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Abstract. A polynomial f in the set {Xn + Y n, Xn + Y n − Zn, Xn + Y n + Zn,
Xn+Y n−1} lends itself to an elementary proof of the following theorem: if the coordinate
ring over Q of f is factorial, then n is one or two. We give a list of problems suggested by
this result.

1. Introduction. This paper was motivated by some results on facto-
rial domains and half-factorial domains. A domain is half-factorial if every
non-zero element that is not a unit is the product of a unique number of
irreducible elements. A recent exploration of half-factorial subrings of fac-
torial domains is [MO3]. The emphasis there was on half-factorial subrings
of polynomial rings over factorial domains. We now introduce the cast of
polynomials in the present paper.

Let K be a field that does not contain a square root of −1. Then R =
K[X,Y ]/〈X2 +Y 2〉 is isomorphic to K+XK[i][X], where i is a square root
of −1. It is shown in [MO5] that R has the following properties:

(1) R is half-factorial.
(2) The power series extension R[[X]] is half-factorial.
(3) The power series extension R[[X,Y ]] is not half-factorial.

Whether there is a factorial domain with the corresponding properties is an
open question (see [F], [S1], and [S3]). See also [L, Chapter IV, Section 9].
Do coordinate rings of Xn + Y n, n an arbitrary natural number, have the
same property?

Let Cl(R) denote the divisor class group of R or the class group of R,
whichever makes sense. In [CA], it is proved that a number ring R is half-
factorial if and only if |Cl(R)| ≤ 2. Motivated by questions in [N], Zaks
[Z, Theorem 2.4] proved that a Krull domain R has the property that the
polynomial ring R[X] is half-factorial if and only if |Cl(R)| ≤ 2. However,
a Krull domain D with |Cl(D)| > 2 can be half-factorial (see [LY]). The
following theorem of Samuel’s [S2] is Proposition 11.5 in [F].
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Theorem 1.1. Let F be a non-degenerate quadratic form in K[X1,
X2, X3]. Let AF = K[X1, X2, X3]/〈F 〉. Then Cl(AF ) = Z/2Z if and only if
there is a non-trivial solution to F (X1, X2, X3) = 0 in K. If no such solution
exists, then AF is factorial.

We replace the quadratic forms in Samuel’s theorem by aXn+bY n+cZn,
a, b, c integers with abc 6= 0. In this paper we deal only with the sim-
plest case: abc = ±1. We now recall the result that led us to consider
Xn+Y n−1, n an arbitrary natural number. It is shown [F, Proposition 11.8]
that |Cl(R[X0, X1]/〈X2

0 +X2
1−1〉|=2, while |Cl(C[X0, X1]/〈X2

0+X
2
1−1〉| = 1,

Hence R[X0, X1]/〈X2
0 +X2

1−1〉 is half-factorial and C[X0, X1]/〈X2
0 +X2

1−1〉
is factorial. Replacing 2 with n gives us the last set of polynomials in our list:

F = {Xn + Y n, Xn + Y n − Zn, Xn + Y n + Zn, Xn + Y n − 1}.

The following theorem gives examples of factorial domains that do not
come from quadratic forms. If R = C[X1, X2, X3, X4] is the polynomial ring
in four variables over C, then for almost all homogeneous forms of degree
at least four, R/〈f〉 is factorial. This is the Noether–Lefschetz theorem (see
[EI, p. 520] for unexplained terminology and references on related theorems).
In turn, the references in [PS1] and [PS2] include variations on Noether–
Lefschetz theory. Other results on factoriality of complex affine domains
can be found in [GP]. All of these results are over algebraically closed fields.
The lack of corresponding theorems for the field of rational numbers led us
to the working hypothesis that, amongst homogeneous polynomials, only
those of degree one or two have a chance of giving factorial coordinate rings
or half-factorial coordinate rings over Q. This paper tests this hypothesis on
the set F .

This paper also plays to our interest in linking factorization properties
to well-known top-drawer theorems. Here is one outcome of this interest. An
integral domain is PPF (Principal Primes Finite) if every non-zero element
is contained in only finitely many principal prime ideals. Investigation of
this property led us to Corollary 1.15 in [MO1]: If A is an affine commu-
tative algebra over a field k, then any field between A and k is algebraic
over k; this is a slight generalization of Zariski’s version of the Nullstellen-
satz [FU, p. 31]. See [EMO], [MO2], and [MO4] for other examples relating
factorization properties to some algebraic geometry in an elementary way.

Problems arising. We list some problems which we do not treat in
this paper in order to keep the focus on the main theorem.

We say that a polynomial P(X) in Q[X] is factorial (respectively, half-
factorial) over Q if the coordinate ring Q[X]/〈P(X)〉 is factorial (respec-
tively, half-factorial). In general, we use the polynomial as a stand-in for its
corresponding coordinate ring over Q.
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(1) The abc-problem. For which triples (a, b, c) of non-zero integers is
aXn + bY n + cZn factorial or half-factorial?

(2) The n-tuple problem. For which positive integers n and for which
n-tuples of non-zero integers (a1, . . . , an) is a1X

n
1 + · · ·+ anX

n factorial or
half-factorial?

It is well-known, and documented in [CMO], that most generalizations of
factoriality are unstable under the standard ring extensions, as listed in [BO,
p. 622]. The factorial domains R in this paper are principal ideal domains.
Hence R[[X]] is also factorial (see [S1] or [K, Theorem 188]). In the case
when R is half-factorial, but not factorial, R[X] is half-factorial by Zaks’s
theorem quoted above. This leads to the next problem.

(3) The power series problem. Suppose R is one of the coordinate rings
in this paper with |Cl(R)| = 2. Is R[[X]] half-factorial?

An integral domain is said to be atomic if every non-zero element that
is not a unit is a finite product of irreducible elements of D. The extent
to which D fails to be half-factorial is measured by the elasticity of D,
denoted by ρ(D), where ρ(D) := sup{m/n : x1 · · ·xm = y1 · · · yn with
x1, . . . , xm, y1, . . . , yn being irreducible elements of D}. By definition, an
atomic domain D is half-factorial if and only if ρ(D) = 1. The concept of
elasticity was introduced in [V]. We refer to [GPR] for more information and
references on elasticity.

(4) The elasticity problem. What are the elasticities of the non-half-
factorial polynomials in F?

The notation below will be in force throughout the paper:

• Let D be an integral domain.
• For C ⊆ D, 〈C〉 denotes the ideal of D generated by C.
• U(D) denotes the unit group of D.
• Irr(D) is the set of irreducible elements of D.
• degP denotes the degree of the polynomial P, while I denotes the

ideal 〈P〉. The corresponding coordinate ring Q[X]/I is denoted by R.
The context will clarify the variables that constitute X.
• Z, Q, R, and C denote the usual rings and K denotes an arbitrary

field.
• |S| denotes the cardinality of the set S.

2. Elementary criteria for irreducibility in factor rings. The first
proposition tells us when irreducibility of a polynomial f ∈ K[X] can be
deduced from the irreducibility of a specialization of f to a polynomial of
one variable.
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Proposition 2.1. Let f be a homogeneous polynomial in K[X] of degree
m in k variables. Suppose f has a non-zero term of the form Xm

1 and suppose
a2, . . . , ak are elements in K such that f(X1, a2, . . . , ak) is in Irr(K[X1]).
Then f is in Irr(K[X]).

Proof. Suppose that f(X) = g(X)h(X). Then deg g + deg h = m
and f(X1, a2, . . . , ak) = g(X1, a2, . . . , ak)h(X1, a2, . . . , ak). By assumption,
g(X1, a2, . . . , ak) (say) is in U(K). This implies that Xm

1 appears entirely in
h. Since g and h may be assumed homogeneous, g(X) must be a constant.

Proposition 2.2 lists some well-known elements of Irr(Q[X]).

Proposition 2.2.

(a) Let k be any positive integer ≥ 2 and n a power of 2. Then
∑k

j=1X
n
j

is in Irr(Q[X]).
(b) Let k be any positive integer ≥ 3 and n any positive integer. Then∑k

j=1X
n
j is in Irr(Q[X]).

(c) For n a positive integer, the polynomial Xn + Y n is in Irr(Q[X]) if
and only if n = 2m for some positive integer m.

(d) The polynomial Xn + Y n− 1 is in Irr(Q[X]) for every natural num-
ber n.

Proof. (a) The proof is by induction on k ≥ 2. First X2m+1 is irreducible
in Q[X] by Eisenstein’s criterion with the test-prime 2, after replacing X by
X+1. Hence X2m+Y 2m is irreducible in Q[X,Y ] by Proposition 2.1. Assume

that
∑k

j=1X
n
j is irreducible over Q, hence prime in Q[X1, . . . , Xn]. Then

(
∑k

j=1X
n
j )+Xn

k+1, considered as a polynomial in (Q[X1, . . . , Xn])[Xk+1], is

irreducible by Eisenstein’s criterion with
∑k

j=1X
n
j as the test prime.

(b) Part (a) allows us to assume that n = 2ml where l is odd and
l ≥ 3. The proof is by induction on k ≥ 3. Suppose k = 3. We deduce that
Xn

1 + Xn
2 + Xn

3 ∈ (Q[X2, X3])[X1] is irreducible by Eisenstein’s criterion
with any irreducible divisor of Xn

2 + Xn
3 as a test prime. We now conclude

the proof as in (a).

(c) Write n = 2ml, l odd. If l = 1, irreducibility follows from (a). If l ≥ 3,
then X2m + Y 2m divides Xn + Y n.

(d) follows from Eisenstein’s criterion with Y − 1 as the test prime.

The next proposition is the first step in obtaining elements of Irr(R)
from some elements of Irr(Q[X]). It is also a precursor of a process we call
the adjustment.

Proposition 2.3. Let {P,A} be a subset of Irr(Q[X]) with P homoge-
neous and degA < degP. Then U(R) = U(Q) + I and A+ I is in Irr(R).
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Proof. Let f+I ∈ U(R). Then for some {g, h} ⊆ Q[X], we have 1−fg =
Ph. Write

f = f0 + f1 + · · ·+ fM ,

g = g0 + g1 + · · ·+ gP ,

h = h0 + h1 + · · ·+ hD

as sums of their homogeneous parts. Here and in “The adjustment”, D is the
degree of h and is not to be confused with D in “Notation”. We may assume
that if fi 6= 0, then P does not divide fi, because if P | fi, then I absorbs fi.
An analogous statement applies to gi. Suppose h 6= 0 after this procedure.
Comparison of leading terms gives fMgP = PhD. Hence P | fM or P | gP , a
contradiction. Hence h = 0. Therefore f ∈ U(Q), giving U(R) = U(Q) + I.
The proof that A + I ∈ Irr(R) is identical to the above with 1 replaced by
A. Since degA < degP, A does not contribute when we compare leading
terms in A(X)− fg = Ph. Since A ∈ Irr(R), A = fg implies that f + I or
g + I is in U(R).

The set-up for Proposition 2.4 is the same as for Proposition 2.3 except
that P is not assumed homogeneous.

Proposition 2.4. Let A(X) be in Irr(Q[X]) with degA < degP. If the
leading homogeneous term of P is in Irr(Q[X]), then A+ I is in Irr(R).

Proof. Suppose A − fg = Ph in the notation of the proof of Proposi-
tion 2.3. Amongst all such expressions choose one with deg f + deg g mini-
mum.

Suppose hD 6= 0 for that choice. Let L be the leading homogeneous term
of P. By hypothesis, L is irreducible, hence prime in Q[X] and degL =
degP. Then fMgP = LhD. Say L | fM . Let f? = f0 + f1 + · · · + fM −
(fM/L)(L+P?) where P? = P−L. Then f?+I = f+I andA−f?g = Ph? for
some h? ∈ Q[X]. Since degP? < degL, we get deg f?+deg g < deg f+deg g.
This contradicts minimality. Hence h = 0. As in the proof of Proposition
2.3, we conclude that A ∈ Irr(R).

We now give examples that show that the conditions in Propositions 2.3
and 2.4 are necessary for membership in Irr(R).

Example 1 (Necessity of homogeneity of P). Let P be the non-homo-
geneous polynomial X3 +Y 3−1. Let A = X3 +Y 3 +Y 2−1 ∈ Irr(Q[X,Y ]).
We have A+ I = Y 2 + I. Hence A+ I 6∈ Irr(R).

In Example 1, degA = degP, leaving room for the possibility that if A
is in Irr(Q[X]), homogeneous or not, and degA < degP, then A + I is in
Irr(R). Example 2 rules out this possibility.
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Example 2. Let P = Xp + Y p − 1, where p is an odd prime. Let

B = X + Y, A =
Xp + Y p

B
.

The homogeneous polynomial A is in Irr(Q[X,Y ]) and A is the leading term
of A+B−2. By Proposition 2.1, A+B−2 ∈ Irr(Q[X,Y ]). We now show that
A+B−2+I 6∈ Irr(R) by noting that A+B−2+I = (1−A)(B−1)+I. Neither
(1−A)+I nor (B−1)+I is in U(R): suppose ((1−A)+I))(f+I) = 1+I for
some f ∈ Q[X,Y ]. Then (1−A)f−1 = (Xp+Y p−1)g for some g ∈ Q[X,Y ].
Substituting Y = 0 and X = 1 leads to the contradiction 0 = 1. A similar
proof shows that B−1+ I 6∈ U(R). Noting that deg(A+B−2) = p−1 < p,
we have the required example.

Example 3 (Necessity of lower degree). Let P = XY − Z2 and A =
X2 + Y Z. Both A and P are in Irr(Q[X,Y, Z]). However (X2 + Y Z) + I =
((X +Z) + I)((X + Y −Z) + I). Neither of these factors is in U(R). Hence
A+ I 6∈ Irr(R).

When does an element in Irr(R) give an element in Irr(Q[X,Y ])? Our
small answer below involves lower degree.

Proposition 2.5. Suppose U(R) = U(Q) + I and degA < degP. If
A+ I is in Irr(R), then A is in Irr(Q[X,Y ]).

Proof. Suppose A = fg in Q[X]. Then f + I or g+ I is in U(R) because
A+ I is in Irr(R). Say f + I = u+ I for some u ∈ U(Q). Hence f = u+Ph
for some h ∈ Q[X]. The degree hypothesis on A implies that h = 0. Hence
f ∈ U(Q).

The examples above necessitate our case-by-case approach to establish-
ing membership in Irr(R).

3. Non-factorial Fermat curves. Recall that a polynomial P in Q[X]
is said to be factorial if R = Q[X]/〈P〉 is factorial. Let x ∈ R−(U(R)∪{0}).
We define the set of lengths of x as follows:

L(x) := {m ∈ N : x = x1 · · ·xm, where {x1, . . . , xm} ⊆ Irr(R)}.
If m ∈ L(x), we say that x has a factorization of lengthm or simply lengthm.
We refer to [GH, p. 20] for references to the literature on systems of sets of
lengths.

Lemma 3.1. If R is factorial, then |L(x)|=1 for all x in R−(U(R)∪{0}).
Lemma 3.1 and Propositions 2.3 and 2.4 are used in the rest of the paper,

often implicitly.

Theorem 3.2. The following homogeneous polynomials in Q[X] are not
factorial:



FACTORIAL FERMAT CURVES 291

(a) X2k + Y 2k , k ≥ 1.
(b) Xn + Y n − Zn, n ≥ 3.
(c) Xn + Y n + Zn, n ≥ 3 and n is not a power of 2.

Proof. (a) We deduce from Proposition 2.4 that {X+I, (X2k−1
+Y 2k−1

)

+I} ⊆ Irr(R) and X2k−1−Y 2k−1
+I has a factorization of length ≤ 2k−1. On

the other hand, 2X2k + I has a factorization of length 2k > 2k−1 + 1. Since
2X2k + I = X2k − Y 2k + I = ((X2k−1 − Y 2k−1

) + I)((X2k−1
+ Y 2k−1

) + I),
we get |L(2X2k + I)| > 1. Hence R is not factorial by Lemma 3.1.

(b) Since n ≥ 3, Zn−Y n+I has an irreducible factor g+I where deg g ≥ 2
and g ∈ Irr(Q[X]). Therefore Zn−Y n + I has a factorization of length < n.
Since Xn + I has a factorization of length n and Xn + I = Zn− Y n + I, we
get |L(Xn + I)| > 1. Hence R is not factorial by Lemma 3.1.

(c) Let n = 2km, m ≥ 3. Since Y 2k +Z2k is in Irr(Q[X]) (by Proposition
2.2) and is a factor of Y n+Zn, we use Xn+I = −(Y n+Zn)+I to complete
the proof of (c) in the same way as in (b).

The next theorem handles the case n = 2k in Xn + Y n + Zn.

Theorem 3.3. The polynomial Xn + Y n + Zn is not factorial when n
is a power of 2 and n ≥ 3.

Proof. Suppose Xn + Y n + Zn is factorial. Then any closed point in
the projective curve would have residue class field divisible by n by [H,
Chapter 2, Exercise 6.3(c)]. The geometric class group must be cyclic. It
is generated by the hyperplane intersection. On the other hand, the above
model of the Fermat curve of degree n > 2 has closed points of degree < n.
For example, if n is a power of 2, then we can always find points of the form
(a, a2, 1), where a is either a primitive cube root of 1 or a primitive sixth
root of 1.

We want to give explicit examples that show the non-factoriality of
X2k + Y 2k + Z2k .

Theorem 3.4.

(a) X22 + Y 22 + Z22 is not factorial.

(b) X2k + Y 2k + Z2k , k ≥ 2, is not factorial.

Proof. (a) 2(X2 +Y 2 +XY )2 + I = (X +Y +Z)(X +Y −Z)((X +Y )2

+ Z2) + I. Non-factoriality of X22 + Y 22 + Z22 follows from this equation,
Proposition 2.3, and Lemma 3.1.

(b) We replace X, Y , Z in (a) respectively by X2k−2
, Y 2k−2

, Z2k−2
to

get 2(X2k−1
+Y 2k−1

+X2k−2
Y 2k−2

)2 +I = (X2k−2
+Y 2k−2

+Z2k−2
)(X2k−2

+

Y 2k−2 − Z2k−2
)((X2k−2

+ Y 2k−2
)2 + Z2k−1

) + I. Just as in (a) this equation

yields non-factoriality of X2k + Y 2k + Z2k , k ≥ 2.



292 P. MALCOLMSON ET AL.

Homogeneity has played a key role in our results so far. We now turn
our attention to the non-homogeneous polynomials Xn + Y n − 1. The next
proposition will help with deciding the factoriality of these polynomials.
Recall that the radical of a natural number n ≥ 2, written rad(n), is the
product of the distinct prime divisors of n.

Proposition 3.5. The second non-zero term in the cyclotomic polyno-
mial of order n occurs at the degree ϕ(n)− n/rad(n).

Proof. Since the cyclotomic polynomial Φn(T ) is symmetric, that is,
Φn(1/T )Tϕ(n) = Φn(T ), we examine the second lowest degree term instead.
We have the known formula Φn(T ) = ±

∏
d|n(1 − T d)µ(n/d), where µ is the

Möbius function. Expanding the factors with µ(n/d) = −1 shows that the
second lowest non-zero term occurs at degree rad(n). Reflecting Φ gives the
result.

The idea underlying the adjustment was used in the proof of Propositions
2.3 and 2.4.

The adjustment. Let A ∈ Irr(Q[X]) and I = 〈Xn +Y n− 1〉. We want
to decide whether A+ I is in Irr(R). Suppose A+ I = (f + I)(g+ I). Then
for some {f, g, h} ⊆ Q[X], we have

(3.1) A− (Xn + Y n − 1)h = fg.

Write

f = f0 + f1 + · · ·+ fM ,

g = g0 + g1 + · · ·+ gP ,(3.2)

h = h0 + h1 + · · ·+ hD

as sums of their homogeneous parts.

We assume that degA < n + D = M + P . (This will be the case in
Theorem 3.6.)

The point of the adjustment is to change f and g in (3.1) with de-
gree of h reduced. We note that Xn + Y n has no multiple roots. Sup-
pose Xn + Y n = FG, where F and G are relatively prime with F divid-
ing fM , fM−1, fM−2, . . . , fK , and G dividing gP , gP−1, gP−2, . . . , gL, where
K ≤M and L ≤ P .

Let

f? = fM + fM−1 + fM−2 + · · ·+ fK ,

g? = gM + gM−1 + gM−2 + · · ·+ gL,

f? = f − f?,
g? = g − g?.
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These are the ingredients for adjusting A − (Xn + Y n − 1)h = fg. We
write

(3.3)

[
f + (Xn + Y n − 1)f?

F

][
g + (Xn + Y n − 1)g?

G

]
=

[
f − f? + (Xn + Y n)f?

F

][
g − g? + (Xn + Y n)g?

G

]
=

[
f?

F
+ f?G

][
g?

G
+ g?F

]
= f?g

? + f?g? +
f?g?

FG
+ f?g?FG

= fg + (FG− 1)f?g? − (1− FG)
f?g?

FG

= A− (FG− 1)h+ (FG− 1)f?g? − (FG− 1)
f?g?

FG

= A− (Xn + Y n − 1)

[
h− f?g? +

f?g?

FG

]
.

We can write[
f + (Xn + Y n − 1)f?

F

][
g + (Xn + Y n − 1)g?

G

]
= A− (FG− 1)h+ (FG− 1)f?g? − (FG− 1)

f?g?

FG

as A− (Xn + Y n − 1)hA = fAgA, A for adjusted. The leading term of f?g?

FG
is

fMgP
FG

= −hD

and deg f?g? ≤ (K − 1) + (L− 1).

If K + L− 2 < D or if f?g? = 0, then deg hA < deg h. Hence the degree
of h has been reduced. Since F + I and G + I are units in R, we see that
fA + I and gA + I are respective associates in R of f + I and g + I.

This completes the description of the adjustment.

We use the notion of the adjustment in the long proof of the next the-
orem. There is perhaps a dose of geometry that can be applied to shorten
the proof. We have not been successful in finding one.

Theorem 3.6. Let P be Xn+Y n−1. Suppose A is an irreducible factor
of Y n − 1 in Q[Y ]. Then A+ I is in Irr(R).

Proof. Suppose A + I 6∈ Irr(R). Then for some non-constant polyno-
mials f , g in Q[X,Y ] and some non-zero polynomial h in Q[X,Y ], we have
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A − (Xn + Y n − 1)h = fg. Since h = 0 is ruled out by the assumption
that A ∈ Irr(Q[X,Y ]), we choose h to have the minimal possible degree ≥ 0
amongst all f, g, h that satisfy (3.1).

Write f , g, and h as sums of their respective homogeneous parts as in
the adjustment ; hence fMgPhD 6= 0. If (Xn + Y n) | fM , then in the ad-
justment, F = Xn + Y n, G = 1, K = M , and L = 0. Hence g? = 0
and f?g? = 0. Therefore, deg h is reduced. With (F, f?) replaced by (G, g?)
we get the same conclusion if (Xn + Y n) | gP . We now address the situa-
tion where Xn + Y n divides neither fM nor gP . We have to find appro-
priate F and G with Xn + Y n = FG to which we can apply the adjust-
ment.

Now Xn + Y n factors into elements in Irr(Q[X,Y ]) each dividing
X2n−Y 2n. Let L be the factor with the largest degree; degL is ϕ(2n), where
ϕ is the totient function. Since −(Xn+Y n)hD = fMgP , we may assume that
L divides fM after possibly reversing f and g. Let F = gcd(fM , X

n + Y n),
so L |F . We now get ϕ(2n) ≤ degF ≤ M . Then Xn + Y n = FG, where
G 6∈ Q because Xn+Y n does not divide fM . Since Xn+Y n has no repeated
roots, G is relatively prime to fM . Hence G | gP .

Case 1: D ≥ n. In (3.1), degA < n, deg h = D. Hence the following
comparison of homogeneous terms of degree h > D involves only terms of
(Xn + Y n)h:

(3.4)

−(Xn + Y n)hD = fMgP ,

−(Xn + Y n)hD−1 = fMgP−1 + fM−1gP ,

...

−(Xn + Y n)hD−n+1 =

fMgP−n+1 + fM−1gP−n+2 + · · ·+ fM−n+1gP .

Starting from G | gP and the fact that G and fM are relatively prime, we
deduce from −(Xn+Y n)hD−1 = fMgP−1 + fM−1gP that G | gP−1. Working
down (3.4) we find by induction that G | gP−i, i = 0, 1, . . . , n− 1. Now back
to the adjustment with L = P − n + 1 and K = M from f | fM , we have
n + D = M + P and K + L − 2 = M + P − n + 1 − 2 = D − 1 < D. The
adjustment has lowered deg h. We have thus proved that Case 1 is untenable.
Therefore, D < n.

Case 2: D ≥ a = degA. We now have D < n. We examine terms of
degree > D. The last equation in (3.5) compares terms of homogeneous
degree equal to D + 1. Again since degA ≤ D and deg h = D < n, only
terms of (Xn + Y n)h are involved in (3.5):
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(3.5)

−(Xn + Y n)hD = fMgP ,

−(Xn + Y n)hD−1 = fMgP−1 + fM−1gP ,

...

−(Xn + Y n)h0 = fMgP−D + fM−1gP−D+1 + · · ·+ fM−DgP ,

0 = fMgP−D−1 + · · ·+ fM−D−1gP ,

...

0 = fMgP−n+1 + · · ·+ fM−n+1gP .

Replacing (3.4) with (3.5), we deduce as in Case 1 that D has been
lowered. This time we conclude that D < a = degA. Since a < n, we
recover D < n.

Case 3: deg f = M > a. We now also have D < a. Then n − P =
M−D > M−a. Since 0 < M−D = n−P , we get P < n and P −n+1 ≤ 0.

Now we consider terms of homogeneous degree > a. Since D < a, only
terms of (Xn + Y n)h contribute to the analogue of (3.5) whose last line is
0 = fMga+1−M + · · · + fa+1−P gP . Just as in Case 1, we find by induction
that G | gP , . . . , G | ga+1−M .

Next we consider the degree a. Since a > D, h does not contribute
any terms. We have Y a = fMga−M + fM−1ga+1−M + · · · + fa−P gP . Now,
G | ga+1−M , . . . , G | gP , and G does not divide Y a because as a non-constant
divisor of Xn + Y n, G has X-terms. Therefore, G does not divide fMga−M .
Hence ga−M 6= 0 and a − M ≥ 0, contradicting M > a. Hence
M ≤ a.

Bearing in mind that F | fM , degF ≥ ϕ(2n), and that the degree of every
irreducible factor of Y n − 1 is bounded by ϕ(n), we obtain the following
inequalities from the three cases: M ≤ a ≤ ϕ(n) ≤ ϕ(2n) ≤ degF ≤ M .
Hence each of the inequalities is an equality.

We draw the following conclusions, called the Adjustment Lemma, from
these equalities.

Adjustment Lemma. In the above circumstances, we have ϕ(n) =
ϕ(2n) = M. Hence n is odd. Moreover, fM = cF for some c ∈ U(Q),
F = L, and a = ϕ(n) implies that A is the cyclotomic polynomial of or-
der n. Moreover, F is the irreducible factor of Xn + Y n of degree ϕ(2n) =
ϕ(2n).

Case 4: Examining terms of degree > a = degA > D = deg h. Neither
h nor A contributes to these terms because their degrees are less than a.
We consider
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(3.6)

−(Xn + Y n)hD = fMgP ,

−(Xn + Y n)hD−1 = fMgP−1 + fM−1gP ,

...

−(Xn + Y n)h0 = fMgP−D + fM−1gP−D+1 + · · ·+ fM−DgP ,

0 = fMgP −D − 1 + · · ·+ fM−D−1gP ,

...

0 = fMg1 + · · ·+ fM−P+1gP .

As in Case 1 we get G | gP , . . . , G | g1. We now turn our attention to F .
First, F ∈ Irr(Q[X,Y ]) as in the Adjustment Lemma. Suppose F | gP . Since
F and G are relatively prime and G | gP , we conclude that Xn + Y n = FG
divides gP . Since P = degG, this is not possible. So F does not divide gP .
We deduce from the first equation in (3.6) that F | fM . By an analogous
induction argument to that for G, we find that F | fM , . . . , F | fM−P+1. Now
we use K = M −P + 1 and L = 1 for the adjustment of D. This will reduce
D if M − P + 1 + 1− 2 = M − P < D. Therefore, by minimality of D, we
get D ≤M − P . Since D ≥ 0 we have M ≥ P .

Using the Adjustment Lemma and n+D = M+P we get (n+D)+D ≤
(M + P ) + (M − P ). So 2D ≤ 2M − n. Hence D ≤M − n/2 = ϕ(n)− n/2.
In particular,

degA = a = ϕ(n) ≥ n/2.
In order to obtain information on ϕ(n), we let p1, . . . , pk be the distinct
prime divisors of n. Then (p1−1) · · · (pk−1) ≤ p1 · · · pk−1. Hence 2(p1−1)
· · · (pk− 1)− p1 · · · pk ≤ (p1− 1) · · · (pk− 1)− 1. Multiply the last inequality
by n/rad(n) to get 2ϕ(n)− n ≤ ϕ(n)− n/rad(n).

Recalling that h = 0 was ruled out at the start of the proof, we have
D ≥ 0 in P + M = n + D. Since M = ϕ(n), we have P − D = n − ϕ(n).
Hence

(3.7)

D ≤ ϕ(n)− n/2 ≤ l/2,
P ≥ n− ϕ(n),

M − P = ϕ(n)− P ≤ 2ϕ(n)− n ≤ l.
Recall that the second non-zero term of A occurs at degree l by Propo-

sition 3.5. In the comparison of the non-zero term of degree l only A con-
tributes because l < n and D ≤ ϕ(n) − n/2. Now examining the non-zero
term of degree l, we get

αY l = fMgl−M + fM−1gl−M+1 + · · ·+ flg0 + · · ·+ fl−P gP

= flg0 + · · ·+ fl−P gP ,

using gl−M+i = 0 when l−M + i < 0. Since G | g1, . . . , G | gP , the left-hand
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side is not divisible by G but every term of the right-hand side except flg0
is divisible by G. In fact if G divides flg0 then it would divide αY l and it
does not. Hence fl 6= 0. But F divides fM , fM−1, . . . , fM−P+1 and F does
not divide αY l. Hence l ≤ M − P . Combining this with (3.7) we find that
M − P = l = ϕ(n) − n/rad(n), M − P = 2ϕ(n) − n, P = n − ϕ(n). From
M + P = n+D, we conclude that D = 0.

Consequently, (3.1) assumes the form A− (Xn + Y n− 1)h0 = −Xnh0 +
[A− (Y n − 1)h0]. Recall that we already have φ(n) = degA ≥ n/2, n odd.
Hence φ(n) ≥ (n+ 1)/2. We have degA2 = 2ϕ(n) ≥ n+ 1 > deg(A− (Y n−
1)h0). Since A divides Y n − 1, we deduce from Eisenstein’s criterion that
Xnh0 + [A− (Y n− 1)h0] is in Irr(Q[Y ][X]). Hence either f or g is in U(R).
By the adjustment, any other f, g are associates. Therefore A is in Irr(R).

This finishes the proof of Theorem 3.6.

Theorem 3.7. If Q[X,Y ]/〈Xn+Y n−1〉 is factorial, then n is at most
two.

Proof. We have Xn + I = (1− Y n) + I. If n ≥ 3, the left-hand side has
length a multiple of n, and the right-hand side has length < n by Theo-
rem 3.6. Hence R = Q[X,Y ]/〈Xn+Y n−1〉 is not factorial by Lemma 3.1.

4. Factorial Fermat curves. We proved in the last section that a
Fermat curve of degree at least three is not factorial. We did so by showing
that for some element x in the coordinate ring R, we have x = x1 · · ·xm =
y1 · · · yn, where {x1, . . . , xm, y1, . . . yn} ⊆ Irr(R) and m 6= n. In other words,
R is not even half-factorial. In the notation of Section 3, R is half-factorial if
and only if |L(x)| = 1 for all x in R−(U(R)∪{0}). Half-factoriality now has
a wide scope (see [GKR], [GP], [KR], [PS1], and [PS2]). Examples of half-
factorial domains are in [R] in the context of composition of polynomials,
pre-dating the introduction of the terminology half-factorial by fifty-eight
years. If f = g ◦ h, we say that we have a decomposition of f . We refer to
[GS] for counterexamples to Ritt’s theorem for rational functions. It is noted
in [GS] that the function

f =
X3(X + 6)3(X2 − 6X + 36)3

(X − 3)3(X2 + 3X + 9)3
in Q(X)

arises in the context of Monstrous Moonshine. It is shown that f has two
decompositions of lengths 4 and 2. The problem of complete decomposition
of rational functions seems to be related to the open problem of classes of
rational functions which commute with respect to composition, as noted in
the review of [GS] by Carlos D’Andrea.

We now return to the focus of our paper. In this section we show that
the Fermat curves of degree two are at least half-factorial, while a linear
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change of variables tells us that a Fermat curve of degree one is facto-
rial.

Proposition 4.1.

(a) ([F, Theorem 8.1]) Let A be a Krull domain and X an indeterminate.
Then Cl(A) = Cl(A[X]).

(b) ([F, Corollary 7.3]) Let S be a multiplicatively closed subset of a do-
main A. If S is generated by prime elements, then Cl(A)=Cl(S−1A).

Here is the main theorem of this section.

Theorem 4.2.

(a) X2 + Y 2 + Z2 is factorial.
(b) X2 + Y 2 − Z2 is half-factorial, but not factorial.
(c) X2 + Y 2 − 1 is half-factorial, but not factorial.
(d) X2 + Y 2 is half-factorial, but not factorial.

Proof. (a) follows from Theorem 1.1, while (b) follows from Theorem 1.1
and [Z, Theorem 2.4] already quoted in the Introduction.

(c) We adapt to Q the argument used in [F, Proposition 11.8] for R.
Let X,Y, T be algebraically independent indeterminates. Consider R =
Q[X,Y ]/〈X2+Y 2−1〉. Then using Proposition 4.1 and Theorem 1.1, we get
Cl(R) = Cl(Q[X,Y, T ]/〈X2+Y 2−1〉) = Cl(Q[X,Y, T, T−1]/〈X2+Y 2−1〉) =
Cl(Q[XT, Y T, T ]/〈(XT )2 + (Y T )2 − T 2〉) = Z/2Z. Theorem 2.4 of [Z] then
gives us (c).

(d) We observe that R = Q[X,Y ]/〈X2 + Y 2〉 ∼= Q +XQ[i][X], i2 = −1.
Since R is not integrally closed, it is not factorial. However R is half-factorial
(see for instance [AAZ, Theorem 5.3] or [MO4, Proposition 1.4]).

The following theorem summarizes our results on Fermat curves.

Theorem 4.3. Let f be a polynomial in the set {Xn+Y n, Xn+Y n−Zn,
Xn + Y n +Zn, Xn + Y n − 1}. Then the corresponding coordinate ring over
Q of f is half-factorial if and only if n is one or two.

The proof of Theorem 4.3 goes through to give the following proposition.

Proposition 4.4. Let c ∈ U(Q).

(a) If the polynomial cXn + Y n − Zn is half-factorial, then n is one or
two.

(b) If n is not a power of two, then the polynomial Xn + Y n + cZn is
not half-factorial.

For convenience, we call aX3 + bY 3 + cZ3, where a, b, c are non-zero
integers, a Selmer curve. The Selmer curve 2X3 + 3Y 3 + 5Z3 has rational
points, unlike the famous Selmer curve 3X3 + 4Y 3 + 5Z3. Proposition 4.4
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tells us that X3 +Y 3 +abcZ3 is not half-factorial. We do not know whether
an arbitrary Selmer curve is half-factorial.

Our methods are specific to homogeneous curves or non-homogeneous
curves to which we can apply the adjustment. We can also handle non-
homogeneous curves which can be made homogeneous by a suitable re-
assignment of degrees to the variables. We illustrate this procedure in Propo-
sition 4.5.

Proposition 4.5. The polynomial P = Y (Y −d)−(X−a)(X−b)(X−c),
where {a, b, c, d} ⊆ Q, is not half-factorial.

Proof. We have P = Y 2−X3− g(X,Y ) where deg g(X,Y ) ≤ 2. Change
the degree function so that deg Y = 3 and degX = 2. Then Y 2 −X3 is the
homogeneous leading term of P and is in Irr(Q). We then deduce from the
equation Y (Y − d) + I = (X − a)(X − b)(X − c) + I and Proposition 2.4
that |L(Y (Y − d) + I)| > 1. Hence P is not half-factorial.
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