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Hölder’s inequality for roots of symmetric operator spaces

by
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Abstract. We prove a version of Hölder’s inequality with a constant for pth roots
of symmetric operator spaces of operators affiliated to a semifinite von Neumann algebra
factor, and with constant equal to 1 for strongly symmetric operator spaces.

1. Introduction. Let B be an infinite-dimensional, σ-finite von Neu-
mann algebra factor equipped with a normal, faithful, semifinite (or finite)
trace τ and acting on a Hilbert space. A closed, densely defined, unbounded
operator T on the Hilbert space is affiliated with B if the partial isometry
from its polar decomposition and all spectral projections of its absolute value
lie in B, and it is said to be τ -measurable if for every ε > 0, there is a pro-
jection p ∈ B such that τ(p) < ε and T (1 − p) is bounded. B together with
the set of τ -measurable operators T as described above is a ∗-algebra under
natural operations (performing addition and multiplication with appropri-
ate domains, and taking closures; see, for example, [8] for details.) We let
S(B, τ) denote this ∗-algebra. Note that when B is a type I von Neumann
algebra, then S(B, τ) = B.

We will consider subspaces I ⊆ S(B, τ) that are B-bimodules and such
that there is a complete symmetric norm ‖ · ‖I on I (see Definition 2.1).
Such a pair (I, ‖ · ‖I) is called a symmetric operator space [8]. Note that if
I ⊆ B, then I is an ideal of B. Among the symmetric operator spaces are
the fully symmetric Schatten–von Neumann ideals Sp, noncommutative Lp
spaces, 1 ≤ p <∞, and the Marcinkiewicz (or Lorentz) operator spaces

(1.1) Iψ :=

{
A ∈ S(B, τ) : ‖A‖Iψ := sup

t>0

1

ψ(t)

t�

0

µs(A) ds <∞
}
,
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where ψ is a concave function satisfying
lim
t→0+

ψ(t) = 0, lim
t→∞

ψ(t) =∞

and µ(A) is the generalized singular value function of A (see (2.1)).
For 1 < p <∞, define the set

(1.2) I1/p = {A ∈ S(B, τ) : |A|p ∈ I}
and the function
(1.3) ‖A‖I1/p :=

∥∥|A|p∥∥1/pI for A ∈ I1/p.

The space I1/p endowed with the function ‖ · ‖I1/p is also a symmetric op-
erator space (see Theorem 2.3). When I is the noncommutative L1 space
{A ∈ S(B, τ) : τ(|A|) <∞}, then I1/p is the noncommutative Lp space, and
the noncommutative Hölder inequality

(1.4) ‖AB‖I ≤ ‖A‖I1/p‖B‖I1/q
(A ∈ I1/p, B ∈ I1/q, 1 < p <∞, 1/p+ 1/q = 1),

holds [3, Theorem 4.2]. By [2, Proposition 2.5], the Hölder inequality (1.4)
holds when I is a Marcinkiewicz operator space of a σ-finite semifinite von
Neumann algebra factor B, with norm ‖A‖Iψ as indicated in (1.1) (and also—
see the erratum to [2]—for Iψ∩B with the symmetric normmax{‖·‖, ‖·‖Iψ}).

In this note (see Theorem 2.10), we show that a weaker Hölder-type
inequality

‖AB‖I ≤ 4‖A‖I1/p‖B‖I1/q(1.5)
holds in an arbitrary symmetric operator space (I, ‖ · ‖I). We also show
that the Hölder inequality (1.4) holds in an arbitrary strongly symmetric
operator space (see Definition 3.1). The class of strongly symmetric operator
spaces includes the fully symmetric operator space, and the first example
of a symmetric operator space that is not fully symmetric is due to [10].
An example of a symmetric (Banach) function space that is not strongly
symmetric can be found in [11], and examples of symmetric operator spaces
that are not strongly symmetric can be constructed based on Theorem 2.3.

Observe that if we take the equivalent norms ‖ · ‖1/p = 2‖ · ‖I1/p and
‖ · ‖1/q = 2‖ · ‖I1/q on I1/p and I1/q, respectively, then from (1.5) we get the
inequality

‖AB‖I ≤ ‖A‖1/p‖B‖1/q.(1.6)
Our interest in these versions of Hölder’s inequality for symmetric opera-

tor spaces is motivated in part by the second order trace formulas in [2, 12],
which are proved in the case of a symmetric operator ideal I for perturba-
tions in the square root ideal I1/2 that possesses a norm ‖ · ‖1/2 satisfying
(1.6) with p = q = 2.
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2. A Hölder-type inequality in symmetric operator spaces. The
generalized singular value function µ(A) of A ∈ S(B, τ) is defined by

µt(A) := inf{s ≥ 0 : τ(χ(s,∞)(|A|)) ≤ t}, t > 0(2.1)

(see [3]). It has properties analogous to those of the decreasing rearrangement
and to usual singular values of operators (see [3, Lemma 2.5]).

Definition 2.1. A norm on a B-bimodule I of S(B, τ) is called symmet-
ric if A ∈ S(B, τ), B ∈ I, µ(A) ≤ µ(B) implies A ∈ I and ‖A‖I ≤ ‖B‖I .

We note that the properties of an operator ideal that were important
in [2, 12] naturally hold for an ideal in a symmetric operator space. If a
B-bimodule I ⊆ S(B, τ) is symmetric, then A ∈ B, B ∈ I, 0 ≤ A ≤ B
implies ‖A‖I ≤ ‖B‖I . It is proved in [8, Theorem 2.5.2] that for a Banach
bimodule (I, ‖ · ‖I) of S(B, τ), the symmetry of the norm ‖ · ‖I is equivalent
to the property

‖ABC‖I ≤ ‖A‖ ‖B‖I‖C‖, (A,C ∈ B, B ∈ I).

It was also assumed in [2, 12] that I lies in B and the norm has the property
‖·‖ ≤ K‖·‖I for some constant K > 0, where ‖·‖ is the operator norm. If J
is a symmetric operator space in S(B, τ), then J ∩B endowed with the norm
max{‖ · ‖, ‖ · ‖J } is a symmetric operator ideal satisfying these properties.

There is a correspondence between symmetric operator spaces and Ba-
nach function and sequence spaces that is provided by the generalized sin-
gular values of operators. In the case of a type I∞ factor, this is the well
known Calkin correspondence. We will recall some salient aspects here; see,
for example, [8] for a thorough exposition. Let

J =


N, B a type I∞ factor,
[0, 1], B a type II1 factor,
[0,∞), B a type II∞ factor,

equipped with counting measure if J = N and Lebesgue measure otherwise;
let D(J) denote the vector space of all measurable, real-valued functions f
on J such that for every ε > 0, the measure of {t ∈ J : |f(t)| > ε} is finite
(and where elements of D(J) are regarded as being the same if they differ
only on a set of measure zero). Let x∗ denote the decreasing rearrangement
of |x| when x ∈ D(J). Properties of the decreasing rearrangement can be
found, for example, in [1, Proposition 1.7].

Definition 2.2. A symmetric function space (also called, when J = N, a
symmetric sequence space) is a subspace E ofD(J) equipped with a complete
norm ‖ · ‖E such that x ∈ D(J), y ∈ E, x∗ ≤ y∗ implies x ∈ E and
‖x‖E ≤ ‖y‖E .
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Henceforth, we will refer to these as symmetric function spaces, including
the possibility that they are symmetric sequence spaces.

By [4], every B-bimodule I ⊆ S(B, τ) can be uniquely described by its
characteristic set

µ(I) := {µ(A) : A ∈ I}.
Alternatively, the correspondence can be seen at the level of function spaces
and this goes further to characterize also symmetric norms. In particular,
given a symmetric operator space (I, ‖ · ‖I) in S(B, τ) consider the subspace

EI := {x ∈ D(J) : x∗ ∈ µ(I)}
and for x ∈ EI set ‖x‖EI := ‖A‖I for A ∈ I such that µ(A) = x∗. Con-
versely, given a symmetric function space (E, ‖ · ‖E), define

IE := {A ∈ S(B, τ) : µ(A) ∈ E}, ‖A‖IE := ‖µ(A)‖E .
We have the following correspondence between symmetric operator spaces
and symmetric function spaces.

Theorem 2.3 ([8, Theorem 3.1.1]; see also [5, Theorem 8.11]). The map

(I, ‖ · ‖I) 7→ (EI , ‖ · ‖EI )

is a bijection from the set of all symmetric operator spaces in S(B, τ) onto
the set of all symmetric function spaces in D(J), whose inverse is the map

(E, ‖ · ‖E) 7→ (IE , ‖ · ‖IE ).
It is proved in [6, Theorem II.4.1] that every symmetric function subspace

E of D(J) satisfies
L1 ∩ L∞ ⊆ E ⊆ L1 + L∞.

Due to Theorem 2.3, every symmetric operator space I in S(B, τ) satisfies
L1(B, τ) ∩ L∞(B, τ) ⊆ I ⊆ L1(B, τ) + L∞(B, τ).

We will use the Hölder inequality in Banach lattices to obtain the in-
equality (1.5) in symmetric operator spaces.

Definition 2.4 ([7, Definition 1.a.1]). A partially ordered Banach space
X over the field R is called a Banach lattice provided

(i) x ≤ y implies x+ z ≤ y + z, for every x, y, z ∈ X,
(ii) ax ≥ 0 for every 0 ≤ x ∈ X and every a ∈ (0,∞),
(iii) for all x, y ∈ X there exists a least upper bound x ∨ y ∈ X and a

greatest lower bound x ∧ y ∈ X,
(iv) ‖x‖X ≤ ‖y‖X whenever |x| ≤ |y|, for x, y ∈ X, where |x| := x∨(−x).
Every symmetric function space (E, ‖ · ‖E) is a Banach lattice with the

partial order defined by pointwise inequality (almost everywhere), with ∨
and ∧ then taken pointwise. Indeed, the properties (i) and (ii) hold trivially
and the property (iv) is an immediate consequence of monotonicity of the
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decreasing rearrangement and the symmetric property of E. Let x, y ∈ E.
Since 0 ≤ |x ∨ y| ≤ |x| ∨ |y| ≤ |x| + |y|, by monotonicity of the decreasing
rearrangement and the symmetric property of E, we get x ∨ y ∈ E. Since
x ∧ y = x+ y − x ∨ y, we also have x ∧ y ∈ E. Thus, the property (iii) also
holds.

In a Banach lattice X, there is a functional calculus

Xn 3 (x1, . . . , xn) 7→ f(x1, . . . , xn) ∈ X

for functions f : Rn → R that are homogeneous of degree 1 (see [7, Theorem
1.d.1]). In the case of a symmetric function space, this functional calculus
coincides with defining f(x1, . . . , xn) pointwise.

Proposition 2.5 ([7, Proposition 1.d.2(i)]). Let X be a Banach lattice.
For every 0 < θ < 1 and every x, y ∈ X,∥∥|x|θ · |y|1−θ∥∥

X
≤ ‖x‖θX · ‖y‖1−θX ,

where |x|θ|y|1−θ ∈ X is given by the functional calculus described above.

Definition 2.6. Let (E, ‖ · ‖E) be a symmetric function space in D(J).
For 1 < p <∞, let

E1/p := {x ∈ D(J) : |x|p ∈ E},

and for x ∈ E1/p, let

(2.2) ‖x‖E1/p :=
∥∥|x|p∥∥1/p

E
.

Proposition 2.7 ([9, Proposition 2.23(i)]). Let E be a symmetric func-
tion space. Then, for 1 < p < ∞, (E1/p, ‖ · ‖E1/p) is a symmetric function
space.

Proposition 2.7, asserts, in particular, the completeness of the norm (2.2)
on E1/p. As an immediate consequence of Proposition 2.5, we obtain the
following.

Proposition 2.8. Let E be a symmetric function space. For every 1 <
p, q < ∞ with 1/p + 1/q = 1, and every x ∈ E1/p and y ∈ E1/q, we have
xy ∈ E and

‖xy‖E ≤
∥∥|x|p∥∥1/p

E

∥∥|y|q∥∥1/q
E
.

From Proposition 2.7 and the correspondence described in Theorem 2.3,
we immediately obtain the analogue of Proposition 2.7 for symmetric oper-
ator spaces.

Theorem 2.9. Let (I, ‖ · ‖I) be a symmetric operator space. Then
(I1/p, ‖ · ‖I1/p) defined in (1.2) and (1.3) is a symmetric operator space.
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Here is the main result of this note.

Theorem 2.10. Let I be a symmetric operator space in S(B, τ). Then
for every 1 < p, q <∞ with 1/p+1/q = 1, and every A ∈ I1/p and B ∈ I1/q,
we have AB ∈ I and

(2.3) ‖AB‖I ≤ 4‖A‖I1/p‖B‖I1/q .
Proof. Let (E, ‖ · ‖E) = (EI , ‖ · ‖EI ) be as in the correspondence from

Theorem 2.3. Suppose firstly that B is semifinite but not finite (namely, that
B is type II∞ or I∞). We can choose isometries V1, V2 ∈ B so that V1V ∗1 +
V2V

∗
2 = 1 and then τ(V1DV

∗
1 ) = τ(D) for every D ∈ S(B, τ) satisfying

D ≥ 0. If C,D ∈ S(B, τ), then by C⊕D ∈ S(B, τ) we will mean the element
V1CV

∗
1 + V2DV

∗
2 .

By the properties of the generalized singular values (see [3, Proposition
2.5]), we have

(2.4) µt(AB) ≤ µt/2(A)µt/2(B) = µt(A⊕A)µt(B ⊕B),

with A ⊕ A ∈ I1/p and B ⊕ B ∈ I1/q. Applying Proposition 2.8 gives
µ(A⊕A)µ(B ⊕B) ∈ E and

‖µ(A⊕A)µ(B ⊕B)‖E ≤ ‖(µ(A⊕A))p‖1/pE ‖(µ(B ⊕B))q‖1/qE

= ‖µ(A⊕A)‖E1/p‖µ(B ⊕B)‖E1/q .

From (2.4) and the symmetry condition, we have µ(AB) ∈ E and

‖µ(AB)‖E ≤ ‖µ(A⊕A)‖E1/p‖µ(B ⊕B)‖E1/q .

Thus, AB ∈ I. The equality of norms ‖C‖I = ‖µ(C)‖E for C ∈ I (and
similarly for C in I1/p and I1/q) immediately implies

(2.5) ‖AB‖I ≤ ‖A⊕A‖I1/p‖B ⊕B‖I1/q .
Since we have

(2.6) ‖A⊕A‖I1/p ≤ ‖A⊕0‖I1/p +‖0⊕A‖I1/p = 2‖µ(A)‖E1/p = 2‖A‖I1/p ,
and a similar inequality for B, from (2.5) we get (2.3). This completes the
proof when B is not of type II1.

When B has type II1, essentially the same proof works. However, instead
of A⊕A we useW1|A|W ∗1+W2|A|W ∗2 whereW1 andW2 are partial isometries
satisfyingW ∗i Wi = P for i ∈ {1, 2}, andW1W

∗
1 +W2W

∗
2 = 1 for a projection

P of trace 1/2 in B that commutes with |A| and so that

µr(|A|P ) =
{
µr(|A|), 0 < r < 1/2,

0, 1/2 ≤ r ≤ 1.

A similar procedure is performed for B, but with a projection Q and partial
isometries U1 and U2. Then arguing as above, instead of (2.5) we get

‖AB‖I ≤
∥∥W1|A|W ∗1 +W2|A|W ∗2

∥∥
I1/p

∥∥U1|B|U∗1 + U2|B|U∗2
∥∥
I1/q ,
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and instead of (2.6) we get∥∥W1|A|W ∗1 +W2|A|W ∗2
∥∥
I1/p ≤ 2‖µ(|A|P )‖E1/p = 2

∥∥|A|P∥∥I1/p ≤ 2‖A‖I1/p ,
and a similar inequality for |B|Q. Thus, also in this case we get (2.3).

Question 2.11. What is the best constant in (2.3)? In particular, can
4 be replaced by 1?

In the next section, we see that the constant is 1 in strongly symmetric
operator spaces.

3. The Hölder inequality in strongly symmetric operator spaces.
For a symmetric Banach function space E, recall that we have E ⊆ L1(J)+
L∞(J). We have the notion of the Hardy–Littlewood submajorization: for
x, y ∈ E, we write x ≺≺ y to mean

t�

0

x∗(s) ds ≤
t�

0

y∗(s) ds, t > 0.

Similarly, for A,B in a symmetric operator space I ⊆ L1(B, τ) + L∞(B, τ),
we say that A is submajorized by B and write A ≺≺ B if

t�

0

µs(A) ds ≤
t�

0

µs(B) ds, t > 0.

The following definition is standard.

Definition 3.1.

(i) A symmetric function space E ⊆ L1(J)+L∞(J) is said to be strongly
symmetric if x, y ∈ E, x ≺≺ y implies ‖x‖E ≤ ‖y‖E .

(ii) A symmetric operator space (I, ‖·‖I) is said to be strongly symmetric
if the corresponding symmetric function space (EI , ‖·‖EI ) is strongly
symmetric. Equivalently, a symmetric operator space I ⊆ L1(B, τ)+
L∞(B, τ) is strongly symmetric if A,B ∈ I, A ≺≺ B implies that
‖A‖I ≤ ‖B‖I .

Now we see that the Hölder inequality holds (with constant 1) in strongly
symmetric operator spaces.

Theorem 3.2. Let (I, ‖ · ‖I) be a strongly symmetric operator space in
S(B, τ). Then for every 1 < p, q <∞ with 1/p+1/q = 1, and every A ∈ I1/p,
B ∈ I1/q, we have AB ∈ I and

(3.1) ‖AB‖I ≤ ‖A‖I1/p ‖B‖I1/q .
Proof. Let (E, ‖ · ‖E) = (EI , ‖ · ‖EI ). Making use of Proposition 2.8 and

the functional calculus described above it, we infer µ(A)µ(B) ∈ E and

(3.2) ‖µ(A)µ(B)‖E ≤ ‖µ(A)‖E1/p‖µ(B)‖E1/q .
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By Theorem 2.10, we also have µ(AB) ∈ E, and [3, Theorem 4.2] (with
f(x) = x) yields µ(AB) ≺≺ µ(A)µ(B). As E is strongly symmetric, we have

‖µ(AB)‖E ≤ ‖µ(A)µ(B)‖E .
Now (3.1) follows from this and (3.2).
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