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SOME OBSERVATIONS ON THE DIOPHANTINE EQUATION
f(x)f(y) = f(z)2

BY

YONG ZHANG (Changsha and Hangzhou)

Abstract. Let f ∈ Q[X] be a polynomial without multiple roots and with deg(f) ≥ 2.
We give conditions for f(X) = AX2 + BX + C such that the Diophantine equation
f(x)f(y) = f(z)2 has infinitely many nontrivial integer solutions and prove that this
equation has a rational parametric solution for infinitely many irreducible cubic polyno-
mials. Moreover, we consider f(x)f(y) = f(z)2 for quartic polynomials.

1. Introduction. Let f ∈ Q[X] be a polynomial without multiple roots
and with deg(f) ≥ 2. Several authors investigated the Diophantine equation

(1.1) f(x)f(y) = f(z)2.

We say a rational or integer solution (x, y, z) is nontrivial if f(x) 6= f(y). In
1963, A. Schinzel and W. Sierpiński [SS] studied (1.1) for f(X) = X2 − 1
and showed that it has infinitely many nontrivial integer solutions. But
it is a difficult problem to determine all the integer solutions of (1.1) for
f(X) = X2 − 1. In 1967, K. Szymiczek [S] obtained the same result for
f(X) = X2−k2, where k ∈ Z. In 2007, M. A. Bennett [B] showed that (1.1)
has no nontrivial integer solution for f(X) = Xk − 1, k ≥ 4.

In 2006, K. Katayama [K] investigated (1.1) for f(X) = X2 + 1 and
proved that it has infinitely many nontrivial integer solutions. In 2008,
M. Ulas [U2] obtained the same result for f(X) = X2 + k, k = ±(a2− 2b2),
where a, b ∈ Z. Some related information on equation (1.1) can be found in
[G, D23 Some quartic equations].

In 2007, M. Ulas [U1] studied the rational solutions of (1.1). He proved
that if f(X) = X2 + k, where k ∈ Z, then (1.1) has infinitely many rational
parametric solutions; and if f(X) = X(X2 +X+ t), where t ∈ Q, then (1.1)
has infinitely many rational solutions for all but finitely many t.

In this paper we consider the integer solutions of (1.1) for quadratic
polynomials, and rational solutions for cubic and quartic polynomials. By
the theory of Pell’s equation, we have
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Theorem 1.1. Let f(X) = AX2 + BX + C be a quadratic polynomial
without multiple roots, where A,B,C ∈ Z and A |B. Suppose that (x0, y0, z0)
is an integer solution of (1.1) and y0 = x0 + 2z0 + B/A. Then (1.1) has
infinitely many nontrivial integer solutions.

M. Ulas raised the following question (see [U1, Question 4.1]): “Does
there exist an irreducible polynomial f ∈ Q[X] of degree three such that
(1.1) has infinitely many rational solutions?” Here we give a positive answer
to this question: in fact, there are infinitely many such irreducible cubic
polynomials.

Theorem 1.2. Let f(X) = AX3+BX2+CX+D be a cubic polynomial
without multiple roots, where C = −(p2 + pq+ q2)A− (p+ q)B, A,B,D, p, q
∈ Q. Then (1.1) has a rational parametric solution.

In particular, we get

Corollary 1.3. Let f(X) = X3+BX2+CX+D be a cubic polynomial
without multiple roots, where C = −(p2 + pq+ q2)− (p+ q)B, B,D, p, q ∈ Z
and (B+C)D is odd. Then f(X) is an irreducible polynomial and (1.1) has
a rational parametric solution.

For quartic polynomials it is difficult to give a positive answer to [U1,
Question 4.3]. By the same idea of Theorem 1.2, we obtain the following
two results.

Theorem 1.4. Let f(X) = AX4 +BX3 +CX2 +DX +E be a quartic
polynomial without multiple roots, where A,B,C,D,E ∈ Q. Suppose that
there are infinitely many z such that the cubic equation

(1.2) Aw3 + (Az +B)w2 + (Az2 +Bz + C)w +Az3 +Bz2 + Cz +D = 0

has two distinct rational solutions w. Then (1.1) has infinitely many rational
solutions (x, y, z).

Theorem 1.5. There are infinitely many quartic polynomials without
multiple roots such that (1.1) has a common rational solution.

2. Proofs of the theorems. To prove Theorem 1.1, we need the fol-
lowing lemma about the solutions of Pell’s equation.

Lemma 2.1 (see [EES, Theorem 2]). Let M be an integer and m,D be
positive integers, where D is not a perfect square. If the Pell equation

u2 −Dv2 = M

has an integer solution (u0, v0) satisfying

(u0, v0) ≡ (a, b) (mod m),
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then there are infinitely many integer solutions (u, v) satisfying

(u, v) ≡ (a, b) (mod m).

Proof of Theorem 1.1. Set B = tA, where t ∈ Z. Let

(2.1) y = x+ 2z + t.

Then

f(x)f(y)− f(z)2 = A(x+ z + t)2(Ax2 + 2Axz + 2tAx+ 2C −Az2) = 0.

Considering Ax2 + 2Axz + 2tAx+ 2C −Az2 = 0, we have

(Ax+Az +At)2 − 2(Az +At)2 = −A2t2 − 2AC.

Setting U = Ax+Az +At, V = Az +At, we get

U2 − 2V 2 = −A2t2 − 2AC.

Note that the Pell equation

U2 − 2V 2 = 1

has infinitely many integer solutions. Furthermore, (x0, y0, z0) is an integer
solution of (1.1) satisfying

y0 = x0 + 2z0 +
B

A
.

Then the Pell equation

U2 − 2V 2 = −A2t2 − 2AC

has a solution

(U0, V0) = (Ax0 +Az0 +At,Az0 +At),

which satisfies the condition

(U0, V0) ≡ (0, 0) (mod A).

By Lemma 2.1, there exist infinitely many integer solutions (U, V ) satisfying
this condition. Then there are infinitely many

z =
V

A
− t ∈ Z, x =

U

A
− z − t ∈ Z,

and infinitely many integers y = x+ 2z + t.

When A = 1 and t = 0, we have f(X) = X2 + C and (2.1) becomes

y = x+ 2z ⇔ z =
y − x

2
.

If C = ±(a2 − 2b2), our Theorem 1.1 becomes Theorem 2.1 of [U2].
When A = 2, t = 0, then f(X) = 2X2 + C. If C 6= ±2(a2 − 2b2), we

give some examples in Table 1 with 0 < x, y, z < 1000. In general, (1.1) has
infinitely many integer solutions for f(X) = 2X2 + C with C = 2b2 − a2,
where a, b ∈ Z.
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Table 1. Some solutions of (1.1) for f(X) = 2X2 + C

C (x, y, z)

1 (2, 12, 5), (12, 70, 29), (70, 408, 169), (408, 2378, 985)

7 (1, 9, 4), (3, 19, 8), (9, 53, 22), (19, 111, 46), (53, 309, 128), (111, 647, 268)

23 (1, 13, 6), (7, 43, 18), (13, 77, 32), (43, 251, 104), (77, 449, 186)

31 (3, 23, 10), (5, 33, 14), (23, 135, 56), (33, 193, 80), (135, 787, 326)

41 (2, 20, 9), (8, 50, 21), (20, 118, 49), (50, 292, 121), (118, 688, 285)

47 (1, 17, 8), (11, 67, 28), (17, 101, 42), (67, 391, 162), (101, 589, 244)

71 (5, 37, 16), (7, 47, 20), (37, 217, 90), (47, 275, 114)

73 (2, 24, 11), (12, 74, 31), (24, 142, 59), (74, 432, 179), (142, 828, 343)

79 (1, 21, 10), (15, 91, 38), (21, 125, 52), (91, 531, 220), (125, 729, 302)

89 (4, 34, 15), (10, 64, 27), (34, 200, 83), (64, 374, 155)

97 (6, 44, 19), (8, 54, 23), (44, 258, 107), (54, 316, 131)

When A = 1 and t = 1, we have f(X) = X2 +X +C and (2.1) becomes

y = x+ 2z + 1 ⇔ z =
y − x− 1

2
.

For 0 < C ≤ 50, we give some examples in Table 2 with 0 < x, y, z < 1000.
In general, (1.1) has infinitely many integer solutions for f(X) = X2+X+C
with C = a(a+ 1) + 2b(b+ 1), where a, b ∈ Z.

Table 2. Some solutions of (1.1) for f(X) = X2 + X + C

C (x, y, z)

2 (2, 15, 6), (5, 32, 13), (15, 90, 37), (32, 189, 78), (90, 527, 218)

6 (1, 12, 5), (3, 22, 9), (12, 73, 30), (22, 131, 54), (73, 428, 177), (131, 766, 317)

8 (6, 39, 16), (9, 56, 23), (39, 230, 95), (56, 329, 136)

12 (2, 19, 8), (4, 29, 12), (19, 114, 47), (29, 172, 71), (114, 667, 276)

16 (1, 16, 7), (7, 46, 19), (16, 97, 40), (46, 271, 112), (97, 568, 235)

18 (10, 63, 26), (13, 80, 33), (63, 370, 153), (80, 469, 194)

20 (3, 26, 11), (5, 36, 15), (26, 155, 64), (36, 213, 88), (155, 906, 375)

26 (2, 23, 10), (8, 53, 22), (23, 138, 57), (53, 312, 129), (138, 807, 334)

30 (1, 20, 9), (4, 33, 14), (6, 43, 18), (11, 70, 29), (20, 121, 50),

(33, 196, 81), (43, 254, 105), (70, 411, 170), (121, 708, 293)

32 (14, 87, 36), (17, 104, 43), (87, 510, 211), (104, 609, 252)

38 (3, 30, 13), (9, 60, 25), (30, 179, 74), (60, 353, 146)

42 (5, 40, 17), (7, 50, 21), (40, 237, 98), (50, 295, 122)

44 (2, 27, 12), (12, 77, 32), (27, 162, 67), (77, 452, 187), (162, 947, 392)

48 (1, 24, 11), (15, 94, 39), (24, 145, 60), (94, 551, 228), (145, 848, 351)

50 (18, 111, 46), (21, 128, 53), (111, 650, 269), (128, 749, 310)
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Remark 2.2. In fact, for every t ∈ Z we can construct infinitely many
polynomials f(X) = AX2 + tAX + C such that (1.1) has infinitely many
nontrivial integer solutions. But it is difficult to find an integer solution of
(1.1) for f(X) = AX2 + tAX + C where A,C, t are arbitrary integers.

In the following, we will give the proof of Theorem 1.2, which is simple
but nontrivial.

Proof of Theorem 1.2. When f(X) = AX3 + BX2 + CX + D, where
C = −(p2 + pq + q2)A− (p+ q)B, then (1.1) is equivalent to

f(x)f(y)− f(z)2 = A1D +A0,

where

A1 = A(x3 + y3 − 2z3) +B(x2 + y2 − 2z2) + C(x+ y − 2z),

A0 = (A2y3 +ABy2 +ACy)x3 + (ABy3 +B2y2 +BCy)x2

+ (ACy3 +BCy2 + C2y)x− z2(Az2 +Bz + C)2.

Solving the Diophantine system A1 = 0, A0 = 0 for x, y, we note that if x
and y are the rational roots of the equation

(2.2) Aw2 + (Az +B)w +Az2 +Bz + C = 0,

then the system is satisfied. By the condition C = −(p2+pq+q2)A−(p+q)B,
(2.2) has a solution (w, z) = (p, q). It can be parameterized by

w =
pAu2 + (−2Aq −B)u− pA−Aq −B

A(u2 + u+ 1)
,

z = −(Aq + pA+B)u2 + (2pA+B)u−Aq
A(u2 + u+ 1)

,

so

x = w =
pAu2 + (−2Aq −B)u− pA−Aq −B

A(u2 + u+ 1)
,

y = −Az +B

A
− x =

qAu2 + (2pA+ 2Aq +B)u+ pA

A(u2 + u+ 1)
.

Therefore, (1.1) has a rational parametric solution (x, y, z).

When (A,B,D) = (1, 1, 0), f(X) = X(X2 +X − (p2 + pq+ q2 + p+ q)).
Then (1.1) has a rational parametric solution

(x, y, z) =

(
pu2 + (−2q − 1)u− p− q − 1

u2 + u+ 1
,
qu2 + (2p+ 2q + 1)u+ p

u2 + u+ 1
,

− (p+ q + 1)u2 + (2p+ 1)u− q
u2 + u+ 1

)
.

Remark 2.3. However, for quadratic polynomials there is no result sim-
ilar to Theorem 1.2.
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Proof of Corollary 1.3. In fact, we only need to prove that f(X) is an
irreducible polynomial. This is an easy exercise in algebra. We give the proof
for completeness. If f(X) = X3 + BX2 + CX + D is reducible, then there
exist α, β, γ such that

f(X) = (X + α)(X2 + βX + γ).

So we have f(0) = αγ = D. Noting that (B +C)D is odd, we see that D is
odd and α, γ are also odd. In the formula

f(1) = (1 + α)(1 + β + γ) = 1 +B + C +D,

the right hand side is an odd number and the left hand side is an even
number, a contradiction. Hence, f(X) is irreducible. The remainder of the
proof is a special case of the proof of Theorem 1.2.

When (B, p, q) = (1, 0, 0), we have f(X) = X3 + X2 + D and D is an
odd number; then f(X) is an irreducible polynomial and (1.1) has a rational
parametric solution

(x, y, z) =

(
− u+ 1

u2 + u+ 1
,

u

u2 + u+ 1
,− (u+ 1)u

u2 + u+ 1

)
.

This gives an answer to [U1, Question 4.1].

Proof of Theorem 1.4. When f(X) = AX4 + BX3 + CX2 + DX + E,
(1.1) becomes

f(x)f(y)− f(z)2 = B1E +B0,

where

B1 = A(x4 + y4 − 2z4) +B(x3 + y3 − 2z3)

+ C(x2 + y2 − 2z2) +D(x+ y − 2z),

B0 = (A2y4 +ABy3 +ACy2 +ADy)x4 + (ABy4 +B2y3 +BCy2 +BDy)x3

+ (ACy4 +BCy3 + C2y2 + CDy)x2

+ (ADy4 +BDy3 + CDy2 +D2y)x− z2(Az3 +Bz2 + Cz +D)2.

Solving the Diophantine system B1 = 0, B0 = 0 for x, y, we note that if x
and y are the rational roots of equation (1.2), i.e.,

Aw3 + (Az +B)w2 + (Az2 +Bz + C)w +Az3 +Bz2 + Cz +D = 0,

then the system is satisfied.

Proof of Theorem 1.5. Suppose that f(X) = AX4 + BX3 + DX + E,
and let x = T , y = u2T , z = uT . Then (1.1) is equivalent to

f(x)f(y)− f(z)2 = T (u− 1)2(C1A+ C0),
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where

C1 = T 3(Bu6T 3 +Du2(u2 + u+ 1)2T + E(u+ 1)2(u2 + 1)2),

C0 = BDu2(u+ 1)2T 3 +BE(u2 + u+ 1)2T 2 +DE.

Solving the Diophantine system C1 = 0, C0 = 0 for T, u, we note that if u
is a rational root of the quartic equation

(2.3) BE2w4 + (2BE2 +D3)w2 +BE2 = 0

in w and T is a function of the rational root w, then the system is satisfied.
From (2.3) we obtain

w = ±

√
−2B(2BE2 +D3 ±

√
4BD3E2 +D6)

2BE
.

To see that w is a rational number, let

4BD3E2 +D6 = s2, −2B(2BE2 +D3 − s) = t2,

where s and t are rational numbers. So

B =
s2 −D6

4D3E2
,

(D3 − s)3(D3 + s)

4D6E2
= t2.

Let D6 − s2 = r2, where r is a rational number. Then

s =
(k2 − 1)D3

k2 + 1
, r = − 2kD3

k2 + 1
,

where k is a rational number. So

t =
2D3k

(k2 + 1)2E
, B = − D3k2

(k2 + 1)2E2
.

Hence,

w = ±k, ±1

k
.

We can get

u = k, T = −E(k2 + 1)

Dk2
.

Let D = −E = 1 and A be a positive integer. We have

f(X) = AX4 +
k2

(k2 + 1)2
X3 +X − 1.

Then (1.1) has a rational solution

(x, y, z) =

(
k2 + 1

k2
, k2 + 1,

k2 + 1

k

)
.
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For rational numbers k 6= 0 and positive integers A, the discriminant of f(X)
is

−((256A3 + 27A2)k16 + (2048A3 + 408A2)k14 + (7168A3 + 1908A2 − 6A)k12

+ (14336A3 + 4392A2 − 24A+ 4)k10 + (17920A3 + 5730A2 − 36A+ 35)k8

+ (14336A3 + 4392A2 − 24A+ 4)k6 + (7168A3 + 1908A2 − 6A)k4

+ (2048A3 + 408A2)k2 + 256A3 + 27A2)/(k2 + 1)8 < 0,

so f(X) = AX4 + k2

(k2+1)2
X3 +X − 1 has no multiple roots.

Therefore, there are infinitely many quartic polynomials without mul-
tiple roots such that (1.1) has a common rational solution.

3. Some remarks for quartic polynomials. In Theorem 1.4 we sup-
pose that there are infinitely many z such that the cubic equation (1.2)
has two distinct rational solutions w. However, this assumption seems too
strong. At present, we are not able to give a quartic polynomial without
multiple roots such that (1.1) has infinitely many rational solutions.

In Theorem 1.5 we obtain the polynomial

f(X) = AX4 +
k2

(k2 + 1)2
X3 +X − 1

without multiple roots such that (1.1) has a common rational solution. For
k = 1 and positive integers 1 ≤ A ≤ 1000, the polynomial f(X) = AX4 +
1
4X

3 + X − 1 is irreducible over Q. It seems that the polynomial f(X) =

AX4 + 1
4X

3 +X − 1 is irreducible for every positive integer A.

In a similar way, we can get another quartic polynomial

f(X) = AX4 +
4uv(3u+ v)(u− v)

D
X3 + (3u2 + v2)X2 +DX

such that (1.1) has a rational solution

(x, y, z) =

(
− D(3u2 + v2)

(3u+ v)2(u− v)2
,−D(3u2 + v2)

16u2v2
,− D(3u2 + v2)

4uv(3u+ v)(u− v)

)
,

where u, v are rational numbers satisfying uv(3u + v)(u − v) 6= 0. If the
discriminant of f(X) is nonzero for suitable u, v,A,D, then this quartic
polynomial has no multiple roots. For example, when D = −1, A is different
from 4

27v
2(9u2− 12uv− v2)(3u+ v)2 and −4u2(u2− 4uv− v2)(u− v)2, then

f(X) = AX4 − 4uv(3u+ v)(u− v)X3 + (3u2 + v2)X2 −X has no multiple
roots.
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