k(a1b4a3a4) = k by
Corollary 2.4. By construction, |b4a3| ≤ |a1a4| and b1 ∈ b4a3, and hence
a1b4a3a4 is affinely equivalent to the trapezium from Example 2.1 that shows
the sharpness of inequality (9).

2. Suppose that O ∈ a1a2nu = (4a1a2m)∪(a1mnu). We have b4 ∈ a1a2.
Construct a parallelogram e1a5a3a4 such that e1 ∈ a4a1, b4 ∈ e1a5, and a2 ∈
a5a3. Mark the points â4 − a3 = c4 ∈ a4e1 ⊂ a4a1, (â1 − a4)old = c1 ∈ a1a2,
(â1 − a4)new = c′1 ∈ e1a5, â2 − a1 = c2 ∈ a2a3, (â5 − a1)new = c5 ∈ a5a3,
and â3 − a2 = â3 − a5 = c3 ∈ a3a4. The homotheties 4b4Oc′1 ≈ 4b4a4e1

and 4b4Oc1 ≈ 4b4a4a1 imply ρnew(a4; e1) = |a4e1|/|Oc′1| = |a4b4|/|Ob4| =
|a4a1|/|Oc1| = ρold(a4; a1). The similarities 4Oc5c2 ∼ 4b4a5a2 ∼ 4b4e1a1

yield ρnew(e1; a5) = ρold(a1; a2).
Evidently, ρ(a5; a3) ≥ ρ(a2; a3) and ρnew(a3; a4) = ρold(a3; a4). Hence

we have L−(a1a2a5a4) ≤ L−(e1a5a3a4). Set {m′} = e1a3 ∩ a5a4. By con-
struction, O ∈ 4a4e1a5. If O ∈ 4e1a5m

′, then by Lemma 2.6 we have
k(e1a5a3a4)= |Ob4|/|Oa4| ≥ k(a1a2a3a4). If O ∈ 4a4e1m

′, then k(e1a5a3a4)
= |Ob3|/|Oa3| ≥ k. Combining this with (46) and (53), we get (9).

3. Suppose that O ∈ 4una4, c2,3 ∈ a3a4, b1 ∈ a3a4, b2,3 ∈ a4u, and
b4 ∈ a1a2. Find a point e1 that satisfies e1 ∈ a4a1 and e1b1 ‖ a1a2. Set
{a5} = (a1a2)∩ (a4a3), {b5} = a4a1∩ (a5O), and {a6} = (a1a2)∩ (e1O). The
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homothety 4Ob1e1 ≈ 4Oa1a6 implies |Ob1|/|Oa1| = |Oe1|/|Oa6|. Observe
that â6 − a1 = â5 − a1 = c2 ∈ a3a4.

(a) If |Ob1|/|Oa1| ≤ |Ob2|/|Oa2|, then {b′2} = Ob2 ∩ b1e1, e1 ∈ b2u,
a2 ∈ a1a6. If a5 ∈ a2a6, then 4a1a5a4 is a new normalizing figure of M2.
Evidently, |Ob5|/|Oa5| ≥ |Oe1|/|Oa6|. By (16) we have k(4a1a5a4) = k.
The inclusion a1a2a3a4 ⊂ 4a1a5a4, c2 ∈ a3a4, and inequality (4) imply
L−(a1a2a3a4) ≤ L−(4a1a5a4). Combining this with Corollary 2.5 we get (9).
If a6 ∈ a2a5, then the trapezium T = a1a6a7a4, where a7 ∈ (a4a3) and
a7a6 ‖ a4a1, is a new normalizing figure of M2. Set {b7} = a4a1 ∩ (a7O)
and b6 = e1. Since |Ob6|/|Oa6| = |Ob1|/|Oa1| = |Ob7|/|Oa7|, we obtain
k(a1a6a7a4) = k, and the trapezium T is distinctive. The estimate (49) of
Lemma 2.8 implies (9).

(b) If |Ob2|/|Oa2| ≤ |Ob1|/|Oa1|, then a6 ∈ a1a2. Find points e2, e3

that satisfy e2 ∈ Ob1, e2b2 ‖ a2a1, and e3 ∈ Ob1 ∩ a2a4. If e2 ∈ Oe3, then
4a1a2a4 is a new normalizing figure ofM2. Formula (16) and |Ob2|/|Oa2| =
|Oe2|/|Oa1| ≤ |Oe3|/|Oa1| imply k(4a1a2a4) = k. By Lemma 2.7 with
M = a2 in (47), and Corollary 2.5, we get (9). If e3 ∈ Oe2, then the trapezium
T = a1a2a7a4, where {a7} = a2a3∩(a4e2), is a new normalizing figure ofM2.
Since (â2 − a1)new = c′2 ∈ a7a4, |Oe2|/|Oa1| = |Ob2|/|Oa2|, |a2a7| ≤ |a1a4|,
and a2a7 ‖ a1a4, it follows that T = a1a2a7a4 is a distinctive trapezium and
k(T ) = k. By Lemma 2.7 we have L−(a1a2a3a4) ≤ L−(T ). Together with
(49) we get (9).

4. Suppose that O ∈ 4a4na3, b1,2 ∈ a3a4, b3 ∈ a4a1, b4 ∈ a2a3, and
c2,3 ∈ a3a4. For this kind of trapezium, in analogy with the proof of Proposi-
tion 2.7, case (b), we can prove (23), i.e., k(a1a2a3a4) = |Ob1|/|Oa1|. Take
the trapezium a1b4a3a4 in the capacity of a new normalizing one ofM2. The
chords a4b4, a3b3, and a1b1 are simultaneously central ones for the trapeziums
a1a2a3a4 and a1b4a3a4. From (16) we get k(a1b4a3a4) = k = |Ob1|/|Oa1|.
For normalizing points we have c2,3 ∈ a3a4 and b̂4 − a1 = cb ∈ c2c3. Then,
by Proposition 2.5,

ρnew(a1; b4) + ρnew(b4; a3) = ρnew(a1; a3) = ρold(a1; a3)

= ρold(a1; a2) + ρold(a2; a3).

Evidently, ρnew(a3; a4) = ρold(a3; a4). We have (â1 − a4)old = c1 ∈ a1a2

and (â1 − a4)new = c′1 ∈ a1b4. Therefore |Oc′1| ≤ |Oc1| and ρnew(a4; a1) ≥
ρold(a4; a1). Then L−(a1a2a3a4) ≤ L−(a1b4a3a4), where the origin O ∈
4a1b4a4 is in the normalizing trapezium a1b4a3a4 ⊂ M2. Thus, case 4 is
reduced to cases 2 and 3, where the origin O ∈ 4a1a2a4 is in the normaliz-
ing trapezium a1a2a3a4.

5. Suppose that O ∈ 4nma3, b1,2 ∈ a3a4, b3 ∈ a4a1, b4 ∈ a2a3, and
â2 − a1 = c2 ∈ a2a3. In analogy with case 4, we have k = |Ob1|/|Oa1|. Set
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{e1}=(a1b1)∩(a2a3), and find points e2, e3 that satisfy e2∈a2a3, e2a1 ‖a3O;
e3 ∈ a4b4, e3b1 ‖ a2a3; and {e4} = a2a3 ∩ (a1e3). For the parallelogram
a1a5a3a4, the vertex a5 is in (a2a3). Define

e5 =

{
e2 if e4 ∈ e1e2,
e4 if e2 ∈ e1e4.

Write t1 = |e1e5| and t2 = |e1a5|. Let M ∈ a5e5 and take t = |e1M | ∈ [t1; t2]
as a parameter. In analogy with case 1, the function f(t) = L−(a1Ma3a4),
t ∈ [t1; t2], is downwards convex.

(a) If fmax = f(t2), then a1Ma3a4 = a1a5a3a4 is a parallelogram. The
origin O is in4nma3 ⊂ 4a4m

′a3, where {m′} = a1a3∩a4a5. By Lemma 2.6,
we have k(a1a5a3a4) = |Ob1|/|Oa1| = k. Using (46), we get (9).

(b) If fmax = f(t1), then a1Ma3a4 = a1e5a3a4 is a trapezium. De-
note by a4b

′
4 and e5e6 the central chords in a1e5a3a4 that correspond to

a4 and e5, respectively. By definition of e5, we have a4e3 ⊆ a4b
′
4. Since

4Oe3b1 ≈ 4Oa4a1, it follows that k = |Ob1|/|Oa1| = |Oe3|/|Oa4| ≤
|Ob′4|/|Oa4|. The chord e5e6 is also central in the trapezium a1a2a3a4. Hence
k ≤ |Oe6|/|Oe5| ≤ 1/k. By (16), we have k(a1e5a3a4) = k. If e5 = e4,
then {e3} = a4b4 ∩ a1e4, and the origin O ∈ 4a1e5a4 is located inside the
new normalizing trapezium a1e5a3a4. Such a location of the origin in the
normalizing trapezium has been considered in cases 2 and 3 (this is the
case when O ∈ 4a1a2a4 in the trapezium a1a2a3a4). If e5 = e2, we have
ê5 − a1 = ê2 − a1 = a3. Then O ∈ 4a4b3a3, where the chord a3b3 is central.
The latter means that O is inside the normalizing trapezium of cases 3 and 4
(in these cases O ∈ 4a4ua3 in the trapezium a1a2a3a4).

Summarizing, Theorem 1.2 is proved.
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