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Abstract. Let M? denote a Minkowski plane, i.e., an affine plane whose metric is
a gauge induced by a compact convex figure B which, as a unit circle of M?, is not
necessarily centered at the origin. Hence the self-perimeter of B has two values depending
on the orientation of measuring it. We prove that this self-perimeter of B is bounded from
above by the four-fold self-diameter of B. In addition, we derive a related non-trivial result
on Minkowski planes whose unit circles are quadrangles.

1. Basic notions and main results. Let A% be an affine plane. In what
follows, we identify the points of A% with their position vectors. Denote by
R? := (A2%)] - |) the adjoint Euclidean plane with the Euclidean norm | - |
which we use as an auxiliary metric. Let B be a compact convex figure on
A? containing the origin O as an interior point. By 0B and int(B) we denote
the boundary and the interior of B, respectively. Each pair (B; O) uniquely
defines a convez distance function or gauge gg (x). Namely, if v € A%, x # O,

~ . —
and T € JB is on the ray Oz, then

(1) gB(z) = |z|/|Z] > 0.
The distance function gp(z) defines the distance between x,y € A? by

(2) p(;y) = 9By — ).

DEFINITION 1.1. An affine plane A? with metric pg given by and
is called a Minkowski plane M?. The point O is called the origin of M?. The
figure B is called the normalizing figure or unit circle (or gauge) of M?.

We note that the notion of “Minkowski plane” is frequently used also
for the case of normed planes, where B has to be centered at O (see [1§],
[13], and [12]). However, it is to be noted for historical correctness that
H. Minkowski, giving the axiomatic foundations of the relevant theory, also
considered the general (non-symmetric) case.
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In the following, we write ab, %, and (ab) for the segment, ray, and line
determined by two distinct points a,b € A? (with a as starting point in the
second case), and we denote by Zabe the (oriented) angle with apex b. For
triangles we write Aabe, for quadrangles abed, and a polygonal arc is denoted
by c?b\c, with vertices a, b, c. The symbols ~ and & are used for similarity and
homothety, respectively, and || stands for parallelity.

For a given segment ab in M?2, the distance pp (a;b) is called the length
of this segment.

DEFINITION 1.2. For a given segment ab (a # b) the position vector of
the point b — a € 9B defined by

(3) b—a=(b—a)/pp(a;b)
is called the normalizing vector of the segment.

Let K be a compact, convex figure in M?. Denote by LE(K ) the length of
0K measured counter-clockwise, and by L;(K) the length of 0K measured
clockwise. Clearly, affine transformations of the plane preserve the collinear-
ity of vectors (see [6, pp. 75-76]). Thus, from (1) and (2) it follows that the
length of pp(a;b) and LE(K) are affine invariants of the plane M? (see also
I3 p. 5]).

It is known that if M is a convex figure inside K, then (see [7, p. 110]
and [I8] p. 112]) then

(4) L5(M) < LK),

In what follows, we call L™ (B) = L (B) the first self-perimeter of the unit
circle B, and LT(B) = L§(B) denotes its second self-perimeter. Golab [2]
proved that if B is symmetric with respect to the origin O (i.e., M? is a
normed plane), then L™ (B) = L*(B) =: L(B), with the sharp estimates

(5) 6 < L(B) <8.

If B is not centred at O, then still L7(B) > 6. The equality L~ (B) = 6
or L*t(B) = 6 holds if and only if B is an affinely regular hexagon (see [3],
[16], [17], and [I1]). Simple examples show that there is no absolute constant
that bounds the self-perimeters LT(B) for non-symmetric normalizing fig-
ures from above. Griinbaum [4] proved that it is possible to choose the origin
O inside B in such a way that the self-perimeters satisfy

(6) LT(B) <9.

The estimate @ cannot be improved if B is a triangle A, i.e., in fact
minpeing(a) LT(A) = 9. Further results in this direction were derived in
B, [16], [17], [9], and [0,
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DEFINITION 1.3. The value

(7) D(B) = max p(x;y)

is called the self-diameter of the normalizing figure B of M?.
In the present paper we give upper estimates on the self-perimeters
L¥(B) in terms of the self-diameter D = D(B) of the unit circle B of a

Minkowski plane M?2. Our main results are summarized in the following
theorems.

THEOREM 1.1. If B is a unit circle of self-diameter D = D(B), then
(8) L¥(B) < 4D(B).

We note that Theorem 1.1 is an almost immediate extension of the re-
sult of Gotab [2], and it is sharp for centrally symmetric figures. On the
other hand, our next theorem generalizes all three results: of Gotab [2], of
Griinbaum [4], and our Theorem 1.1.

THEOREM 1.2. If Py is a normalizing quadrangle of diameter D= D(Py),
then

(9) LT(Py) < 2(D(Fy))?/(D(Py) — 1).
This estimate is sharp.

It should be noticed that (9) implies (8), (6), and the right-hand inequal-
ity of (5) for all polygons with at most four vertices.

The proof of Theorem via special constructions, can be reduced to the

case when the quadrangle is a trapezium. These constructions are interesting
in their own right, and we collect the related results in the following theorem.

THEOREM 1.3. For a normalizing quadrangle Py there is a trapezium T
such that
(i) O € int(T);
(ii) the self-diameters of Py and T satisfy

(10) D(T) < D(Py);
(iii) the self-perimeters of Py and T satisfy
(11) L(T) > L™ (P).

2. Proofs and further results. To prove these theorems, we need some
additional properties of self-diameters of normalizing figures. Without loss
of generality, we consider the normalizing figure B as lying in the adjoint
Euclidean plane R?. We intend to prove that the diameter D(B) uniquely
defines the factor of symmetry k = k(B) of the figure B with respect to the
origin O € int(B). The factor of symmetry (cf. Definition 2.2 below) was
introduced by H. Minkowski and B. Neumann (see [14], [15], and [5, §6]).
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DEFINITION 2.1. A chord nm of the unit circle B is called central if it
passes through the origin O € int(B).

Set
g(nm) = min{|Om|[/[On|; |On|/|Om]} <1,
where n,m € 0B and O € nm. Geometrically, g(nm) is the ratio in which
O divides the central chord nm of the figure B.

DEFINITION 2.2. We define the factor of symmetry of the unit circle B
by
(12) k = min g(nm).

nm

The support function hy(u), |u| = 1, of a compact convex figure K C R?
is defined by
hi(u) = max{(z,u) : v € K},
where (-,-) means the scalar product of the Euclidean plane R? (see [I]
and [7]).

B. Griinbaum [, §6] remarks that the factor of symmetry k(B) can,
equivalently to , be defined as follows:

(13) k= Irlﬂi:%{hB(u)/hB(_u)ShB(_u)/hB(u)}'

PROPOSITION 2.1. The diameter D = D(B) and the factor of symmetry
k = k(B) of the unit circle B satisfy
(14) D(B) =1+ 1/k.
Proof. Let nm be a central chord of B that provides the minimum
in (12), and set k = |Om|/|On|. By (7)) we have
D = max p(z;y) 2 pp(n;m) = ([nO] +|Om|)/|Om| =1 +1/k.

)

To prove it is sufficient to show that D < 1+ 1/k. Denote by pq the
chord of B that provides the maximum in (7)), i.e., D = pp(p; q) = |pq|/|On|,
where n = ¢ — p (see (3)). Set {m} = (pO) N &B. Since B is convex, there
exists {{l} = On N gm. The homothety AmOIl ~ Ampq implies
(15) D =lpql|/|On| < |pq|/|Ol| = [pm|/|Om| = pp(p;m) < D.
For the central chord pm it follows from and that
D = (|pO]| +|0m|)/|Om|=1+1/k. =

COROLLARY 2.1. If mm denotes a central chord of the unit circle B,

then max pg(n;m) = D(B).

COROLLARY 2.2. If pq is a chord of the unit circle B such that
pB(p;q) = D(B), then the central chord pm has length pg(p;m) = D(B),
and gm C 0B.
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Indeed, and (15) imply
1+ 1/k = D(B) = pp(p; ) = |pa|/|On| = [pm|/|Om| = |pq|/|O1].
In this case l = n = q/—\p € gm, and the convexity of B implies gm C 0B.

PROPOSITION 2.2. Let nm be a central chord of the unit circle B that
provides the equality pg(n;m) = D(B). If H(m) is a supporting line of B at
m € OB, then the line H(n) that passes through n € OB in such a way that
H(n) || H(m) is also a supporting line for B.

Proof. By we have |Om|/|On| = k, where k = k(B) is the factor
of symmetry. Assume that H(n) || H(m) is not a supporting line for B.
Then there is a point a € 0B such that a # n and aO Ni(n) = b # a. Write
{c} = H(m)N(aO) and {e} = OcNdB. The homothety AOnb ~ AOmc and
the inequality |Ob| < |Oal imply k = |Om|/|On| = |Oc|/|Ob| > |Oe|/|Oal.
Since ae is a central chord, we get a contradiction to . "

COROLLARY 2.3. Suppose that the polygon B with vertices a1, ...,a; (in
this order) is taken as a unit circle and a;b; are central chords of it (1 <i<lI).
Then the factor of symmetry k(B) is equal to

(16) k = min{|0b;|/|Oa;| : 1 <i <},

where the lengths of segments are given with respect to the auxiliary Fuclidean
metric.

Proof. Denote by nm a central chord of length pg(n;m) = D, hence
yielding |Om|/|On| = k. The existence of such a chord is guaranteed by
Corollary 2.1} Consider first the case when m is one of the vertices of B, say
m = ag. Then the lines (ajaz2) and (azas) are supporting ones for B at m. By
Proposition there are two different supporting lines H; 2(n) at n € 0B
such that Hi(n) || (a1a2) and Ha(n) || (agas). Therefore, n is also a vertex
of B and is fulfilled.

Now it is sufficient to consider the case when m and n do not coincide
with a vertex of B. Suppose, for definiteness, that n is an interior point
of ajas. By Proposition the supporting line H(m) is parallel to ajas.
The line H(m) contains one of the sides of B. Write {¢;} = H(m) N (a;0)
and {b;} = 0B N (a;0) (i = 1,2). The homothety AOna; ~ AOmc; implies

k = [Om|/|On| = |Oc¢;|/|Oai| > |Ob;|/|Oai].

Since a;b; are central chords of B, implies |Ob;|/|Oa;| = |O¢;|/|Oa;| = k
and ¢; = b;. Moreover, the segment b1bs is contained in 0B. u

PROPOSITION 2.3. Suppose that O € int(By N By), where By and By are
compact, convex figures on R? with factors of symmetry k(B;) = k; (i = 1,2).
Then the factor of symmetry of the compact convexr figure B = B N Bay
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satisfies
(17) k(B) Z k‘o = min{kl; k‘Q}

Proof. Denote by h;(u) (Ju| = 1) the support functions for B; (i = 1, 2).
Then the support function for B is hp(u) = min{h1(u); he(u)} (Ju| =1). If

{ s (u) = D (), o { hip(u) = ha(u),
hp(—u) = h(-u), hp(—u) = ha(—u),
for some fixed unit vector u, then by we have
ko < hp(u)/hp(—u) < 1/ko.

Suppose, for definiteness, that hp(u) = hi(u) and hp(—u) = ha(—u). Then,
again by (13), we have

ko < hi(u)/hi(—u) < hi(u)/ha(—u) = hp(u)/hp(—u)

< ha(u)/ha(—u) < 1/ko,

and follows. m

COROLLARY 2.4. Suppose that O € M? is an interior point of the segment
nm. Denote by H(n;m) the strip between two parallel lines H(n) || H(m)
through n and m, respectively. If k(B) = k and
(18) kl S |Om\/]0n! § 1//€1

with respect to an auziliary Euclidean metric, then the factor of symmetry
of the conver figure B = BN H(n;m) satisfies

(19) kE(B) > min{k; k1 } .

PROPOSITION 2.4. If the unit circle of M? is the triangle B = Aajasas,
then the factor of symmetry k(B) = k satisfies 0 < k < 1/2, and the oriented
self-perimeters satisfy the following sharp estimates:

(20) 5+4k+1/k <LT(B)<3+2(1/k+k/(1-k)).

Proof. The factor of symmetry k and the self-perimeter of B C M?
are invariant with respect to the choice of an auxiliary Cartesian metric in
the adjoint plane R2. Therefore, we may assume that Aajagas is a right
triangle. Denote by NV the barycenter of Aajasas. Then we have Aajasas =
AaiasN U AasagN U Aagai N. Write

{b1} = azaz N (a10),  {b2} = aza1 N (a20), {bs} = a1az N (a30).

Let us prove that if O € AagNag, then k = |Ob;|/|Oa,|. By Corollary[2.3]
it is sufficient to show that

[0b1]/]0a1| < |Oby 3]/[Oaz ).

We present the proof for the first of them. Write {M} = a1b1 N (agN) and
{c} = a1a3 N (aeM). Since Aajazas is a right triangle, we have AagMay =~
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AcMby and |Mby|/|Mai| = |cM|/|Mas|. Take g € asb; such that cg || a1by
and {e} = cg N agby. The homothety AasOM =~ Aagec implies

|0b1/|0ar| < [Mby|/|May| = |eM|/|Maz| = [eO|/|az0| < [b20|/]a20].
Let {P} = agasN(a1N), Q@ € NP, and OQ || agas. Then Aa1b P ~ ANa10Q,

and therefore
k= 10b1|/|0a1| = [PQ|/|a1 Q| < [PN|/|axN| = 1/2.

Observe that, by duality, it is sufficient to prove for L~ (B) only. Mark
the vertices of Aajasas clockwise. Write {S} = Naz N (0Q) and {T'} =
Nay N (0Q). For every V. € ST, set {W} = agaz N (a1V). Evidently,
[VW|/|Vai| = |Obi|/|Oai| = k. Denote by Ly,(B) the first self-perimeter
of Aajasas in case when the origin O € M? is located at V. The function
f(V) = Ly, (B) is strictly convex downwards for V € ST. This is a special
case of a more general statement from [§]: the self-perimeter L%}(B) is a
strictly convex function of its center V, for any normalizing figure B of the
plane M?2.

Since f(V) is convex and symmetric with respect to @ € ST, we have

I;IEHS%“L‘_/(B) = Lg(B), ‘%%}%L\_/(B) = Ly (B) = Ly (B).

We calculate Lg(B) in the adjoint plane R? with the Cartesian coordinate
system such that the vertices of the relevant triangle get the coordinates

a3(0;0), a1(0;1+ k), az(1 + k;0).
Then the points S, T, and @ get the coordinates S(k; k), T'(1 — k; k), and
Q(1/2; k), respectively. It is easy to see that
ps(ag;ar) = (1+k)/(1 = k), ps(ai;a2) = ps(az;az) = (1 + k)/k.

Therefore, L™ (B) < Lg(B) =3+ 2(1/k+k/(1 — k)). For L,(B) we have
palar;as) = (1 k) /I and po(as; as) = polas:ar) = 2(1+k). Hence L (B)
> Lgo(B) = 5+ 1/k + 4k. Evidently, the estimates in (20 are sharp, i.e.,
they can be achieved. =

COROLLARY 2.5. If the normalizing quadrangle Py degenerates to a tri-
angle, then the estimate (@ 18 still valid.

Evidently, for 0 < £ < 1/2 we have 2k/(1 — k) < 2k + 1. This inequality
together with and implies LT(A) <4+42(1/k+k) =2D?/(D—-1).
The following example shows the sharpness of @ The unit circle in this
example is a quadrangle with given factor of symmetry.
EXAMPLE 2.1. Endow a plane R? with a Cartesian coordinate system,
origin O(0;0), and a trapezium ajazagas with vertices
ar(—k; =1), as(=k;k), as(t;k), as(1;-1), ke (0;1], ¢ € k% 1],

as a normalizing figure B.
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To find the factor of symmetry k(ajasazas), mark the points by (k?; k) €
azag and b3(—k; —k?/t) € ajaz. Since |Oaz|/|Oay| = k, |Ob1|/|Oay| = k,
and |Obs|/|Oag| = k/t (€ [k;1/K]), by we have k(ajazasaq) = k. To
find the self-perimeter L~ (ajagasayq), evaluate the lengths of the sides of
the trapezium using and (3). Evidently, we have (a1 — a4)(—k;0) and
(a2 — a1)(0; k), and hence p(aq;a1) = p(ar;az) = (1+k)/k. Mark the points

c1(t;0), c2(1;0), c3(0; —1),a3/—\a2 = ¢4 € azay, ds — a3 = c5 € asay.
Via the similarities AOcscs ~ Aagcicy ~ Aagcacy, we find the points
ca((k+t)/(k+1);0) and ¢5((1—¢)/(k+1); —1). Then p(az;a3) = p(as;aq) =
1+ k and L™ (ajagasas) = 4 + 2(k + 1/k). In accordance with we have
L~ (ajagazaq) = 2D?/(D — 1).

Denote by d(K7; K2) the Hausdorff distance between compact, convex
sets K1 and Ky in R? (see, for instance, [5, §2]),

d(Kl;Kg) = min{/\ >0: K1 CKo+ AE, Ko C K1 + )\E},

where E is the unit circle of R%. A sequence of figures By, Bo, ... converges
to the figure B if d(B,; B) — 0 as v — oc.

Proof of Theorem [1.1. For a compact, convex figure B with interior
points, we apply a classical theorem on the approximation of B by poly-
gons (see [I. §27]). There is a sequence By, Ba, ... of convex polygons which
contain B and converge to it. By continuity for self-perimeters in M?, we
have

lim L¥(B,) = L¥(B), lim D(B,) = D(B).

V—00 V—00

Thus (8) is enough to prove our statement for a polygon B. Consider the
centrally symmetric figure AB = %B + %(—B) (called the central symmetral
of B), where (—B) = (—1)B. We can assume that B is a polygon with
non-parallel sides. Then any side of AB is parallel either to a side of B or
to a side of —B, and its length is half the length of the corresponding side
of B or —B. Thus, for a normalizing figure C' centered at O we have

(21) LE(AB) = LE(B).

According to Definition 2.2, for the symmetry coefficient k the inclusion
—B C 1B holds. From this and from (14) we obtain

1 1 1 1
AB=-(B-B)C-(1+-|B==-DB

3 )& 2< * k:) 2
i.e., DB contains B+ (—B) (the difference body of B). Therefore, the distance
functions gg and gap satisfy

D D

gp(z) = 59DB/2(:E) < §9AB(1’)
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(note that gap is an even function). Choosing in the figure C = AB,
we obtain

LF(B) = Lj(B) < & LZ,(AB).

Applying (5) to the centrally symmetric figure AB, we come to (8), and
Theorem 1.1 is proved. =

To prove Theorem we need some auxiliary statements.

PROPOSITION 2.5 (see [I3] for details). The equality in the triangle in-
equality pp(a;c) < pp(a;b) + pp(b;c) for a Minkowski plane is only possible

if the segment xy, where x = b—a and y = c— b, lies on the boundary of
the unit circle B.

If the normalizing figure in M? is a polygon P,, then we mark its vertices
clockwise: P, = a ...a,. For completeness, we formulate here the analogues
of Proposition 2 and Definitions 2 and 3 from [9] (see also [10} §3]).

PROPOSITION 2.6. Suppose the normalizing figure Py = aiasasayq is not
a trapezium. Then one can always choose an auxiliary metric and the order
of the vertices in M? in such a way that the coordinates of the vertices become

ar(=(1+y)z/y;1), az(1;1), as(1;0), as(0;—y),
where x and y are some positive numbers.

DEFINITION 2.3. A normalizing quadrangle ajasazay C M? is called
canonically given if it meets the requirements of Proposition 2.6.

REMARK 2.1. In the notation of the canonically given quadrangle the
first vertex is uniquely determined, i.e., if ajasasas is canonically given,
then asasasaq is not.

DEFINITION 2.4. If ajasagay is a canonically given quadrangle, then the
point of intersection of the two lines through a4 and as which are parallel to
azas and asaq, respectively, is called the center of the quadrangle.

REMARK 2.2. In the auxiliary metric used for proving Proposition 2.6,
the center g of the canonically given quadrangle Py = ajasagas coincides
with the origin of the Cartesian coordinate system, i.e., g = (0,0). We note
that we will use also other auxiliary metrics on R?, with g # (0, 0); see, for
example, the proof of Lemma 2.4.

Let {m} = ajazNazay. The diagonals ajas and asay split the quadrangle
aiasazay into four triangles, Aaimayg, Nasmay, Nagmas, N\ agmas.

PROPOSITION 2.7. Let ajasasay be a canonically given normalizing quad-
rangle. Let a;b; be its central chords (0 < i < 4). With respect to our auziliary
metric, the factor of symmetry k = k(ajazasayq) can be evaluated as follows:
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(a) if the origin O is in Aajagay, then

(22) k = min{|Ob;|/|Oa;| : i # 3};
(b) if O € Aasasay, then

(23) k =10b1|/|0ay].

Proof. If O € Aaimay, then by € agaq, ba3 € agar, and by € ajas.
Find points e; € (a10) with agey || ajaz and es € (a30) with byey || agas.
Since ajasagas is canonically given, we have by € Oe; and e; € Obs. The
homothety AOasas = AObyey implies

(24) [0bs]/]0as| = [Oez|/|Oaz| < |Obs]|/[Oas].

If O € Aaamay, then by € agas, by € asar, and b3 4 € ajas. Find e3 in
(Oas) with ages || ajag. Since ajazasay is canonically given and AObybs ~
AOages, we have |Obs|/|Oay| = |Obs|/|Oesz| < |Obs|/|Oag|. From this, to-
gether with and , we obtain .

If O € Aagmas, then by 4 € asas, by € azas, and b3 € ajaz. Find points
e; that satisfy e4 = (a1a2) N (a4b4); el € (a1b1), boeq H ajag; ez € (a4b4),
ases || arag; ea € (a1b1), ases || asaz. The canonicity of ajasagas implies
by € Oey, by € Oeq, ez € Oay, and ey € Oay. The homotheties AOb1by ~
AOesay, NOegbs =~ NOezaz, and AOe1by =~ AQOajas yield

|Ob1]/]0a1| < |0b1]/]0ea| = |Obs|/|Oas| < |Oes|/|Oay]
< |Oeq|/|Oes| = |Obs|/|Oas|

and |Ob1]/|0aq| < |Oe1|/|0ai1| = |Obs|/|Oas|. Combining this with (16]), we
get . L]

If O € Aagmagz, then bio € asas, b3 € agar, and by € asaz. Find
points e; that satisfy e; € (agbe), bier || arag; ea € (agby), baea || ajas;
es € (asgbs), baes || azas; eq € (agby), biey || asa;. The canonicity of ajagasay
implies e; € Oby, e2 € Oay, e3 € Obz, and e4 € Oby. The homotheties
AObie; = AOajas, AObses = AOasag, and AObjes = AOajay yield

|Ob1|/|Oai| = |Oe1|/|Oaz| < |Obs|/|Oaz| = [Oes|/|Oas| < [Obs]/|Oas;
|Ob1]/]0a1| = |Oes|/|Oas| < [Obs|/|Oay].

In combination with , we get . "

Our treatments essentially depend on the possible location of the origin
O inside a canonically given quadrangle ajasasas. Denote by g the centre
of the quadrangle ajasagas and draw the lines (asg) and (asg). Set {u} =
agaq N (azg) and {w} = ajas N (asg).

DEFINITION 2.5. We use the following notation for normalizing vectors
of the sides of a canonically given quadrangle Py = ajasaszay:

_—

Cl1 = aj — G4, C2 = az — ay, C3 = a3z — a2, C4 = a4 — ag.
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Observe that Definition implies ¢; € ajas and ¢4 € aga;.

Set {v} = ajaz Naqw and {n} = asas N agu. Remember that we have
already defined the points {g} = asu N aqw and {m} = ajas N azay. The
chords asu, aqw and the diagonals ajas, asay split the canonically given
quadrangle ajasasay into nine parts: six triangles Aajwv, Aagmas, Augay,
Aayggn, Nagnas, Anmas and three quadrangles ajvgu, wasmv, vmng. In
view of Proposition [2.7]and Definition [2.5] the location of the origin O inside
one of these parts uniquely defines the locations of ¢; on the sides of ajasasay
and implies either or for the factor of symmetry k(ajasasay).

DEFINITION 2.6. We say that a normalizing quadrangle Py is majorized
by a trapezium T if the trapezium meets all the requirements of Theorem|[I.3]
i.e., O € int(T') and the inequalities and are satisfied.

REMARK 2.3. In accordance with , it is possible to replace the in-
equality in Definition [2.6 by the condition k(P;) < k(T") on the respec-
tive factors of symmetry.

REMARK 2.4. Let ly be a line through the origin O € int(B). Let B’
be a figure axially symmetric with respect to lo. Then L¥(B) = L*(B’). In
what follows, we refer to this fact as duality. Due to duality, it is sufficient to
prove Theorem for the first self-perimeter L™ (Py) of the quadrangle Pj.

REMARK 2.5. In what follows, we mark the lengths and self-perimeters
with respect to an old and new normalizing figure B with subscript “old”
or “new”, respectively. Namely, if P is an old normalizing polygon and P’ is
the new one, then we write L™ (P) = L_,(P) in case B = P, and L™ (P') =
L., (P') in case B=P'.

new

The following two corollaries are consequences of our main theorems.

LEMMA 2.1. If O € Aaywag U Aaggas, then the canonically given quad-
rangle aiasasay can be majorized by some trapezium T'.

Proof. Observe that Aajway = Aajvay U Aajwo.

1. If O € Aajvay, then the normalizing vectors ¢; and the endpoints
b; of the central chords a;b; are located as follows: c3 € agai, co is on the
polygonal arc azasas, by € asaa, ba3 € asay, by € ajaz (see Definition
and ) Find points a5 and b5 that satisfy as € (agb1), aqas || ajaz, and
{b5} = ajaz N (a50). Taking the trapezium ajazasas as a new normalizing
figure of M?, we see that (al/—\a4)new = (al/—\a4)01d = ¢y, (ag/—\al)new =
¢y € azby C agas and |Ocdy| < |Ocy|, where agby subtends the arc (12/a3\l)1.
Then

Pold(a4; 1) = prew(as;a1),  pold(@1;az) < pnew(ar; az).

—

—_— —_ .
Let ¢ = ay —as and ¢ = a5 —az = by — ag. Since 63,4,62175 € agay, by
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Proposition 2.5 we have poiq(ag; ag) + pola(as; as) = pola(a2; a4) = pnew(a2; aq)
= Pnew(a2§ a5) + pnew(a5§ (14)-

The homothety AOasas ~ AObsby implies |Obs|/|Oas| = |Obs|/|Oay.
The segments a;b; (i = 1,2,4) are central chords of ajagazas and ajazasay.
By , we have k(ajagasas) = k(aiagasas) = k. Therefore, the trapezium
T = ajasazas Majorizes aiaa3a4.

2. If O € Aajwv, then the points ¢; and b; are located as follows:
C3 € aq4a1, b € a2a3, by € asaq, 5374 € ajag, C2 € asb1 C a2a3. By Pl“OpOSi—
tion 2.5, p(b1;as) = p(b1;as) + p(as;as) and L™ (ajagasas) = L™ (arazbiay).
The segments a;b; (i = 1,2,4) are central chords of ajasagas and ajagbiay.
Therefore, k(ajazbias) = k.

The quadrangle ajasbiay is evidently a canonical one. Denote by g; its
center and set {v1} = agwNayby. By construction, O € Aajvias C ajasbiay,
which corresponds to the first case considered above.

3. If O € Aaygas, then the points ¢;, b; are located as follows: ¢ 3 € agay,
b3 € agaq, by € azay, and by is on the polygonal arc djasaz. Canonicity of
ajasazay implies the existence of as € ajay such that asas || aga;. The
trapezium ajasasas can be taken as a new normalizing figure of M?, and
then a5/—\a1 = Cg, al/—\a4 =c € ajas C ajag, ag/—\a5 = Cg € coc3 C azay.
By Proposition 2.5 we have

pold(ai; az) + poda(az; az) = pola(ar; asz)
= Pnew(al; a3) = pnew(a1§ a5) + pnew(a5§ CL3)
and L™ (ajazasas) = L™ (a1asasay).

To estimate the factor of symmetry k(ajasasas), we use Corollary
We have (aia4) || (asasz). Choosing in (18))

k1 = min{|Obs|/|Oasl;|Oas|/|Obs|}, ki >k,

we infer from (19) that k(ajasasas) > k. Therefore, the trapezium T =
aiasaszas majorizes ajazasas. Lemma [2.1]is proved. m

LEMMA 2.2. If O € wasgagv, then the canonically given normalizing
quadrangle ajasazays can be majorized by some trapezium T .

Proof. Observe that the trapezium wasazv equals wasmv U Aagagm.

1. If O € wasmu, then the normalizing vectors ¢; and the ends b; of the
central chords a;b; are located as follows: co € asasz, c3 € agaq, b1 € asag,
by € agai, b3y € ajaz. Remember that in this case formula is satisfied.
Find a point as such that aqas || aza; and asay || asay. For the polygonal
arc dazasay, we consider {bg} = (a20) N dzasai. Then either bg € asa;
or bg € agas. If bg € asai, then the end b5 of the central chord asbs in
the trapezium ajasasas is in ajas. The homotheties AOagas ~ AObsbs and
AOagby = AObgay imply |Obs|/|Oas| = |Obs|/|Oas| and |Obg|/|Oas| =
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|Oa1|/|Oby|. The segment asbs is a central chord in ajasasas. Then formula
implies k(ajagazas) = k. If bg € azas, then the central chord asbs is such
that bs € asas. Find a point e; on the line (agbg) that satisfies bses || asey ||
ases || aras. The homotheties AOage; =~ AObsas, AOagey = AObyas, and
AOasay = AObsby imply

[Oas|/|0bs| = |Oe1|/|Oaz| < [Obg|/|Oaz| < |Oez|/|Oaz| = [Oas|/|Obsl;
|0b1/|0as| = |Obs|/|Oas|.
By formula , we have k(ajagagas) > k. -
To estimate the self-perimeter of the trapezium ajasagas, set a1 — as =
¢, € ajay. The similarity Aajaqas ~ AOcyc) implies
pod(a4; a1) = |asar|/|Oc1| = |asar|/|Oc)| = puew(as; ar).

. ) o
We have (a3 — a2)new = ¢ € Ocs, (a2 — a1)new = €2 € azas and hence

poid(a2;a3) < prew(a2;a3),  pold(ai; az) = pnew(ai;az).

Set ag — a3 = c4 € asan, (a5/—\ag)new = ¢5 € asay, and {eq} = Ocy N ajas.
Find a point e5 that satisfies e5 € ajas and cqes || agas. The point a; is the
centre of the homothety Aescqes = Aagagas. Set {eg} = (caes5) N (Ocs) and
consider the homothety Aeycqes =~ AOcyeg. Then ¢ € Oeg and

pold(a3; as) = |agas|/|Ocy| = |azas|/|Oeg| < |azas|/|Ocs| = pnew(as; as).

Therefore, L™ (ajazasas) > L~ (ajazasayq), and the trapezium aqagazas ma-
jorizes the given quadrangle ajasasay.

2. If O € Aagazm, then the points ¢; and b; are located as follows:
C2 € agasz, c3 € asay, b174 € ag0a3, by € asay, b3 € ajas. By formula , the
factor of symmetry is k = |Ob;|/|Oaq|. In complete analogy with item 1, we
construct the trapezium ajasasas (agas || aza;) and obtain the inequality
L~ (arazasas) > L~ (ajazasay). Find {b5} = aszas N (a20) such that

|Oas|/|Obs| < |Oby|/|0as| < |Obs|/|0as|.

We have {b5} = (Oas) N (azas3), AOasa; =~ AObsby, and |Obs|/|Oas| = k.
Thus, the quadrangle ajasasay is majorized by the trapezium T = ajasaszas.
Lemma [2.2]is proved. =

To study the case O € Anmas, we need the following statement.

PROPOSITION 2.8. Let Aabc be a triangle in the adjoint plane R2. Let
the points d € be, e € ca, and f € ab be such that de || ba, df || ca, and
O e df. Set {h} = (bO)N (de), q € dhNde, and {p} = bgNdf. Take t = |eq]
as a parameter. Then the function y(t) = 1/|Op| is downwards convex over
the interval (t1;t2), where ta = |ed| and t1 = 0 if de C dh, while t; = |eh| if
dh C de.
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Proof. Set {l} = ac N (bg). The homothety Abpf =~ Abla implies
Ipf| = |fb] - |al|/]ab|. Since Aleq ~ Alab and |eq| = t, we have |ab|/t =
lal|/|el| = |ae|/|el| + 1. Therefore, 1/|el| = (Jab| —t)/(t - |ae|). The similarity
Abpf ~ Aqgle implies 1/|pf| = t/(|el| - [fb]) = (lab] —¢)/(|fb] - |eal). Set
o = [ac] - |f¥], 7 = |Of], B = ab] > |af| = |ed] > t. Then |pf| = a/(8 — ).
Observe that |pf| > |Of]|, and hence t > f — a/v. If O = f, then v = 0,
and the function y(t) = 1/|Op| = 1/|pf| = (B — t)/« is linear with respect
to the parameter ¢. If O # f, then use the equality |Op| = |pf| — v to de-
duce y(t) = 1/|0p| = —1/y+a-y"2/(t — (B — a/7)). This means that for
t > 8 — a/~ the graph of y(t) is strictly downwards convex, namely the arc
of a hyperbola. =

DEFINITION 2.7. Define r, z, s in such a way that r € aqa1, asr || asaq,
{z} = a1az Nagr, and {s} = agr N ngw, where ngw is a polygonal arc (the
existence of r follows from the canonicity of ajasasay).

In what follows, we use the figure G = asagasr N Agvaz. Observe that
Agvas if s € vw,
(25) G = gszaz if s € gv,
Aszag if s € gn.

We will consider the cases when O € G or O ¢ G.
Again, the next three corollaries follow from our main theorems.

LEMMA 2.3. If O € G, then the canonically given normalizing quadrangle
ajasasay 1s majorized by some trapezium T.

Proof. We restrict our considerations to the most general case of ,
when G = gszas. Since r € aqa1, we have Anmas C G and G = Anmaz U
gszmn. Observe that a4/—\a3 = c4 € ayr, dg —ay = co € asas. Set {a7} =
(Oc2) N (agasz) and find points as ¢ that satisfy ase € (asa3), azas || a1a4,
and agag || Oay. Write

if a7 € ,
(26) as = {a7 if a7 € aaas

as if as € agary.

Let M € agas, and take t = |agM| as a parameter. Then ¢t € [t1;t2],
where t1 = |aqag| and to = |agasg|. Set tg = |agas|. If t = ¢y, then M = ag.
Take a canonically given quadrangle ajaoMay as the new normalizing fig-
ure of M2. Consider the self-perimeter L~ (ajagMay) as a function f(t)
of t, ie., f(t) = L (ajaaMay) for t € [t1;ts). We have a3 —ay = c3 €
azay, and write (a5/—\a2)new = ¢5 and (Af/—\ag)new = cp7. Since Aaibray
is non-degenerate and Ocs || ajaq, by construction c; € bjagy C asgay.
Moreover, cy; € aqcs C agqaz. The similarity AasMasz ~ AOcyseg implies
prew(az; M) = |agM|/|Ocy| = |azas|/|Ocs| = poia(az; as).
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The function ppew(M;as) = |Mas|/|Ocs| = t/|Ocy] is linear in ¢, where
= (a4/—\]\4)new = dy —as € asay. Evidently, (al/—\a4)new =] € ajas
and ppew(a4;a1) = pod(as;ar). From (26) it follows that (ag/—\al)new = d,
€ agsM. By Proposition 2.8, if we take b = a2, p = ¢, ¢ = M, and
e = ay4, then we get the downwards convex function y(t) = 1/|0¢| and
Prew(a1; az) = |araz|/|Ocs]. Set

b1 if ag € asb
(27) a9 = 1 : 6 491,
ag if b € a4ae,
and t3 = \a4a9]. Then tl = ]a4a6| S \a4a9\ = t3 < |a4a3‘ S |a4a8| = t2,

Thus, the function f(t) = L™ (a1a2May) is downwards convex for t € [ts;ta].
Therefore,

(28) max f(t) = max {f(t3); f(t2)}-

[t3;t2]

Consider the following four possible maxima of f(¢) on [t3;t2] according to
the conditions (26)—(28).

1. Suppose that t = t3, ag = by, and fiax = f(t3). If O € gszmn, then all
the chords a;b; (i # 3) remain central chords for the new canonical ajasbiay.
If O € Anmas C Aagasas, then k(ajazbiag) = |Ob1|/|Oay| by (23). Thus,
by we have k(ajagbias) = k(ajazasayg). By construction, cpy € May,
¢y € aaM, O € a1by (a diagonal of ajagbiay), and hence ajazbiaq has all the
properties of the normalizing quadrangle of Lemma [2.2]

2. Suppose that fumax = f(t3) and ag = ag. By construction, the new
normalizing quadrangle ajasagay is canonically given, we have by € agaq
and ¢ = (ag/—\@)new = a4, and the central chords a;b; in this quadrangle
are central for ajasasas. Hence and O € Aajazay imply k(ajazasay) =
k(aiazasay). Since 0’6 = a4, the quadrangle ajasagay has all the properties
of the normalizing quadrangles of Lemma [2.1]

3. Suppose that fiax = f(t2) and ag = as. By construction, ajasasay is a
trapezium, the segments a1b; and aoby are central chords for ajasagay as well,
(ag/—\al)new = ¢}, € agas, and the central chord asbs is such that bs € agay. If
O € Anmas C Aagasas, then by we have k(ajagasaq) = |0b1|/|Oa1| =
k(aiazasayq). If O € gszmn C Aagaiaz, then AOazas ~ AObsby im-
plies |Obs|/|Oas| = |Oba|/|Oasz|. By and we have k(ajagasay) =

k(ajazasay), and T = ajagasay is a majorizing trapezium.

4. Let fmax = f(t2) and ag = a7. Here we use the properties of the
trapezium 7' from case 3, for which k(ajasasas) = k(ajazasas). The chord
a1by remains central for the quadrangle ajasaraq. If O € Aagasay, then by
(23) we have k(ajasaray) = k(ajazazays). If O € gszmn, then the chords
a1b1, asby, and agby are central for ajasaras O ajasazay. By , we have
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k(ayazazas) = k. Since a7 = ¢, = (ag/—\al)new, the new canonically given
normalizing quadrangle ajasaras meets all the requirements of Lemma 2.1,
and Lemma 2.3 is proved. =

To study the case O ¢ G in a canonically given quadrangle ajagagay, we
introduce the following definitions (see (25))).

DEFINITION 2.8. A canonically given normalizing quadrangle ajasasaq
is called a quadrangle of first special type if

1) the origin satisfies

(29) 0 € 2 = Arajaz N Agvas # (),
2) the factor of symmetry satisfies
(30) k(a1a2a3a4) = |Ob2|/\0a2] = |Ob4]/|Oa4\

DEFINITION 2.9. A canonically given normalizing quadrangle ajasasaq
is called a quadrangle of second special type if holds, but

(31) k‘ = k(a1a2a3a4) = |Ob1|/|Oa1\ = |Ob2\/|0a2|

LEMMA 2.4. If a normalizing quadrangle aiasasay is of first special type,
then it is majorized by some trapezium T'.

Proof. By , we have O € Aayaias, and yields k& < |Ob;|/|Oay].
Moreover, dg—ay = ¢y € asas, by € agayq, asor || asayq, and by € ra; C
a4aq, a4/—\a3 = ¢4 € ra;. Choose a Cartesian coordinate system of R? in
such a way that bsas C Oz, baaz C Oy and O(0;0), as(1;0), bs(—k;0),
az(0;1), b2(0; —k). Here we use an auxiliary metric where the centre g of
the canonically given quadrangle ajasazas does not in general coincide with
the origin O of R? (see Remark 2.2). Since {a1} = (a1a2) N (a1a4), we have
ar(—k/(1—k); —=k/(1—k)). Find a5 6 € R? such that asay || agbe, asas || aiay,
ag € asaq, and asag || asbs. It is easy to see that as(1;1 4+ k), ae(1;1). The
vertex ag is from Aasasag, because by we have ¢4 € aqbo, c3 € azay,
and ajagasay is canonically given.

Consider now ag as one of the points M (a;b) € Aasasag. We also make
the restriction ¢ € agM. The coordinates of ca(x2;y2) satisfy

{yZl‘/k, 1 1 1-b

y—1=0b-1)/a -z, =2 %4_ a

)

and we have
plar; a2) = —1 /e = k/(1 — k) - (/K + (1~ b)/a)
=1/(1-k)+k(1-0)/(a(l —F)).
The coordinates of M — as = ey(xs;ys) satisty y = (b—1)/a -z, y =
b/(a—1)-(z—1) and hence 1/z3 =1+ (a—1)-(1—0)/(ab) and p(ag; M) =
a/rs = a+ (a — 1) - (1 —b)/b. The point c4(z4;ys) is on the lines y =
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b/(a —1) -z and y + k = kz, and hence —1/ys = 1/k + (1 — a)/b and
p(M;ag) = —b/ys = b/k+ 1 —a. The value p(ay;a;) does not depend on the
location of M € Aagasag. Let us define a function
fla;b) = plar;az) + plag; M) + p(M;as), M(a;b) € Nasasag.
Thus, f(a;0) =2+1/(1—k)+ k(1 —0)/(a(l1 —k)) —a+ (a—1)/b+b/k,
where b>1and 0 < a < 1.
We calculate the derivatives:

k 1-5b 1 k 1 a—1 1
A - r___ " - _ -
Ja 1—k a2 AL 1—k 2 Tk
The stationary points of f(a;b) are
b=1
' b= b=1
_1-k 2 ’ ’
(32) b—Ta, Q+a—1_l [a_ b2+k
k. 1lya-1l_ 1 b T R = k1)
1-k a b2 k>
We calculate the second derivatives:
0 2k '1—b [ .a—l o k i_l
w@w =T g3 T BT T g g2 B2

We consider separately the case b = (1—Fk)/k-a?. In this case f/, = (b—1)/b?
and
ko (b-1)(1-a) (b—1)

Blat) = - fly— P = A 02000 0o
R Gt V(e B
N bta bt

Taking into account , we obtain

L b—14 Cb—1[4k(b+1)
A(ayb) = 5 [a (3—|—b)]— 5 [ 2k (3+0)].
Since b > 1 > k, we have b + k > k(b+ 1) and 3 + b > 4k(b+1)/(b> + k).
The inequality A(a;b) < 0 implies that f(a;b) achieves its maximum only
at the boundary of Aasasag. Observe that if b = 1, then M (a;1) € agag.
We describe in detail the boundary of a polygon X' that contains the
vertex M € X C Aasasag of the canonically given quadrangle ajasMay of
first special type. By , we have by € May and co € as M. Find a point eg
such that eg € (a10), O € ajep, and |Oey|/|Oayi| = k. Let e3 be such that
es € agas, Oesz || ajaz. Set {e1} = (asep) N (agag), {e2} = (Oes) N (agep),
{ea} = (asep) N (azas), and {es} = (Oes) N azag. We have |0Obi|/|Oa1| > k
and hence M € Aageqas. If e; ¢ esaq, then X = eseszasag. If e4 € ezas, then
Y = ereqasap. If e € esag and ey ¢ esas, then X = esezazage;. Observe
that, by , k(ajaaMay) = k(ayagasas) = k for the quadrangle of first
special type, namely k(ajasMay) = min{k;|Ob;|/|Oa1|} = k. We estimate
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the self-perimeter L™ (ajasMay) when M € 90X for the most general case
when X' is a pentagon, i.e., 0X = eqez U esas U asag U age; U ejes.

1. Suppose that M € eges. Then in the canonically given quadrangle
ajaoMay we have co = M. Such quadrangles were described in Lemma, [2.1
and hence the conclusion of Lemma 2.4 holds.

2. Suppose that M € eszas. Then agM || ajaq, and the majorizing trapez-
ium is T'= ajasMay.

3. Suppose that M € asag. Then agbs | May and r = be. The case O €
asr C agMayr was considered in Lemmas 2.1-2.3, and hence the conclusion
of Lemma 2.4 holds.

4. Suppose that M € agag. Then aoM || Oay and AmQ = ¢y = ay4.
Thus, O € aqw C Aagaiw, and we can apply Lemma 2.1.

5. Suppose that M € ejey. Then ey = by and |Oby]/|Oai| = k. To
study the properties of the quadrangle ajaoMay of first special type, it is
convenient to use another adjoint plane R?, namely such that a;(—1;0),
as(0; —1), b1(k;0), and bs(0; k). Set {ar} = (asb1) N (Oc2), c2 € aaM, and
as € (a1bs). Let az(x2;y2), ar(z7;y7), and M(a;b). Then (see (30]))

061]/]0a1| = [Obs|/|Oas| = [Obs]/|Oas| = k.

Set t = ya/xo. Then ag belongs to the lines y = tx and y = kx + 1. The point
ba(x3; y3) belongs to the lines y = tx and y = —z— 1. Solving the systems, we
find zo = 1/(t—k) and x3 = —1/(t+1). The ratios |Obs|/|Oaz| = —x3/x2 =
(t—k)/(t+1) = k imply t = 2k/(1—k) and x5 = (1 —k)/(k+k?). The point
ar is on the lines y = kx and y = 1/k -2 — 1, and therefore z7 = k/(1 — k?).
By , we have (]\4/—\@) =cy € May, co € asM, and hence 9 < a < x7.
In terms of k the latter means that (1 —k)/(k + k%) < a < k/(1 — k?). The
solution in a exists if (1 — k)% < k2, ie., k € [1/2;1]. By the hypothesis,
O € 2 C Arajag, where ray || May. The case O € sz (see (25))) was
considered in Lemma 2.3. Suppose that O ¢ sz. Since the slope of agbs is
equal to t = 2k/(1 — k) and the slope of a4M is equal to 1/k, we have
1/k > t. In terms of k the latter inequality means that 2k* +k —1 <0, i.e.,
k € (0;1/2). Thus O € sz, and case 5 is settled.

Hence Lemma 2.4 is proved. =

LEMMA 2.5. If a normalizing quadrangle aiasasay is of second special
type, then it is majorized by some trapezium T .

Proof. By , we have ¢y € asas, c3 € agaq, c4 € Thy C a4aq,
and aor || agas. By (B1), |Ob1|/|0Oai1| = |Obs|/|Oas| = k < |Obs|/|Oaysl, and
hence AOb1by = AQOajas. Find points as, bs, ag, 1 that satisfy a4 € aias,
{b5} = a1a2 N (a50), |Obs|/|Oas| = k; ag € (b2b1), agag || a1as; and {e;} =
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azby N Oca (the chords a;b; are central ones). Set {ay} = (agas) N (asby),
{ea} = (Oe1)N(asby), and {es} = (Oe1)Nagag. By construction, the trapez-
ium biejeszag contains the point as of the initial quadrangle ajasasay.
Define a polygon Y depending on the location of a7 with respect to the
segment ages:
biesesag if a7 € ases,
(33) Y= bieresag if as € ares,
biazag if a7 € ezag.
Take a point M € X and find a point e4 such that eqs € (Mb;) and Oey ||
asM. Set {ag} = (Mb1) Najas and {bg} = (asO) Najaz. We have O € a1b;.
The non-degeneracy of Aaqbiag implies cg = ag/—\az € biag. Consider the
quadrangle ajas Mag of second special type in the capacity of a normalizing
quadrangle of M?2. Observe that if M = a3 € X, then it coincides with the
initial one, i.e., ajasasas. Canonicity of ajasMag and the inclusions ag €
asby C asaq and bg € bsas C ajas yield k= ]Ob5]/|Oa5\ < \Ob8|/\0a8] <
|Oaz|/|Obs| = 1/k. The latter inequality and the equalities and
imply k(ajaaMag) = k(ajazasas) = k.
To estimate the self-perimeter L~ (ajaaMag), we calculate the lengths
of the sides by using —. For the normalizing vectors we have ¢, =

—_—

(a3 — @1)new € a2M, cg = ag — M € agay C asai, ¢; = aj — a4 = aj — as,

and M — as = c¢j; € biagay, where bjagay is again a polygonal arc. If ¢y

is in biag, then cpr = eq and p(ag; M) = |aaM|/|Oey|. If cpr € agaq, then

ey € Oeyq and p(ag; M) > |agM|/|Oey|. Define a function of M € X' by
f(M) = p(ar; az) + p(M;as) + plas; a1) + |aeM|/|Oes|,

where the distance function is meant with respect to ajasMag. We have
a3z € X, and by we get az — as = c3 € biay. Hence

(34) mEaX f(M) > L~ (a1a2a3a4).
Evidently,
(35) f(M) < L_(achQMag), M e .

We want to prove that f(M) attains its maximum at the boundary of the
polygon X, i.e., when M € 9X. We choose a Cartesian system of coordi-
nates in the adjoint plane R? in such a way that O(0;0), a2(0;1), a1(—1;0),
b1(k;0), b2(0; —k), and we set M (a;b) (see Remark 2.2). Since ajazagbs is a
parallelogram, Abjasgag is in the first quadrant and 0 < a,b < 1. The case
b = 0 means that M = by and hence O € a1 M. Also this case was consid-
ered in Lemma 2.2. If a = 0, then M = a9 and ajasMag = ajasbiag. For
the canonically given quadrangle ajasbiag we have O € a1b;. This case was
considered in Lemma 2.2. Thus, we suppose that a,b € (0;1]. Taking into
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account that M € biejesag, we find the abscissa of {¢} = (Oe1) Naz2M by
solving the system y = 2, y—1 = (b—1)/a-z, i.e., (1+(1—b)/a)-x = 1. Hence
plai;az) = |ajaz]/|Och| = 1+ (1 — b)/a. The point {es} = (Oeq) N (Mby)
is defined by y = z- (b —1)/a and y = b (x — k)/(a — k). Thus, for
es = (Te;ye) we have 1/x, = 1/k + (a — k)(1 — b)/(kba) and |aaM|/|Oe4]
=a/z. =a/k+ (a—k)(1—0)/(kb).

Set {bar} = aga; N (MO). The similarity AMagbys ~ AOcsgbys implies

p(M;as) = [Mas|/|Ocs| = |[Mbp|/|Obp| = 1+ [OM]/|Obpy|.

The point bas(xp;yp) is on the lines y = b-x/a and y + k = —kx. Hence
—1/xp = (k + b/a)/k and p(M;as) = 1+ a + b/k. The points {c1} =
(Oc1) Najagy and {ag} = (Mby) N (a1bz) can be found as solutions of the
systems y = z+ 1,y = —kz and y + k = —kz, y = bz — k)/(a — k),
respectively. If one writes ¢ (z.; y.) and ag(zs;ys), then —1/x. = 1+ k and
zg=k-(b—(a—k))/(b+ k(a—k)). Finally,

plag;ay) = |agar|/|Oci| = —(1 + z8)/x. = b(1 + k)?/(b+ k(a — k).
We express the function f(M) by means of the coordinates of M (a;b):

fla;b) =2+ (1—-b)/a+ (a+b)/k+ (a—k)-(1—0b)/(kb)
+a+b1+k)?2/(b+k(a—k)).

Evidently, f: =1—(1—b)-a 24+ 1/(kb) — (1 +k)?-b-k-(b+k(a—k))"2
Then
(36) N =2-(1=b)-a P +20+k)> b-k*- (b+k(a—Fk)7>.
Find a point ¢} that satisfies ¢| € ajag and bic] || a2ag || b2a1. In a paral-
lelogram by ¢} asag, the equation of the side (bic}) is y = —k(z — k). By the
hypothesis, M(a;b) € X' C Abjasag C bicjazag, and hence b > —k(a — k).
Combining 0 < a,b < 1 and the equality (36]), we get f2, > 0. Thus, the
function f = f(M), where M € X, can achieve its maximal value only at
0X. To estimate fiax from above, consider, in accordance with , the
following five cases:

1. If M € agby, M # by, then ajasMag = ajasMbs is a trapezium.

2. If M € e3ag, then agay || agM and ajasMasg is a trapezium.

3.If M € ejes, then M =, = a/—\al, and the canonically given quad-
rangle ajaoMag meets the requirements of Lemma 2.1. By the inequalities
and we have L~ (ajazasas) < f(M) < L~ (ajaaMag). Thus, for
the quadrangle ajasasay there exists a majorizing trapezium 7.

4.If M € biey and M # by, then the quadrangle ajas M ag degenerates to
Aaiazag. By Corollary 2.5 we have L™(A) < 2D?/(D—1). A suitable choice
of the adjoint plane R? transforms the isosceles trapezium T = ajasbibs
into the trapezium from our Example 2.1, showing the sharpness of @D
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(for t = k?). Thus L=(A) < 2D?/(D — 1) = L~(T), and ajasbibs is the
majorizing trapezium.

5. If M € biea, M # by, then ag = a5 and alagMag/:\alagM%. Here
|Ob1|/|g¢1\]= |Obs|/|Oaz| = |Obs|/|Oas| = k, ¢, = az — a1 € aaM, and
cg = a5 — M = c5 € asay. Since aq € beas, there is a point ' € asr such
that asr’ || Mas and O € Aajagr’. If ]\4/—\0,2 = ¢p € Mas, then the
canonically given quadrangle ajaoMay is of first special type as described
in Lemma 2.4. If ¢ps € asa;, then the normalizing quadrangle meets the
requirements of Lemma 2.1, and Lemma 2.5 is proved. =

Proof of Theorem 1.3. If the normalizing quadrangle Py = ajasasay is
a trapezium, then the statement of the theorem is obvious. By Proposi-
tion 2.6, we may restrict our considerations to canonically given quadran-
gles ajasazay C M?. According to Definition 2.4, denote by g the center of
ajazagay. Set {u} = aga1N(asg), {w} = araaN(asg), and {v} = arazsNagw.
We have agr || agas, where r € agaq. The theorem is already proved in Lem-
mas 2.1-2.3 for three particular locations of the origin O inside ajacazay.
Namely, if O € AajwasUAgazasUwasazvUrasagay, then for the normalizing
quadrangle ajazazay there is a majorizing trapezium 7' (see Definition .
Keep the notation for the polygon 2 = Arajas N Agvas in correspondence
with . If 2 = (), then the proof is complete. If O € {2, then the proof is
completed by Lemmas 2.4 and 2.5 for normalizing quadrangles ajasasay of
first and second special type (see Definitions and .

Introducing some auxiliary metric for M2, i.e., the metric of the adjoint
plane R?, we now prove the theorem in the case of O € {2 for an arbitrary
canonically given normalizing quadrangle ajasasas. Since {2 C Aajasay,
we consider two cases in accordance to : either k(ajazasay) = k =
|Oba|/|Oaz|, or min{|Ob1|/|Oay|; |Obs|/|Oas|} = k < |Oba|/|Oas].

1. Suppose that k = |Obz|/|Oaz| < |0b;1|/|Oa1| and O € £2. Find a point
e1 that satisfies ey € Oby and baey || ajag, ie., AOajas =~ AOeibs. Set
{e2} = Ob; Nagu and

e1 if eq € bies,
e3 = { . {ea} = asar N (azes).
ey if es € bieq,
If e3 = eg, then ey = u. To apply Proposition [2.8] we introduce the following
notation:

a3 —as = c3 € agas, {d} = (Oc3) N (araq), b:=as, h:=bs, e:=an,
where h € ed. Find points ¢ and a that satisfy ¢ € (bd), aic || agb; a € (aic),
and ab || ed. Write {f} = abN (dO), t1 = |a1bs| = |eh| > 0, and t2 = |a1d|.
Let q € eqd C hd. If one writes t3 = |ees| and ¢ = |eg|, then t; < t3 <t < ts.
Set {p} = OdNaszq. For the new canonically given quadrangle ajasazq C M?
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we have p = (ag/—\ag)new € azq and ppew(ag; as) = |agas|/|Op|. By Proposi-
tion the function y(t) = |azas|/|Op| is downwards convex for ¢ € [t3; ta].
Set €l = a1 —q = a1 —a4 € a1a2, 2 = a2 — a1 € a203, ¢g = q— a3 €

qa1 C day, and ¢4 = a4/—\a1 € asga; C day. Since Aagasq ~ AOcycy,
we have pnew(as;q) = lasq|/|Ocqy| = |azas|/|Ocsa] = poa(as;as) = const,

t € [ts;ta]. The function puew(q;a1) = |qai|/|Oci1| = t/|Oci] is linear in ¢,
and ppew(a1;a2) = pod(ai;az). Thus, the self-perimeter function f(t) =
L™ (ajaza3q) is downwards convex in ¢t € [t3;ta]. Among the quadrangles
{ajaza3q} we consider those for which k(ajasasq) > k(ajazasays). Take the
points a5 € (a1a4) and {b5} = (a1a2) N (a50). If a5 € aseq, then the canon-
icity of ajagagay implies |Obs|/|Oas| > |Obs|/|Oay| > k. If a5 satisfies the
conditions a4 € eqas and |ajas| — oo, then |Obs|/|Oas| — 0. By continuity,
there is a point as such that a4 € ajas and |Obs|/|Oas| = k. Set

d ifd € agas,
ag = .
as ifas € ayd,

and t4 = |ayag|, where t3 < t4 < to. The convexity of f(t), t € [ts;t4], implies

(37) max f(t) = max{f(t3); f(t4)}.

[t35t4]

Consider the following four possible maxima of f(t) in (37).

(a) Let fmax = f(t3) and e3 = e;. Then in ajagases the central chord
aye; satisfies |Oeq|/|Oaq| = |Obs|/|Oas| = k, co € asas, and c3 € agay, and
the quadrangle is of second special type. Lemma 2.5 completes the proof.

(b) Let fmax = f(t3) and e3 = ea. Then ajasages contains a trapezium
(e4 = u, ajag || asu).

(c) Let fmax = f(t4) and ag = d. Then ajasa3q = ajazasd, d = aﬂg,
{w1} = a1a2 N (dO), dw || agw, and O € Aajwid. This case was considered
in Lemma 2.1.

(d) Let fmax = f(t4) and ag = as. Then ajazsasq = ajazazas and
]Ob5\/|0a5| = ]Ob2|/|Oa2| =k, co € agas, c3 € azas, and T € boay C boas.
This means that ajasazas is a quadrangle of first special type. The result of
Lemma 2.4 completes the proof.

2. Suppose that |Obs|/|Oaz| > k = k(a1az2azas). Take auxiliary points as
follows: e] € Obl, ‘061’/|Oa1‘ = k; €9 € aqa1, €1€2 H a1az; ey € (a4a3),067 ”
ajag; ag € araz, agO || asaq; {r'} = asa1 N (ag0); {as} = (ar1a2) N (e20);
ag € (a1az2), agF || Oay. Further, we use the point {F'} = (a1b1) N (azas3).
Since O € 2, we have by € a1 F, a3 € asF, and by € eyr’ C ayr. Set
{a7} = (a1a2) N (Fe7), ag € ajaz and Fag || asar; {e;} = (asaz) N (Fa;),
where i = 5,6,7,9. Write t; = |ajag| and ty = min{|a1a;| : 5 < i < T}
Denote by ajg the point such that a1g € (aijaz2) and |ajaq| = t2. Canonicity
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of ajasasay yields
(38) a1ag9 C aras C ajag C m aa;.
5<i<7

Consider an arbitrary point M € agaig and introduce a parameter t =
|ai M|, where t € [t1;t2]. Set {N} = MF N (asas). If |ayas| = to, then for
t =ty € [t1;t2] we have MN = agas. The canonically given quadrangle
a1 M Nay plays the role of a new normalizing figure of M?2.

Let us show that the self-perimeter function

(39) f(t)=L (a1MNayg), t1 <t <t
1s downwards convex in t. Evidently, (al/—\a4)new =1 € aja9g C ajag and
(40) Pnew (@45 a1) = pola(as; ar).
By , we have ¢y = (Af—\al)new € MN and ¢s = a3 — a; € asas. The
factors of homothety for the triangles AaiMF ~ AOcpy F and AajasF ~
AQOco F are the same, so implies
(41) Prew(ar; M) = |ai M|/|Ocy| = |ar F|/|OF]|
= |araz|/|Oc2| = poia(ai;a2), M € agayo.
Set ey = (N/—\]W)new € Nay and c3 = ag/—\ag € asa4. Find a point 7
that satisfies 7 € (Oc3) and cyT || ajag. The similarity AFNas ~ AOcyes
implies
prew(M; N) = [MF|/|Ocn| — [NF|/|Ocn| = [MF|/|Ocn| — |azF'|/|Ocs|.
Set v1 = |a3F|/|Ocs|. Then
(12) puew(M; N) = |MF|/|Ocx]| ~ 1.
The similarity AFMas ~ AOcyT implies |MF|/|Ocn| = |Fasg|/|O7|. This
ratio does not depend on the choice of the metric of R?, and hence we may
assume Zajagas = w/2. Let ZesOceny = ¢ and ZeyesO = a. In AOcyes we
find |Ocs| = |O7| - (1 4 cot « - tan ¢). From this and the equality Zas FM =
Zc3Ocny = ¢ we conclude
|Fag|/|OT| = (|Fag| + cot a - |[Mazl)/|Ocs|
= |Faz|/|Ocs| + cota - (laraz| — t)/|Ocs| = v2 — 3 - 1,
where o = |Fag|/|Ocs| + cot a - |ajaz|/|Ocs| and v3 = cot «/|Ocs| are con-
stants. By , the function

(43) pnew(M;N) = (’72*'71)*73'757 te [tl;t2]a

is linear in t. By construction, b; € a4N and ¢4 = a4 — a3z = a4/—\N. Then
(44) Prew (N5 aq) = [Nay|/|Oca| = [asb1|/|Oca| + [b1N|/|Oc4]
=71+ |[01N|/|Oc4].
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Find the points P and P; that satisfy P € FN, biP || ajae; P1 € b1 F,
PPy || Nby. The homothety AFa;M =~ AFb;P implies that |bjP| =
lay M| - |b1F|/|a1F| = 7st, where v5 = |b1F|/|a1F| is a constant. We write
ZbiesO = w and ZPbyPy = (. In AbyPP; we have /)PP, = 7/2—w
and /ZPPiby = w/2 + w — (3. The sine theorem implies |by P|/cos(w — )
= |b1Pi|/cosw = |PP;|/sinf. From this and the homothety AFP,P ~
AFbi N we obtain

[b1F| by P -sinf 01 |
b N| = |PPy|- — :
NI =PRI B R = costw—8)  ToiF| - b1 Py]
|1 F]-sin B |b1 P| - cosw/cos(w — f3)

cosw |b1 F'| — cosw - |b1 P|/cos(w — B)
From we get

b1 F| - sin b1 F|? - sin B - cos(w — cosZ w 1
pneW(N;a4):74_ ’ 1 | /B | 1 ’ /B ( /B)/

|Ocy|-cosw b1 F|-cos(w — B)/cosw — |1 P|  [Ocy|’
Introducing positive constants

Y6 = |b1F| - sin B/(cosw - |Ocy),
y7 = [b1F|? - sin B - cos(w — 3)/(cos? w - |Ocyl),

78 = |b1F| - cos(w — B)/cosw,

we have

(45) Prew (N5 as) =v4—v6 + 77/ (78 — 75 - ).

Slnce ]blF\ > |by P1|, we have yg—~5-t > 0 for ¢ € [t1;t2]. The right-hand side
of ({ is a downwards convex functlon of t. By ., ., ., and (| .,
the functlon ([B9), that is, f(t) = L~ (a1MNay) (t1 <t < t3), is downwards
convex in t. Therefore, max f(t) = max{ f(t1); f(t2)}. Consider the following
four possible maxima of f(t) on [t1;t2]:

(a) Suppose that fmax = f(t1) and a1 M Nayg = ajagegay is a trapezium
(agaq || egag). Since by € agey, it follows that (egO)N(asa1) = {by} is in asa;.
We have |Obgy|/|Oeg| € [k;1/k], and from we get k(ajagegay) > k. The
trapezium T = ajagegay majorizes ajasasay.

(b) Suppose that fihax = f(t2) and a9 = ay. Then ayM Nay = ajazeray.
In the canonically given quadrangle ajareras the points ¢y = a7/;\a1 = ey,
67/—\CL7 € eray, and the origin O meet the requirements of Lemma 2.1.

(c) Suppose that foax = f(t2) and a19 = ag. Then ayM Nay = ajagegay.
In the canonically given quadrangle we have €6 — ag = as, {w1} = a1ag N
(a40), wiay || ages, and O € Aagajw;. This case was considered in Lem-
ma 211

(d) Suppose that fiax = f(t2) and a19 = as. Then ay M Nay = ajasesay.
By construction, |Oes|/|Oas| = k, a5 —a; = c5 € ases, €5 — a5 € esay.
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Take r; such that r1 € aqa1, asry || esaq || asaq. Since ay € ajas, we have
airy D air and O € Ariajas. Moreover, if g1 is a center of the canonically
given ajasesaq, {w1} = aias N (asg1), and {vi} = aqw; N ajes, then the
inclusion aqa3 C aqes implies O € Agivies. In analogy with , consider
21 = (Ariaras) N (Agrvies) with O € £21. Therefore, case (d) is reduced to
case 1 of the proof.

Thus, Theorem 1.3 is proved. =

REMARK 2.6. In what follows, we mark the vertices of the trapezium
T = ajagasay clockwise in such a way that asa; || agas and |aga1| > |agas]
with respect to the metric of the adjoint plane R2. In this case always ¢; €
a1a9, c3 € asayq, and c4 € aqaq.

LEMMA 2.6. Let ajagasaq be a normalizing parallelogram, {m} = ajagnN
asay, and O € Narasm. Then the corresponding factor of symmetry satisfies

k= k(a1a2a3a4) = \Ob3|/]0a3| = |Ob4|/|Oa4],
and for the self-perimeter we get
(46) L™ (arasazay) <4+ 2(1/k + k) =2D?/(D —1).

Proof. The central chords asbs and a4bs form homothetic triangles
AObsby = AOasay. Moreover |Obs|/|Oay| = |Oby|/|Oay|. We look for points
es4 that satisfy es € agba, bzes || agas and ey € a1by, bses || ajaq, respec-
tively. Since the chords a;b; are central ones, we have e3 € Obs, e4 € Ob;
and AObsey ~ AOaga;, AObses ~ AOaszaz. Therefore |Oby|/|Oay| =
|Oe4|/|0ar| < |Ob1]/|Oar| and [Obs|/|Oas| = [Oes|/|Oaz| < [Obz|/|Oasl,
and hence k = |Obs 4|/|0asz 4]

Denote by Ly, (ajazazay) the self-perimeter of the parallelogram ajazazay
in case the origin O € M? is at some point V. Find points e;, ey that satisfy
e1 € ajas, ex € asay, eies || ajaz, and O € ejes. As mentioned in the proof
of Proposition the function f(V) = Ly (aiazazas), where V' € eqeq,
is strictly downwards convex. By symmetry, max Ly, (ajazazas) = f(e1) =
f(e2) = L_ (ajazasay), where e = ey. In case O = e we have p(ayg;aq)
= p(a1;a2) and p(az;az) = p(as;as). Using the homotheties AasOcy =~
Aasagasz and AayOcy = Nagasaq, where cg = ag/—\al € aqag, we calculate

plai;az) = |asas|/|Oco| = lasas|/|Oaz| = 1+ [Oas|/|Oas| =1 + 1/k,
plas; as) = |aza1|/|Ocy| = |agas|/|Oas| = 1+ |Oaz|/|Oas| =1+ k.
The latter equalities and imply . "

LEMMA 2.7. Let the vertices of the normalizing trapezium aiasasay be
marked as in Remark 2.6, O € Aajasaq, and ao — a1 = co € agaq. If
M € asas, then the self-perimeters of the trapeziums ajasasay and ajasMay
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satisfy
(47) L™ (a1az2a3a4) < L™ (a1aaMay).

Proof. By the hypothesis, ag/;\al = ¢y € agayq and ag/;\al = e1 € cyc3
C agay. Proposition 2.5 implies that poiq(a1; a2) + pola(az; ag) = poia(ar; as).
Set a4/—\]\4 = ¢, € aqa;. Then AOcdjcqy ~ ANagMas. If the trapezium
ajazMay is taken as a new normalizing figure of M?, then ppey(aq;a1) =
Pold(as; a1) and
(48)  pnew(M;as) = [May|/|Oc)| = |agas|/|Ocs| = poia(as; as).

The endpoint by of the central chord a;b; in the trapezium ajasasay belongs
to agay, i.e., by € agay. We look for a point es on the chord Mb; and, at the
same time, on the side of AMagby such that ejes || asM || azas.

The homotheties Abjejes = AbragM, Ab1Oey =~ Abrai M, and AOejeq
~ AajazsM imply |ajas|/|Oer| = ]a1b1|/\0b1|iﬁlM|/\Oeg|. For a new
normalizing trapezium ajaoMay, we have (a2 — a1)new = 0’2 € May,
(]\T—\ag)new =cpy €May, and (]\4/—\a1)new = ez € May, {63} = OesNMay.
By Proposition 2.5,

Prew (@15 a2) + pnew(a2; M) = prew(a1; M)
= |a1M|/|Oes| > |a1 M|/|Oez| = |a1as|/|Oe1| = poia(a1; as).

From this and we get . "

DEFINITION 2.10. A normalizing trapezium T = ajasasay is called dis-
tinctive if its vertices are marked in accordance with Remark 2.6, ao — a1 =
co € asay, and the central chords a1by and agby are such that |Ob;|/|Oa;| =
|Oba|/|Oas).

LEMMA 2.8. The self-perimeter of a distinctive trapezium T = ajasasay
satisfies
(49) L™ (T)<4+42(1/k+k),
where k = k(T) is the factor of symmetry of T'.

Proof. The cases of degeneration of T" into a triangle or a parallelogram

were considered in Corollary [2.5]and Lemma 2.6. In what follows, we assume
that |asai| > |agas| > 0. By Definition the central chords a;b; satisfy

|Ob1|/|0(11| = |Ob2|/\0a2| = |Ob3|/|Oa3|, b € a3a4, 5273 € aqa1, by € ajas.

We also have ag/—\al = e1 € by C caeg C agay. We first consider the
following particular cases.

1. Suppose that k = |Ob;|/|Oas|, 0 < i < 4 (see (16))). Find a point
eo that satisfies es € aqa; and ages || aza;. We intend to calculate the
self-perimeter L~ (ajazasay).
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The homothety AbsOcy =~ Abgaysa; implies
(50) |aras| = |Oci|-|bsas|/|Obs| = |Oca|-(14[Oaq|/|Obs|) = |Ocs|-(1+1/k).
Therefore, p(as;a1) =1+ 1/k. Since AascsO ~ Aazasbs, we have

plas; as) = |azas|/|Ocy| = |asbs|/|Obs| = 1 + [Oas|/|Obs| = 1+ 1/k.

By Proposition 2.5, p(a1; a3) = p(a1;az)+ p(ag; as). The homothety Ab;Oey
~ Abjayas implies p(ay; az) = |aras|/|Oe1| = |aib1|/|Ob1| = 1+ |0ay|/|Ob ]|
=1+ 1/k. Finally,

(51) L_(a1a2a3a4) = 3(1 + 1/k)
Let us prove for case 1. Since ¢ is in agayq, we have |Ocy| >
lagas| = |are2| = |ajaq| — |e2ay|. Since Aajc10 = Aaibyby, we get |bgby| =

|Oci] - |a1b1]/|Oai| = |Oci|(1 + k). The figure a1bsb1by is a parallelogram,
|a162] = ’b4b1|, and hence |b2a4| = |a1a4| - \a1b2| = |Ocl| . (1/k3 - k) Using
subsequently the homotheties Aaygbibs ~ Aagaszes, Najazes ~ Abgbibs,
and AOajag ~ AObibs, we obtain |eqas] = |baag| - |ases|/|b1ba] =
|b2a4| . |a1a3|/]b1b3| = |b2a4| . |O(L3|/‘Obg| = |b2a4|/k‘. Then we have |€2a4|
= |Oc1| - (1 — k?)/k?, and using we obtain |Oci| > |ajes] =
|Ocy| - (1 4+ 1/k) — |Ocy| - (1 — k?)/k* > 0. From this we obtain 1 >
(2k2+k—1)/k>>00r1/2 <k < (v/5-1)/2. If k > 1/2, then 1/k < 2k+1,
and together with this gives .

2. Suppose that k = |Obs|/|Oas| < |Ob1]/|Oay|. Write {ez} = a1biNazas,
and find a point e4 that satisfies e4 € Oby and e4by || ajay.

2.1. If eg € e4bq, then
|Obs|/|Oas| = |Oey|/|Oay| < |Oes|/|Oay| < [Ob1]/|Oar| = |Oba|/|Oaz].

In view of (6], the latter means that k(Aaiazas) = k = k(T). By Lem-
ma 2.7 and Corollary inequality implies .

2.2. If e4 € e3by, then take the point {a5} = asazN(ases). By Lemma 2.7,
for the trapezium ajasasas we have L™ (ajazazas) < L~ (ajazasaq). Since
AOegby = AOajay, we have k = |Oey|/|Oar| = |Oby|/|Oay| < |Obs]/|Oas]
= |Ob3|/|Oas| and k(aiazasas) = k. Set {ag} = (a1a2)N(asas). Find a point
es that satisfies e5 € ajaq and eqes || ajaz. Write {a7} = (e50)N(a1az2). With
respect to the new normalizing trapezium ajasasas we have (ag/—\al)new =
¢y € asay, a5/—\a2 = ¢5 € asay, a1—ay = ¢ € aias, and (a4/—\a5)ncw =
¢y € agay. If ag € agzaz, then the homothety AOeses ~ AOajar implies
k(Aajagas) = k. By construction, ajasaszas C Aajagay, ag/—\al = ¢, and
a4/—\a6 = (. Therefore, implies L™ (ajaz2asa4) < L™ (Aajagas). The
latter inequality and Corollary imply . If a7 € asag, then find a point
ag that satisfies ag € (aqas) and arag || aras. Since AOaja; = AOeyes,

—

evidently k(ajayagas) = k. In view of and the relations (a7 — a1)new
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—

= ¢ € asaq, (ag — a7)new = C5 € asa4, a1a708a4 D a1a205a4, the self-peri-
meter of the trapezium ajaragay satisfies L™ (ajaragas) > L~ (ajazazaq) >
L~ (ajaz2asay). Since |0b;|/|Oa;| = k, i = 1,4,7,8, by construction case 2.2
is reduced to case 1.

3. Suppose that k& = |Ob1|/|Oa1| < |Obs|/|Oay|. Set {eg} = Obs N
ajas, and find a point e; that satisfies e; € Oby and bier || aqar, where
AOaygay =~ AOezby. Observe that ca3 € asas. The normalizing vector for

—

the point M € agasz is M — a1 = cps € asaq, and by Proposition 2.5 we have
plar;az) = plar; M)+p(M;asz). With respect to the new normalizing trapez-
ium a1 Mazas C M? we have (al/—\a4)new = ¢} which is Oc; Na1 M, |O¢)| <
|Oc1], and pnew(as; a1) > pola(as; ar). Evidently, ppew(as; as) = pola(as;as).
Thus

(52) L™ (ajazasaq) < L™ (a1 Maszay), M € aszas.

3.1. If eg € bser, then the central chords aq1b1, agbs, aseg of Aajazay sat-
isfy k = |Ob1|/|Oa1| = |0bs|/|Oas| = |Oer|/|Oas| < |Oeg|/|Oay|. By (L6)),
we have k(Aaiagay) = k, and by (52) with M = ag we have L™ (ajaza3a4) <
L~ (Aarazas). With Corollary 2.5 we get (49).

3.2. If e7 € byeg, then let {as} = azaz N (ajer) and {bs} = (a50) Nasay.
The self-perimeter of the new normalizing trapezium ajasagas C M? satisfies
with M = as. The central chords aib1, asbs, azbs, and aqe; satisfy
k = |Ob1|/|0Oa1| = |Obs|/|Oas| = |Obs|/|Oas| = |Oer|/|Oay4|. Thus, case 3.2
is reduced to case 1, and Lemma 2.8 is proved. =

Proof of Theorem 1.2. Let k(Py) and k(T') be the factors of symmetry
for a given normalizing quadrangle P; and its majorizing trapezium T, re-
spectively. The latter exists by Theorem In view of , condition
is equivalent to k(Py) < k(T). If holds for an arbitrary trapezium, then
the estimate @D for the first self-perimeter holds due to the inequalities

(53) L™ (Py) < L™(T) <4+ 2(1/k(T) + k(T))
<4+ 2(1/k(Py) + k(Py)) = 2D*/(D — 1).

The inequality (9) for the second self-perimeter L™ (Py) follows by duality.

Denote the vertices of the trapezium 7' in accordance with Remark 2.6,
i.e., T = ajasasay, asay || azaz and |asar| > |asas| in the adjoint plane R2.
Find a point u € aqa; such that uag || ajag. Write {m} = ajas N agays and
{n} = wasg N agay. The chord uas and the diagonals ajas and agay split T
into six parts: ajasagzas = Nasagm U Aarasm U aymnu U Aunags U Anmas
U Aagnas.

Our reasonings depend on the possible location of the origin O € M?
with respect to the above mentioned parts of 7.
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1. Suppose that O € Aasagm C Aasazay. Similarly to (Proposi-
tion 2.7), we have k = |Ob;|/|Oq;|, i = 1,4, where a;b; are central chords
in T. Take a point a5 in such a way that ajasasas is a parallelogram. Se-
lect M € byas. Introduce a parameter ¢t = |by M| and set t; = |b1bs| and
to = |bras|. Observe that t; < ¢ < ty. Consider the new normalizing trapez-
ium ayMasay C M?, and define the self-perimeter function

f(t) =L (alMa3a4), te [tl;tg].

Write (al/—\a4)new = € aiM, (Af/—\al)new = cpr € byby C asas, and
ag/—\]w = a3 — as = c3 € asay. Evidently, pnew(as;as) = pola(as; as). The
similarity AajMay ~ AOcprey implies ppew(a1; M) = |aiM|/|Ocpy| =
laras|/|Oca| = poa(ai;az). The function ppew(M;as) = |Mas|/|Ocs| =
(t 4 |bras])/|Ocs| is linear in t. The homothety AayMb; =~ Aaic)O yields
Prew (@45 a1) = |araq|/|O¢)| = |aras|-|a1b1|/(|Oa1]|-t). Thus, the function f(t)
is downwards convex on [t1; 2], and hence max f(t) = max{f(¢1); f(t2)}.

(a) If fiax = f(t2), then a1 Magays = ajasazay is a parallelogram. We
have O € Aagmay C Aazm’as, where {m'} = ajasz N asay. Since k =
|Obs|/|Oay4|, by Lemma 2.6 we have k(ajasazas) = k and holds. In
combination with we get @[}

(b) If fmax = f(t1), then a;Magas = ajbsagays. The line through ay
parallel to a1by is a supporting one for the trapezium aibsazas. We have
|Oby|/|Oay| = k = k(ayazasas) by hypothesis, and k(aibgasas) = k by
Corollary By construction, |bsas| < |ajas| and by € bgas, and hence
a1bsasay is affinely equivalent to the trapezium from Example 2.1 that shows
the sharpness of inequality @

2. Suppose that O € ajagnu = (Aajagm)U(aymnu). We have by € ajas.
Construct a parallelogram ejasasaq such that e; € aqaq, by € e1as, and ag €
%Mark the points af—\ai:\czl € ageq C aqaq, @4)Old = (] € ajas,
(a1 — @a)new = €} € €1a5, az — a1 = ¢z € a2a3, (a5 — a1)new = C5 € a5a3,
and ag/—\ag = ag/—\a5 = ¢3 € agay. The homotheties Ab4Oc& ~ Abjase;
and AbyOcy = Abjagay imply ppew(aq;e1) = |ager|/|Oc)| = |asbs|/|Obs| =
lagar|/|Oc1| = poia(aq;ar). The similarities AOcsco ~ Abgasag ~ Abgeiay
yield pew(€1;as) = pola(ar; az).

Evidently, p(as;as) > p(az;as) and ppew(as;as) = poa(as;aq). Hence
we have L~ (ajasasaq) < L™ (e1asasay). Set {m'} = ejas N asays. By con-
struction, O € Aageias. If O € Aejasm/, then by Lemma 2.6 we have
k(erasasas) =|0by|/|Oas] > k(aragasas). If O € Aageym/, then k(ejasazay)
= |Obs|/|Oas| > k. Combining this with and (53)), we get (9).

3. Suppose that O € Aunayg, c23 € agas, b1 € azayq, ba3 € asu, and
by € ajaz. Find a point e; that satisfies e; € aqa; and e1b; || ajag. Set
{as} = (a1a2) N (aqas), {b5} = aga1N(a50), and {ag} = (a1a2)N(e10). The
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homothety AObie; ~ AOajag implies |Ob1|/|Oa1| = |Oe1|/|Oag|. Observe
that ag — a1 = a5 — a1 = 9 € asay.

(a) If |Obll/\0a1\ S ‘Obg‘/‘oagl, then {bIQ} = Obz N 5161, e] € bgu,
as € ayag. If a5 € asag, then Aajasay is a new normalizing figure of M?2.
Evidently, |Obs|/|Oas| > |Oe1|/|Oag|. By we have k(Aajasaq) = k.
The inclusion ajasasas C Aajasay, co € agay, and inequality imply
L™ (ajagasaq) < L™ (Aajasay). Combining this with Corollarywe get @
If ag € agas, then the trapezium T = ajagaraqs, where ay € (agas) and
arag || agai, is a new normalizing figure of M?. Set {b7} = aga; N (a70)
and bg = ey. Since |Obg|/|Oag| = |Ob1|/|Oar| = |Obr|/|Oaz|, we obtain
k(aiasaras) = k, and the trapezium T is distinctive. The estimate of
Lemma 2.8 implies @D

(b) If |Ob2|/|Oaz| < |Ob1|/|Oay|, then ag € ajae. Find points ez, e3
that satisfy es € Oby, eaby || azai, and eg € Oby N agay. If eg € Oes, then
Aayasay is a new normalizing figure of M2, Formula and |Oba|/|Oas| =
|Oe2|/|Oai| < |Oes|/|Oai| imply k(Aaiazas) = k. By Lemma 2.7 with
M = ayin (47)), and Corollary we get @ If es € Oes, then the trapezium
T= (1020704, where {a7} = azasN(asez), is a new normalizing figure of M?2.
Since (ag — a1)new = ¢4 € azay, |Oez|/|0ar| = |Oba]/|Oas|, |azar| < |aial,
and agay || ajay, it follows that T' = ajagaray is a distinctive trapezium and
kE(T) = k. By Lemma 2.7 we have L™ (ajasasas) < L™ (T). Together with

we get @

4. Suppose that O € Aagnas, b1 € azaq, b3 € asai, by € asasz, and
2,3 € azay. For this kind of trapezium, in analogy with the proof of Proposi-
tion case (b), we can prove (23), i.e., k(ajazazas) = |Ob1]/|Oa|. Take
the trapezium a;bsazay in the capacity of a new normalizing one of M?2. The
chords a4by, agbs, and a1b; are simultaneously central ones for the trapeziums
ajasaszas and aibsaszas. From we get k(aijbsazay) = k = |Ob1|/|Oay]|.
For normalizing points we have ca 3 € agas and by — a1 = ¢, € cac3. Then,
by Proposition 2.5,

pnew(a1§ b4) + pnew(b4; a3) = pnew(al; a3) = pold(aU CL3)
= pold(a1; az) + pola(az; az).

Evidently, pnew(as;as) = powa(as; as). We have (a1 — a4)old = 1 € araz
and (a1 — a4)new = ¢} € aibs. Therefore |Oc)| < |Oci| and ppew(as; a1) >
Pold(as;a1). Then L~ (ajazaszay) < L~ (aibsasay), where the origin O €
Aaibsay is in the normalizing trapezium aibsazas C M?. Thus, case 4 is
reduced to cases 2 and 3, where the origin O € Aajasay is in the normaliz-
ing trapezium ajasasay.

5. Suppose that O € Anmas, b1 € agas, b3 € asar, by € azaz, and

—

as —a; = ¢z € agas. In analogy with case 4, we have k = |Ob;|/|Oay|. Set
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{e1}=(a1b1)N(azas), and find points ey, e3 that satisfy es € azas, esa; || asz0;
es € agby, esby || azas; and {eq} = agas N (ajes). For the parallelogram
ajasagay, the vertex as is in (agas). Define

{62 if eq € €1€9,

es = :

eq if eg € e1e4.

Write t1 = |ejes| and t2 = |ejas|. Let M € ases and take t = |eg M| € [t1;12]
as a parameter. In analogy with case 1, the function f(t) = L™ (a1 Masay),
t € [t1;t2], is downwards convex.

(a) If fmax = f(t2), then a;Masas = ajasasay is a parallelogram. The
origin O is in Anmag C Aagm’as, where {m’} = ajasNayas. By Lemma 2.6,
we have k(ajasasas) = |Ob1|/|Oai| = k. Using (46), we get (9).

(b) If fmax = f(t1), then aiMasas = ajesazayq is a trapezium. De-
note by a4bly and eseg the central chords in ajesagasq that correspond to
as and es, respectively. By definition of es, we have ages C ayb)). Since
AOesb; ~ AOayay, it follows that & = |Ob1|/|Oai| = |Oes|/|Oas| <
|Ob);|/|Oay|. The chord eseg is also central in the trapezium ajazagas. Hence
k < |Oes|/|Oes| < 1/k. By (16), we have k(aiesasas) = k. If e5 = ey,
then {e3} = asby Najeq, and the origin O € Aajesay is located inside the
new normalizing trapezium ajesasaq. Such a location of the origin in the
normalizing trapezium has been considered in cases 2 and 3 (this is the
case when O € Aajagay in the trapezium ajasasaq). If es = ez, we have
65/—\CL1 = 62/—\a1 = ag. Then O € Aagbsas, where the chord asbs is central.
The latter means that O is inside the normalizing trapezium of cases 3 and 4
(in these cases O € Aagquag in the trapezium ajasagay).

Summarizing, Theorem 1.2 is proved. =
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