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AXIAL PERMUTATIONS OF ω2

BY

PAWEŁ KLINGA (Gdańsk)

Abstract. We prove that every permutation of ω2 is a composition of a finite num-
ber of axial permutations, where each axial permutation moves only a finite number of
elements on each axis.

1. Introduction. We consider axial permutations of the infinite ma-
trix ω2, where ω denotes {0, 1, 2, . . .}, the set of natural numbers. We say
that a permutation f : ω2 → ω2 is horizontal if there exists g : ω2 → ω
such that f(x, y) = (x, g(x, y)). Analogously, f is vertical if there exists
g : ω2 → ω such that f(x, y) = (g(x, y), y). A permutation is axial if it is
either horizontal or vertical.

In 1935 Stefan Banach posed a question in The Scottish Book whether
every permutation of ω2 is a composition of a finite number of axial per-
mutations. A positive answer was given by Nosarzewska [N], stating that a
sufficient number of axial permutations is 5. This number was reduced to 4
by Ehrenfeucht and Grzegorek [EG], [G]. The subject of axial permutations
has also been treated in [Sz1] and [Sz2].

In this paper, we are interested in permutations for which the support is
finite, i.e.

|supp(σ)| = |{n ∈ ω : σ(n) 6= n}| < ℵ0.
We will prove that every permutation of ω2 is a composition of a finite
number of axial permutations, where each axial permutation has a finite
support on each axis. In the final part of the paper we generalize one of our
results to the case of ideals of subsets of natural numbers.

2. Permutations with finite supports. By [n,m] and [n,m) we will
denote the sets {n, n+1, . . . ,m} and {n, n+1, . . . ,m− 1}, respectively. We
will say that a subset of ω2 is an L-area if it is of the form [0,m]2 \ [0, n)2.
Additionally, we require all L-areas to be sufficiently thick, i.e. 2n ≤ m.

In the proof of Lemma 2.2, we are going to use the following result from
[EG].
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Theorem 2.1 ([EG]). Let A be a set of an arbitrary cardinality and
|B| < ℵ0. Every permutation of A × B is a composition of three axial per-
mutations, where the first one is horizontal.

For each L-area we consider permutations that we will call good. These
are horizontal or vertical permutations f : [0,m]2 \ [0, n)2 → [0,m]2 \ [0, n)2
of the following form:

f(x, y) =

{
(x, y), x ∈ [0, n),

(x, g(x, y)), x ∈ [n,m],

or

f(x, y) =

{
(x, y), y ∈ [0, n),

(h(x, y), y)), y ∈ [n,m].

Lemma 2.2. Each permutation of an L-area can be represented as a com-
position of at most 24 good permutations.

Proof. Fix some L-area and its permutation σ. Divide the L-area into
three subsets: L1 = [n,m]× [0, n), L2 = [n,m]2, L3 = [0, n)× [n,m]. We will
be using the following notation:

(x, y)⊕ (n,m) = (x+ n, y + n),

A(i, j) = {(x, y) ∈ Lj : σ(x, y) ∈ Li}.

The final composition will be constructed within the following twelve
steps.

Step 1. Define a permutation f1 of the L-area by

f1(x, y) =

{
σ(x, y)⊕ (0, n) if (x, y) ∈ A(1, 2),
(x, y) otherwise.

Step 2. Define a horizontal permutation f2 by

f2(x, y) =


(x, y + n) if (x, y) ∈ [n,m)× [0, n),

(x, y − n) if (x, y) ∈ [n,m]× [n, 2n),

(x, y) otherwise.

Then (f2 ◦ f1)(x, y) = σ(x, y) for every (x, y) ∈ A(1, 2).

Step 3. Since L2 now contains some elements which originally belonged
to L1, we repeat the method from the first two steps, i.e. let f3 be a permu-
tation such that for each (x, y) ∈ A(1, 2) we have f3(x, y) = σ(x, y)⊕ (0, n),
and f3 is the identity elsewhere. While f3 acts similarly to f1, it is not the
same permutation, as A(1, 2) now has a different form.
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Step 4. We shift the aforementioned elements into L1 using a horizontal
permutation f4 where

f4(x, y) =


(x, y + n) if (x, y + n) ∈ A(1, 2),
(x, y − n) if (x, y) ∈ A(1, 2),
(x, y) otherwise.

Step 5. We now use a vertical permutation f5 constructed in an analo-
gous way to the horizontal permutation f2:

f5(x, y) =


(x+ n, y) if (x, y) ∈ [0, n)× [n,m],

(x− n, y) if (x, y) ∈ [n, 2n)× [n,m],

(x, y) otherwise.

Step 6. Since L2 now contains some elements which originally belonged
to L3, we repeat the method of rearranging those (x, y) ∈ L2 for which
σ(x, y) ∈ L1. Let f6 be a permutation such that for each (x, y) ∈ A(1, 2) we
have f6(x, y) = σ(x, y)⊕ (0, n).

Step 7. We proceed similarly to Step 4. Define a horizontal permutation
f7 by

f7(x, y) =


(x, y + n) if (x, y + n) ∈ A(1, 2),
(x, y − n) if (x, y) ∈ A(1, 2),
(x, y) otherwise.

The rearranging of L1 is now complete.

Step 8. Let f8 be a permutation such that for each (x, y) ∈ A(3, 2) we
have f8(x, y) = σ(x, y)⊕ (n, 0).

Step 9. We set f9(x, y) = f5(x, y).

Step 10. Let f10 be a permutation such that for each (x, y) ∈ A(3, 2) we
have f10(x, y) = σ(x, y)⊕ (n, 0).

Step 11. Similarly to Step 7, we shift the aforementioned elements into
L3 using a vertical permutation f11 where

f11(x, y) =


(x+ n, y) if (x+ n, y) ∈ A(3, 2),
(x− n, y) if (x, y) ∈ A(3, 2),
(x, y) otherwise.

The rearranging of L3 is now complete.

Step 12. Let f12 be a permutation such that for each (x, y) ∈ L2 we
have f12(x, y) = σ(x, y). This completes the rearranging of L2 and therefore
of the entire L-area.



270 P. KLINGA

Each of the twelve permutations is either good or by Theorem 2.1 can
be represented as a composition of three axial permutations, which are also
good for the L-area. One can check that the total sufficient number of good
permutations is 24.

We will say that a partition of ω2 is an L-partition if it consists only
of disjoint L-areas. For every permutation σ of ω2 we may consider its de-
composition into disjoint cycles. Such a decomposition defines a partition
of ω2, which we will denote π(σ). Recall that a partition F is a refinement
of a partition G, if for every A ∈ F there exists B ∈ G such that A ⊆ B.
In this case we write F ≺ G. We will say that a permutation σ of ω2 is an
L-permutation if π(σ) is a refinement of some L-partition.

Corollary 2.3. Every L-permutation can be represented as a compo-
sition of at most 24 axial permutations which have finite supports on each
axis.

Proof. Fix an L-permutation σ. The partition π(σ) is a refinement of
some L-partition F . According to Lemma 2.2, for each member A ∈ F it is
sufficient to use 24 good permutations to obtain σ�A. To prove the assertion,
simply take such compositions simultaneously on all members of F .

Lemma 2.4. Let A be such that |A| = ℵ0. Every permutation of A can be
represented as a composition of two permutations σ1, σ2, where each σi has
only finite cycles.

Proof. Since every permutation of a countable set A can consist of finite
and infinite cycles, it suffices to consider a permutation that consists only
of one cycle. Also, it suffices to assume that this permutation is a shift on
the set of integers, i.e. σ : Z → Z, σ(k) = k + 1. Set σ1(k) = −(k + 1) and
σ2(k) = −k. Then σ = σ2 ◦ σ1 and the length of all cycles of both σ1 and σ2
is 2.

Lemma 2.5. Let π be a partition of ω2 such that every element of π
is finite. Then there exist partitions τ1, τ2 such that π ≺ τ1 ∪ τ2 and every
element of both τ1 and τ2 is an L-area.

Proof. Let us denote π = {Pn : n ∈ ω}. Inductively define the following
sets: B0 = ∅, A0 = P0, An =

⋃
{P ∈ π : P ∩Bn 6= ∅}∪Pn. Pick Bn so that it

is of the form [0, bn)
2, Bn \ Bn−1 is an L-area and Bn ⊇ An−1. Notice that

Bn ⊆ An ⊆ Bn+1. Also, since Pn ⊆ An, we have
⋃

n∈ω Bn = ω2.
Define

τ1 = {B2, B4 \B2, B6 \B4, . . .}, τ2 = {B1, B3 \B1, B5 \B3, . . .}.
Obviously τ1 and τ2 are partitions consisting of L-areas.

We will show thatπ≺ τ1∪τ2. Fix P ∈π. Define l0 =min{l∈ω : Bl∩P 6=∅}.
Of course l0 > 0. We have Bl0−1 ∩ P = ∅. Also P ⊆ Al0 ⊆ Bl0+1. Therefore
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we obtain P ⊆ Bl0+1 \ Bl0−1. If l0 is odd, then Bl0+1 \ Bl0−1 ∈ τ1, and if l0
is even, then Bl0+1 \Bl0−1 ∈ τ2.

Lemma 2.6. Each permutation σ : ω2 → ω2 which has only finite cycles
can be represented as a composition of two L-permutations.

Proof. Since σ has only finite cycles, each member of π(σ) is finite. By
Lemma 2.5, there exist two partitions τ1, τ2 such that π(σ) ≺ τ1 ∪ τ2 and all
members of both partitions are L-areas.

We will now define two permutations σ1 and σ2. Fix p ∈ ω2. Let C ∈ π(σ)
be such that p ∈ C. Since π(σ) ≺ τ1∪τ2, there is L ∈ τ1∪τ2 such that C ⊆ L.
If L ∈ τ1, then set σ1(p) = σ(p). Otherwise set σ1(p) = p. Analogously, if
L ∈ τ1, then set σ2(p) = p, and otherwise set σ2(p) = σ(p). Obviously σ1
and σ2 are L-permutations and σ = σ1 ◦ σ2.

Finally, we prove our main result.

Theorem 2.7. Every permutation of ω2 can be represented as a compo-
sition of a finite number of axial permutations, where each axial permutation
moves only a finite number of elements on each axis.

Proof. Let σ be a fixed permutation of ω2. According to Lemma 2.4,
σ is a composition of two permutations σ1, σ2, each with all cycles finite.
By Lemma 2.6, each σi is a composition of two L-permutations, and in view
of Corollary 2.3 each L-permutation can be represented as a composition
of at most 24 axial permutations which have finite supports on each axis.
Altogether we find that every permutation of ω2 can be represented as a
composition of 96 axial permutations, where each axial permutation moves
only a finite number of elements on each axis.

Notice that while for any permutation σ of ω2 it is possible to represent it
by four axial permutations, it is not true that four permutations with finite
supports are sufficient. We now focus on the construction of a counterexam-
ple.

We denote by σ[A] the image of the set A under the function σ. We are
going to use the following lemma.

Lemma 2.8 ([G, Proposition 1 and Remark 2, p. 156]). Let σ : ω2 → ω2

be a permutation. The following are equivalent:

(i) σ can be represented as a composition σ4 ◦ σ3 ◦ σ2 ◦ σ1, where σ1, σ3
are horizontal and σ2, σ4 are vertical.

(ii) For every finite set A ⊆ ω there is no finite set B ⊆ ω such that
σ[(ω \A)× ω] ⊆ ω ×B.

Lemma 2.9. Assume P ⊆ ω2 intersects each row in a single point. There
is no vertical and finitely supported permutation τ of ω2 such that ω2 \ τ [P ]
intersects each row in a single point.
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Proof. There exists an infinite set Z ⊆ ω and n < k such that (Z ×
{n, k}) ∩ P = ∅. Indeed, if |(ω × {0}) ∩ P | < ℵ0 and |(ω × {1}) ∩ P | < ℵ0,
then it suffices to take n=0, k=1 and Z = {m ∈ ω : (m, 0) 6∈P∧(m, 1) 6∈P}.
On the other hand, if |(ω × {i}) ∩ P | = ℵ0 for i = 0 or i = 1, then
(Z × {2, 3}) ∩ P = ∅, where Z = {m ∈ ω : (m, i) ∈ P}. In that case,
n = 2, k = 3 are sufficient.

Now suppose there does exist a permutation τ as in the statement. Since
supp(τ) has finite intersections with each column, there exists an infinite
set Z1 ⊆ Z such that (Z1 × {n, k}) ∩ (P ∪ supp(τ)) = ∅. But then τ re-
stricted to Z1×{n, k} is the identity, and therefore we obtain Z1×{n, k} ⊆
τ [Z1 × {n, k}] ⊆ τ [ω2 \ P ], which yields a contradiction, because τ [ω2 \ P ]
has horizontal intersections which consist of one point.

Example 2.10. Divide ω2 into the first column, A = {(m, 0) : m ∈ ω},
and the rest, B = {(m,n) : m ∈ ω, n > 0}. Let σ : ω2 → ω2 be a permutation
such that σ[A] = B, σ[B] = A.

Using Lemma 2.8 we find that σ is a composition of four axial permu-
tations (one can find both a composition such that σ1 is vertical and a
composition such that it is horizontal). Suppose that σ = σ4 ◦σ3 ◦σ2 ◦σ1 for
some axial permutations σ1, σ2, σ3, σ4 such that the support of each of those
is finite. We have two cases:

(1) σ1, σ3 are vertical and σ2, σ4 are horizontal.
(2) σ1, σ3 are horizontal and σ2, σ4 are vertical.

In the first case, obviously σ1[A] = A and σ1[B] = B, since σ1 is vertical
and A is a column. Denote P = σ2[σ1[A]] and notice that P has exactly
one common point with each row (because σ2 is horizontal). Because σ =
σ4◦σ3◦σ2◦σ1, we have σ3[P ] = σ−14 [B]. As σ4 is horizontal, ω2\σ3[P ] would
intersect each row at a single point. But this is impossible due to Lemma 2.9.

In the second case, we have σ−1 = σ−11 ◦σ
−1
2 ◦σ

−1
3 ◦σ

−1
4 and σ−11 , σ−13 are

horizontal, while σ−12 , σ−14 are vertical. Moreover, σ−1[A] = B and σ−1[B]
= A, hence we obtain the first case.

In fact, our example has a slightly stronger property: σ is not a compo-
sition σ4 ◦ σ3 ◦ σ2 ◦ σ1, where σ1, σ3 are vertical (resp. horizontal), σ2, σ4 are
horizontal (resp. vertical) and σ3 (resp. σ2) has a finite support on each axis.

Instead of an axial permutation σ such that supp(σ) is finite on each
axis, we may consider a more general variation, i.e. σ such that supp(σ) ∈ I
on each axis, for some proper ideal I.

Recall that a family I ⊆ P(ω) is an ideal if it is closed under taking
subsets and finite unions. Additionally, it is proper if ω /∈ I (therefore I 6=
P(ω)). Intuitively, it is a family of small (but not necessarily finite) subsets
of ω. Obviously, the family of finite subsets of ω (traditionally denoted as Fin)
is a proper ideal, and in most cases we assume that Fin ⊆ I, so it makes
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sense to ask about the generalization of the results concerning finite sets to
their ideal counterparts.

Lemma 2.11. Let I ⊆ P(ω) be a proper ideal. Assume P ⊆ ω2 intersects
each row in a single point. There is no vertical permutation τ of ω2 such that
supp(τ) ∈ I on each axis and ω2 \ τ [P ] intersects each row in a single point.

The proof is a minor modification of the proof of Lemma 2.9, obtained
by replacing “finite” with “belonging to I ”.

Letσ denote the permutation from Example 2.10.We obtain the following.
Corollary 2.12. Let I ⊆ P(ω) be a proper ideal. It is not possible to

represent σ as the composition σ4◦σ3◦σ2◦σ1 where σ1, σ3 are vertical, σ2, σ4
are horizontal and σ3 is such that its support belongs to I on each axis.

Obviously, the counterpart for which σ1 is horizontal (etc.) also holds.
Notice that in Lemma 2.11 one cannot omit the assumption that the sup-

port of σ3 is in I, i.e. there exists a set P and a vertical permutation σ with
the properties as in Lemma 2.11. Indeed, let {Kn : n ∈ ω} be any partition
of ω into infinite sets. Define P =

⋃
n∈ωKn×{n}. For all n ∈ ω let σn : ω → ω

be any permutation such that σn[Kn] = ω \ Kn and σn[ω \Kn] = Kn. Set
σ(m,n) = (σn(m), n). Then σ[P ] = ω2 \ P and the intersection of ω2 \ P
with each line is the whole line except one point.
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