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Endpoint bounds of square functions associated
with Hankel multipliers

by

Jongchon Kim (Madison, WI)

Abstract. We prove endpoint bounds for the square function associated with ra-
dial Fourier multipliers acting on Lp radial functions. This is a consequence of endpoint
bounds for a corresponding square function for Hankel multipliers. We obtain a sharp
Marcinkiewicz-type multiplier theorem for multivariate Hankel multipliers and Lp bounds
of maximal operators generated by Hankel multipliers as corollaries. The proof is built on
techniques developed by Garrigós and Seeger for characterizations of Hankel multipliers.

1. Introduction. Let Sλt be the Bochner–Riesz mean of order λ > 0
defined by

F [Sλt f ](ξ) =

(
1− |ξ|

2

t2

)λ
+

Ff(ξ)

for t > 0, where F denotes the Fourier transform Ff(ξ) =
	
Rd f(x)eix·ξ dx.

One is interested in the convergence Sλt f → f as t→∞ in various senses. In
this regard, Lp estimates of Sλ := Sλ1 and the maximal operator Sλ∗ f(x) =
supt>0 |Sλt f(x)| have been studied extensively. For λ below the critical index
(d− 1)/2, it is conjectured that Sλ is bounded on Lp if and only if

2d

d+ 1 + 2λ
< p <

2d

d− 1− 2λ

and that Sλ∗ is bounded for the same p-range for p ≥ 2.
Although the conjectures remain open in the full p-range for d ≥ 3, they

are indeed theorems for d = 2 by Carleson and Sjölin [6] and Carbery [2],
respectively. In addition, the work by Carbery, Gasper, and Trebels [5] and
Carbery [3] shows that the results for d = 2 are consequences of more gen-
eral multiplier theorems which apply to all radial Fourier multipliers. This
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involves the square function Gα,

Gαf(x) =

(∞�
0

|Rαt f(x)|2 dt
t

)1/2

,

where

F [Rαt f ](ξ) =
|ξ|
t

(
1− |ξ|

t

)α−1

+

Ff(ξ).

The square function (with Sαt f −Sα−1
t f in place of Rαt f) was introduced by

Stein [23] in order to prove the L2 boundedness of Sλ∗ for λ > 0.
Let m be a bounded function on R+ := (0,∞) and Tm be the operator

defined by
F [Tmf ](ξ) = m(|ξ|)Ff(ξ).

Then for α > 1/2 and a fixed non-trivial smooth function φ supported on
[1, 2], there is a pointwise estimate

(1.1) g[Tmf ](x) ≤ C sup
t>0
‖m(t ·)φ‖L2

α(R)G
αf(x),

where g is the standard Littlewood–Paley square function and L2
α(R) is the

L2-Sobolev space (see [3]). Since ‖g(Tmf)‖Lp(Rd) is comparable to ‖Tmf‖Lp(Rd)

for 1 < p < ∞, (1.1) reduces Lp estimates of Tm to the study of Gα, which
is independent of a specific multiplier m. Moreover, it was shown in [3] that
Gα controls the maximal operator generated by Tm by a pointwise estimate,
which gives effective Lp bounds for the maximal functions Sλ∗ when p ≥ 2. We
refer the reader to [19] for an excellent overview of various square functions.

For 1 < p ≤ 2, it is known that Gα is bounded on Lp if and only if
α > d(1/p− 1/2) + 1/2 (see [25]). On the other hand, in order for Gα to be
bounded on Lp(Rd) for p > 2, the condition

α > max

(
d

(
1

2
− 1

p

)
,
1

2

)
is necessary, and is conjectured to be sufficient. The conjecture for d = 2
was verified by Carbery [2, 4], yielding the L4 bound for Sα∗ as a corollary.
For higher dimensions, the conjecture has been verified for p > 2(d + 2)/d
in [18] (see also [7, 22]). Furthermore, Lp,2 → Lp endpoint estimates for the
critical index α = d(1/2− 1/p) and a smaller p-range, p > 2(d+ 1)/(d− 1),
were obtained in [19], where Lp,q denotes the Lorentz space.

We show that, on the subspace of radial functions, the endpoint estimate
is valid for the conjectured p-range.

Theorem 1.1. Let

d ≥ 2,
2d

d− 1
< p <∞ and α = d

(
1

2
− 1

p

)
>

1

2
.
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Then
‖Gαf‖Lprad(Rd) ≤ C‖f‖Lp,2rad(Rd)

.

This implies a radial version of the conjecture forGα by real interpolation.
As a consequence, one may obtain a new proof of the sharp estimate for
radial Fourier multipliers acting on radial functions in terms of Sobolev
spaces (see [14]). A much stronger result is known. Garrigós and Seeger [12]
obtained a necessary and sufficient condition for Lprad(Rd) boundedness of Tm
for 1 < p < 2d/(d+1). We note that our proof of Theorem 1.1 is based on [12].

Let Mmf := supt>0 |Tm(t·)f |, where we additionally assume that m is
compactly supported in (0,∞). For the range 1 < p < 2d/(d + 1), a nec-
essary and sufficient condition for Lprad(Rd) boundedness of Mm is known
(see [13]). By Theorem 1.1, we may obtain a sharp sufficient condition for
Lprad boundedness of Mm in terms of Sobolev spaces for 2 ≤ p < ∞ (see
Corollary 2.4).

Our primary motivation for Theorem 1.1 comes from a more general
situation when multipliers and functions are assumed to be multi-radial. Let
n ∈ N and ~d = (d1, . . . , dn) ∈ Nn. We say that f is ~d-radial if there is a
function f0 on (0,∞)n such that f(x1, . . . , xn) = f0(|x1|, . . . , |xn|), where
xj ∈ Rdj . In this case, we say that f is the ~d-radial extension of f0.

In this paper, we are interested in the Fourier multiplier transformation
given by a ~d-radial multiplier m acting on ~d-radial functions. A typical m
would be a tensor product of radial multipliers. In that case, one may easily
obtain Lp bounds by iteration. Unfortunately, this argument fails for gen-
eral m. Nevertheless, it is easy to iterate Theorem 1.1 to obtain estimates for
product square functions. As a consequence, we obtain sharp Marcinkiewicz
type multiplier theorems for the ~d-radial case. This will be carried out in the
multivariate Hankel multiplier setting, which improves a result of Wróbel
[26] (see Theorem 3.1).

Here we state a special case of Theorem 3.1. Let us denote by R~d and
Lprad(R~d) the product space Rd1 × · · · × Rdn and the subspace of ~d-radial
functions in Lp(R~d), respectively. Let φ be a tensor product of n non-trivial
smooth functions supported on the interval [1, 2]. It would be convenient to
define the subspace L2

loc,~α(Rn) of L2
loc(Rn) equipped with the norm

‖m0‖2L2
loc,~α

(Rn) := sup
~t∈(0,∞)n

�

Rn
|FRn [m0(~t ·)φ](ξ)|2

n∏
j=1

(1 + |ξj |)2αj dξ,

where (~t ·) denotes the n-parameter dilation (t1 ·, . . . , tn ·).

Theorem 1.2. Let 1 < p < ∞ and ~d = (d1, . . . , dn) with dj ≥ 2 for
all j. Assume that m is the ~d-radial extension of a bounded function m0 in
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L2
loc,~α(Rn) for some ~α = (α1, . . . , αn) such that

αj > max

(
1

2
, dj

∣∣∣∣1p − 1

2

∣∣∣∣) for 1 ≤ j ≤ n.

Then
‖F−1[mFf ]‖

Lp(R~d)
≤ C‖m0‖L2

loc,~α
‖f‖

Lprad(R~d)
.

The paper is organized as follows. In Section 2, we formulate Theorem 1.1
in a slightly more general context in terms of a square function associated
with Hankel multipliers. In Section 3, we extend the results in Section 2
to multivariate Hankel multipliers. We include an application to Bochner–
Riesz type multipliers. In Section 4, product square functions are discussed.
Pointwise estimates for multivariate Hankel multiplier transformations in
terms of the product square functions are obtained, which leads to multiplier
theorems. The rest of the paper is devoted to the proof of Theorem 2.2, which
is slightly more general than Theorem 1.1. In Appendix, we give a proof of
Lp bounds of a Littlewood–Paley square function considered in this paper.

In what follows, we frequently write A . B if A ≤ CB for some universal
implicit constant C which may depend on parameters including n, p, ~d,
and ~α. Throughout the paper, we assume that α > 1/2 unless otherwise
stated.

2. Hankel multipliers: Single variable case. Consider a radial func-
tion F on Rd such that F (x) = f(|x|) for a function f on R+ := (0,∞). It
is well-known that the Fourier transform of F can be expressed by an inte-
gral transform of f which involves the Bessel function. Indeed, FRd [F ](ξ) =
(2π)dHdf(|ξ|). Here, Hd is the modified Hankel transform defined by

Hdf(s) =

∞�

0

Bd(sr)f(r) dµd(r),

where Bd(x) = x−(d−2)/2J(d−2)/2(x), Jα denotes the standard Bessel function
of order α, and µd is the measure on R+ given by dµd(r) = rd−1 dr (see [24]).
In what follows, we let d be a real number greater than 1.

The operatorHd enjoys many properties analogous to those of the Fourier
transform including the inversion formula and Plancherel’s theorem. Let
S(R+) be the space of (restrictions to R+ of) even Schwartz functions on R.
Then Hd is an isomorphism on S(R+) and an isometry of L2(µd) with
H−1
d = Hd.
We are now ready to define a variant of the square function Gα relevant to

Hankel multipliers. We shall work with H-valued functions f on R+, where
H is a separable Hilbert space, for an iteration argument to be used later in
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Section 4.1. We define the square function Gα by

Gαf(r) =

(∞�
0

|Rαt f(r)|2H
dt

t

)1/2

,

where

Hd[Rαt f ](ρ) =
ρ

t

(
1− ρ

t

)α−1

+

Hdf(ρ) for α > 1/2.

For 1< p≤ 2, Gα is bounded on Lp(µd) if and only if α> d(1/p−1/2)
+ 1/2. The proof is essentially contained in the proof of Lp(Rd) bounds
of Gα. For 2 ≤ p <∞, one may verify that Gα is bounded on Lp(µd) only if
α > α(d, p), where

α(d, p) := max

(
1

2
, d

∣∣∣∣1p − 1

2

∣∣∣∣).
This can be done, for instance, by examining its consequences (see e.g.
Corollary 2.3). We show that the condition is also sufficient.

Theorem 2.1. Let d > 1 and 2 ≤ p <∞. Then

‖Gαf‖Lp(µd) ≤ C‖f‖Lp(µd,H) if and only if α > α(d, p).

This result is obtained by real interpolation between the L2(µd) bound
for α > 1/2 and the following endpoint bounds.

Theorem 2.2. Let

d > 1,
2d

d− 1
< p <∞ and α = d

(
1

2
− 1

p

)
>

1

2
.

Then
‖Gαf‖Lp(µd) ≤ C‖f‖Lp,2(µd,H).

Theorem 1.1 is an immediate consequence of Theorem 2.2. Indeed, ob-
serve that GαF (x) = Gαf(|x|) if F (x) = f(|x|) and that we may identify
Lp,qrad(Rd) with Lp,q(µd). In fact, all results to be discussed in this paper on
Hankel multipliers m(ρ) with Lp,q(µd) norm can be similarly translated into
statements on radial Fourier multipliers m(| · |) with Lp,qrad norm.

Remark. The Lorentz space Lp,2 in Theorem 2.2 cannot be replaced by
Lp,q for q > 2 (see [19]). We do not know if Gα is actually bounded from
Lp,2(µd, H) to Lp,q(µd) for some q < p, in particular for q = 2.

Next, we shall state multiplier theorems which follow from the square
function estimates. Let m be a bounded function on R+ and Tm be the
operator defined by

Hd[Tmf ](ρ) = m(ρ)Hdf(ρ).
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Let Φ ∈ S(R+) be such that Φ(0) = 0, and Φt be a Hankel multiplier
transformation defined by Hd[Φtf ](ρ) = Φ(ρ/t)Hdf(ρ). We define a Little-
wood–Paley function gΦ by

gΦf(r) =

(∞�
0

|Φtf(r)|2H
dt

t

)1/2

.

Then ‖gΦ(f)‖Lp(µd) is comparable to ‖f‖Lp(µd) for 1 < p <∞ (see Appendix).
We shall use a specific Φ given by Φ(ρ) = ρφ(ρ), where φ is a non-trivial

smooth function supported on the interval [1, 2]. Then for α > 1/2, there is
a pointwise estimate similar to (1.1),

(2.1) gΦ[Tmf ](r) ≤ C sup
t>0
‖m(t ·)φ‖L2

α(R)Gαf(r)

(see Section 4.2). Thus, we obtain the following sharp multiplier theorem in
terms of localized L2 Sobolev spaces.

Corollary 2.3. Let d > 1, 1 < p < ∞, and φ be a non-trivial smooth
function supported on [1, 2]. Suppose that supt>0 ‖m(t ·)φ‖L2

α(R) < ∞ for
some α > α(d, p). Then the operator Tm is bounded on Lp(µd).

As was discussed in Introduction, Corollary 2.3 is not new. See also [15, 8]
for multiplier theorems on L1 and Hardy spaces.

Next, we turn to the maximal operators Mmf := supt>0 |Tm(t ·)f | for a
multiplier m supported in [1/2, 2]. From the square function estimate, we
have Lp bounds for the maximal operators Mm for the range p ≥ 2.

Corollary 2.4. Let d > 1 and 2 ≤ p <∞. Suppose that m is supported
in [1/2, 2] and m ∈ L2

α(R) for α > α(d, p). Then

‖Mmf‖Lp(µd) ≤ C‖m‖L2
α(R)‖f‖Lp(µd).

This is a consequence of the pointwise estimate

(2.2) Mmf(r) ≤ C‖m‖L2
α(R)Gαf(r)

(see Section 4.2) for α > 1/2.
Corollary 2.4 is sharp in the sense that the required number of derivatives,

α(d, p) cannot be decreased. This can be seen by considering the truncated
Bochner–Riesz multiplierm(ρ) = (1−ρ2)λ+χ(ρ) where χ is a smooth function
supported near ρ = 1, discarding a harmless part near the origin. Corollary
2.4 also implies Lprad bounds of Sλ∗ for 2 ≤ p < 2d/(d − 1 − 2λ), which was
previously obtained by Kanjin [16] (1).

(1) In fact, the optimal p-range 2d
d+1+2λ

< p < 2d
d−1−2λ

was obtained in [16].
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While it is sharp, the L2-Sobolev condition is too restrictive to yield
endpoint bounds. However, we recently proved that

‖Mm‖Lp,q(µd)→Lp(µd) ≈ ‖Hdm‖Lp′,q′ (µd)

for 2d/(d − 1) < p < ∞ and 1 ≤ q ≤ p (see [17]), which covers endpoint
bounds. See [19] for Lp,1(Rd)→ Lp(Rd) bounds of Sλ∗ for a smaller p-range.

3. Hankel multipliers: Multivariate case. The goal of this section is
to extend the results of the previous section to the multivariate setting. Fix
n ∈ N and ~d = (d1, . . . , dn) ∈ Rn such that dj ≥ 1. The Hankel transform
H~d

acting on functions on (R+)n is defined by H~d
f(s) := Hdn · · ·Hd1f(s),

where Hdk acts only on the kth variable.
For ~d ∈ Nn, H~d

generalizes the Fourier transform of ~d-radial functions.
Suppose that m̃ is the ~d-radial extension of a bounded function m on (R+)n.
Then the study of Tm̃ acting on ~d-radial functions can be reduced to the
study of Tm defined by H~d

[Tmf ] = mH~d
f .

The operators Tm have been studied only recently (see e.g. [1, 26, 9]).
In particular, Wróbel [26] proved a Marcinkiewicz type multiplier theorem,
where a smoothness condition was given in terms of a variant of L2 Sobolev
space. We introduce some notation in order to simplify the presentation.

Notation. Let µ~d be the measure on (R+)n given by

dµ~d(s) =
n∏
k=1

dµdk(sk).

For ~t, ~s ∈ Rn, we define the vectors ~t~s and ~t/~s to be given by component-wise
product and division, respectively. We write ~t > ~s if tk > sk for all 1 ≤ k ≤ n.
If s ∈ R, we write ~t > s if tk > s for all k. For 1 ≤ p <∞, let ~α(~d, p) ∈ (R+)n

be the vector whose kth component is

max

(
1

2
, dk

∣∣∣∣1p − 1

2

∣∣∣∣).
For a given ~α ∈ (R+)n, we shall denote by L2

~α(Rn) the Sobolev space
equipped with the norm

‖f‖L2
~α

(Rn) = ‖w~αFRn [f ]‖L2(Rn), where w~α(ξ) =
n∏
k=1

(1 + |ξk|)αk .

Let {φk}1≤k≤n be a collection of non-trivial smooth functions supported
on [1, 2], and let φ(r) =

∏n
k=1 φk(rk). It was shown in [26] that Tm is bounded

on Lp(µ~d) for 1 < p <∞ if

(3.1) sup
~t>0

‖m(~t ·)φ‖L2
~α

(Rn) <∞



130 J. Kim

for some ~α > ~α(~d, 1). Here we have used the notation (~t ·) = (t1 ·, . . . , tn ·)
for the n-parameter dilation.

By using a product version of Theorem 2.1 (see Theorem 4.1), we may
improve the above result as follows.

Theorem 3.1. Let ~d > 1 and 1 < p < ∞. Suppose that (3.1) holds for
some ~α > ~α(~d, p). Then the operator Tm is bounded on Lp(µ~d).

This is sharp in the sense that ~α(~d, p) cannot be decreased. One may
verify this from the sharpness of Corollary 2.3 by considering product type
multipliers. Theorem 3.1 implies the following.

Corollary 3.2. Let 1 < p <∞, ~α ∈ Zn, and ~α > ~α(~d, p). Suppose that

(3.2) sup
~t>0

2tn�

tn

· · ·
2t1�

t1

|ρ~βD~βm(ρ)|2 dρ1

t1
· · · dρn

tn
<∞

for all ~β ∈ Zn with 0 ≤ ~β ≤ ~α. Then Tm is bounded on Lp(µ~d). In particular,
(3.2) holds if |D~βm(ρ)| ≤ Cρ−~β for all 0 ≤ ~β ≤ ~α.

We may also extend Corollary 2.4 to the n-parameter maximal operator
Mmf := sup~t>0 |Tm(~t ·)f |.

Theorem 3.3. Let ~d > 1 and 2 ≤ p < ∞. Suppose that m is supported
in [1/2, 2]n and m ∈ L2

~α(Rn) for some ~α > ~α(~d, p). Then

‖Mmf‖Lp(µ~d) ≤ C‖m‖L2
~α

(Rn)‖f‖Lp(µ~d).

See Section 4 for the proof of Theorems 3.1 and 3.3.

3.1. Application to Bochner–Riesz type multipliers. Letmλ(ρ) =
(1 − |ρ|2)λ+, where |ρ|2 = ρ2

1 + · · · + ρ2
n, and T λ be the operator defined by

H~d
[T λf ] = mλH~d

f . Let us temporarily assume that ~d ∈ Nn. Then the
study of the usual Bochner–Riesz means for the Fourier transform acting on
~d-radial functions reduces to the study of T λ, since

SλF (x1, . . . , xn) = T λf(|x1|, . . . , |xn|)
if F is the ~d-radial extension of f . Note that T λ cannot be bounded on
Lp(µ~d) unless |1/p − 1/2| < (1/‖d‖)(λ + 1/2), where ‖d‖ =

∑n
k=1 dk. As a

corollary of Theorem 3.1, we have the following.

Corollary 3.4. Let ~d > 1 and

λ > max
1≤k≤n

‖d‖
2dk
− 1

2
.

Then T λ is bounded on Lp(µ~d) if

(3.3)
∣∣∣∣1p − 1

2

∣∣∣∣ < 1

‖d‖

(
λ+

1

2

)
.
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Unfortunately, Corollary 3.4 does not seem to give any improvement over
the known results for the boundedness of the Bochner–Riesz means even
under the additional assumption on the function side. However, we expect
that one may improve the range of λ by taking advantage ofmλ being radial.
We hope to return to this issue in future work.

To prove Corollary 3.4, we need the following.

Lemma 3.5. Let φ be a tensor product of n smooth functions supported
on [1, 2]. If 0 ≤ β < λ+ 1/2, then

sup
~t>0

‖mλ(~t ·)φ‖L2
β(Rn) <∞.

Let us show how Corollary 3.4 follows from Lemma 3.5. Assume (3.3).
Then there is ε(p) > 0 such that if we define

αk =
dk
‖d‖

(
λ+

1

2

)
− ε(p)

for 1 ≤ k ≤ n, then ~α > ~α(~d, p) and ‖~α‖ :=
∑n

j=1 αj < λ+ 1/2. By Theorem
3.1 together with Lemma 3.5 and the trivial embedding L2

‖~α‖ ↪→ L2
~α, we have

Corollary 3.4.

Proof of Lemma 3.5. Although the proof seems to be standard, we in-
clude it for completeness. We apply the standard dyadic decomposition
for the Bochner–Riesz multipliers. Take a smooth function χ supported on
1/2 ≤ x ≤ 2 such that

∑∞
l=0 χ(2lx) = 1 if 0 < x ≤ 1. Then one may write

mλ(ρ) =
∑∞

l=0 2−lλmλ
l (ρ), where

mλ
l (ρ) = 2lλ(1− |ρ|2)λχ(2l(1− |ρ|2)).

Then we have

sup
~t>0

‖mλ(~t ·)φ‖L2
β(Rn) ≤

∞∑
l=0

2−lλ sup
~t>0

‖mλ
l (~t ·)φ‖L2

β(Rn).

Since mλ
l (~t ·)φ ≡ 0 if |~t| > 1, we may assume that the supremum is taken

over |~t| ≤ 1. For l ≤ 2, it is easy to show that

sup
~t>0

‖mλ
l (~t ·)φ‖L2

β(Rn) <∞

for any β ≥ 0.
For l > 2, we need to show that

(3.4) sup
~t>0

‖mλ
l (~t ·)φ‖L2

β(Rn) ≤ C2l(β−1/2).

Here, we may further assume that 1/4 ≤ |~t| ≤ 1 since mλ
l is compactly

supported away from the origin. Moreover, by interpolation, it is enough to
show (3.4) for integer β ≥ 0.
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For ‖~γ‖ ≤ β and |~t| ≤ 1, we have

|D~γ [mλ
l (~t ·)φ]|(ρ) . 2lβχ̃(2l(1− |~t · ρ|2))φ̃(ρ)

by the Leibniz rule, where χ̃ and φ̃ are finite sums of absolute values of
derivatives of χ and φ, respectively.

Thus, (3.4) follows from

(3.5) sup
1/4≤|~t|≤1

�
|χ̃(2l(1− |~t · ρ|2))φ̃(ρ)|2 dρ . 2−l.

The integral on the left hand side of (3.5) is bounded by
2tn�

tn

· · ·
2t1�

t1

|χ̃(2l(1− |ρ|2))|2 dρ1

t1
· · · dρn

tn
.

Thus, we are led to consider the volume of the intersection between the box∏n
j=1[tj , 2tj ] and an annulus of radius and width comparable to 1 and 2−l,

respectively. Assume, without loss of generality, that t1 ≥ · · · ≥ tn. Then
t1 ≥ cn for some cn > 0 since |~t| > 1/4.

We claim that
2t1�

t1

|χ̃(2l(1− |ρ|2))|2 dρ1

t1
. 2−l

provided that t1 ≥ cn, which would imply (3.5). When evaluating the inte-
gral, we may assume that |ρ′|2 ≤ 1−c2

n < 1 since ρ1 ≥ cn, where ρ = (ρ1, ρ
′).

The claim follows from the fact that the ρ1 support of χ(2l(1−|ρ|2)) for each
fixed ρ′ with |ρ′|2 ≤ 1 − c2

n, is contained in an interval of size O(2−l). This
proves the claim, and thus (3.5).

4. Product variants

4.1. Product square functions. Let Φ(k)(ρk) = ρkφk(ρk) for φk as in
Section 3,

Φ~tf = Φ
(n)
tn · · ·Φ

(1)
t1
f and R~α~t f = Rαntn · · ·R

α1
t1
f,

where Φ(k)
tk

and Rαktk act only on the kth variable. For H-valued functions f ,
we define G~α by

(4.1) G~αf(r) =

( �

(R+)n

|R~α~t f(r)|2H
d~t

~t

)1/2

,

where d~t/~t is the measure
∏n
k=1 dtk/tk on (R+)n; and gΦ is defined similarly

to (4.1), with Φ~t in place of R~α~t .
We first note that for 1 < p <∞, there is a constant C > 0 such that

C−1‖f‖Lp(µ~d,H) ≤ ‖gΦf‖Lp(µ~d) ≤ C‖f‖Lp(µ~d,H).
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The second inequality follows from the case n = 1 (see Appendix) by an
iteration argument (see [11, Section 2]). The first inequality follows from the
second by the polarization identity and ‖gΦf‖L2(µ~d) = C‖f‖L2(µ~d,H).

There are product versions of the pointwise estimates (2.1) and (2.2). For
~α > 1/2, we have

g[Tmf ](r) ≤ C sup
~t>0

‖m(~t ·)φ‖L2
~α

(Rn)G~αf(r),(4.2)

Mmf(r) ≤ C‖m‖L2
α(R)G~αf(r),(4.3)

where we additionally assume that m is supported in [1/2, 2]n in (4.3). We
defer the proof of the estimates to the following section.

Given the pointwise estimates, Theorems 3.1 and 3.3 are consequences
of the following theorem.

Theorem 4.1. Let ~d > 1 and 2 ≤ p <∞. Then

‖G~αf‖Lp(µ~d) ≤ C‖f‖Lp(µ~d,H) if and only if ~α > ~α(~d, p).

Proof. For the necessity, it is enough to consider a function f(r) =∏
1≤k≤n fk(rk) such that fk ∈ Lp(µdk , H). Then G~αf(r) =

∏n
k=1 Gαkfk(rk),

thus the necessity follows from Theorem 2.1.
An iteration argument in [11] gives the sufficiency, but we shall include

the argument for the convenience of the reader. We use induction on n,
with the case n = 1 given by Theorem 2.1. Suppose that the assertion is
true for the dimension n − 1. Let ~α = (~α′, αn) ∈ Rn−1 × R be such that
~α > ~α(~d, p). Set F (r′, rn) = Rαntn [f(r′, ·)](rn). We regard F as an H̃-valued
function, where H̃ = L2(R+, dtn/tn, H) is a Hilbert space.

We have |F (r′, rn)|H̃ = Gαn [f(r′, ·)](rn) and G~αf(r) = G~α′ [F (·, rn)](r′).
Thus, ‖G~αf‖pLp(µ~d) is equal to

∞�

0

�

(R+)n−1

|G~α′ [F (·, rn)](r′)|p dµ~d′(r
′) dµdn(rn)

.
∞�

0

�

(R+)n−1

|F (r′, rn)|p
H̃
dµ~d′(r

′) dµdn(rn)

=
�

(R+)n−1

∞�

0

|Gαn [f(r′, ·)](rn)|p dµdn(rn) dµ~d′(r
′)

.
�

(R+)n−1

∞�

0

|f(r′, rn)|pH dµdn(rn) dµ~d′(r
′) = C‖f‖pLp(µ~d,H),

where the first inequality follows from the induction hypothesis.
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4.2. Pointwise estimates. In this section, we prove (4.2) and (4.3). The
Riemann–Liouville lemma on fractional differentiation played an important
role for the pointwise estimate (1.1) given in [3]. We shall need a product
version of that lemma.

Let ~α = (α1, . . . , αn) and ~α ≥ 0. We define the fractional differentiation
D~α for f ∈ L2(Rn) by

F [D~αf ](ξ) =

n∏
k=1

(−iξk)αkFf(ξ),

which coincides with the usual differentiation up to a constant when ~α ∈ Zn.
In addition, let I~α be the fractional integral defined by

I~αf(x) =
�

Rn

n∏
k=1

(uk − xk)αk−1
+

Γ (αk)
f(u) du.

We shall work with the Sobolev space L2
~α(Rn) defined in Section 3.

Lemma 4.2 (Riemann–Liouville). Let ~α > 1/2. Suppose that f ∈ L2
~α(Rn)

and supp f ⊂
∏n
k=1(−∞, ak]. Then suppD~αf ⊂

∏n
k=1(−∞, ak] and

f(x) = I~α[D~αf ](x) a.e.

Proof. The proof for n = 1 was given in [3]. It still works for n > 1 with
a few minor changes. For the convenience of the reader, we include the proof
for n = 1 and indicate the changes for n > 1.

First consider the operators Dα
ε associated with the Fourier multipliers

(ε − iξ)α for ε > 0. Then Dα
ε f → Dαf in L2 as ε → 0 by the dominated

convergence theorem.
With the aid of Cauchy’s theorem, one may verify that

gαε (x) = F−1
R [(ε− iξ)−α](x) =

1

Γ (α)
(−x)α−1

+ eεx ∈ L1.

Thus, the convolution operator Iαε f = f∗gαε is the inverse ofDα
ε and Iαε f ∈ L2.

For the support condition, observe that

Dα
ε f(x) = D[α]+1

ε h(x),

where h = I
[α]+1−α
ε f and [α] is the least integer such that [α] ≥ α. Then

supph ⊂ (−∞, a]. Moreover, D[α]+1
ε h is a linear combination of (non-frac-

tional) derivatives of h, preserving the support of h.
Next, for a fixed x ∈ (−∞, a), one estimates |f(x)− Iα(Dαf)(x)| by

1

Γ (α)

a�

x

(u− x)α−1|e−ε(u−x)Dα
ε f(t)−Dαf(u)| du

≤ 1

Γ (α)
‖(· − x)α−1‖L2(Ix)‖e−ε(·−x)Dα

ε f −Dαf‖L2(Ix),
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where Ix = (x, a). The first norm is finite and the second norm tends to 0
as ε→ 0.

The proof easily extends to the case n > 1. Indeed, one may extend Dα
ε

by D~α
ε which is associated with the Fourier multipliers

∏n
k=1(ε− iξk)αk and

make similar multi-parameter extensions.

With Lemma 4.2, product versions of the pointwise estimates given in
[3] can be obtained without much additional work. We conclude this section
with the proofs of (4.2) and (4.3).

Proof of (4.2). We may assume that ‖m(~t ·)φ‖L2
~α

(Rn) < ∞ for each ~t.
Fix ~t ∈ (R+)n, and let h(ρ) = m(~tρ)φ(ρ). Then by the Riemann–Liouville
lemma, the support of D~αh is contained in (−∞, 2]n. Moreover,

H~d
[Φ~t[Tmf ]](ρ) =

n∏
k=1

(ρk/tk)φk(ρk/tk)m(ρ)H~d
f(ρ)

= C~α
�

Rn

n∏
k=1

ρk
tk

(
uk −

ρk
tk

)αk−1

+

H~d
f(ρ)D~αh(u) du

= C~α
�

[0,2]n

n∏
k=1

uαkk
ρk
uktk

(
1− ρk

uktk

)αk−1

+

H~d
f(ρ)D~αh(u) du

for a.e. ρ ∈ (R+)n. Applying H~d
to both sides of the above equality yields

|Φ~t[Tmf ](r)|H = C~α

∣∣∣ �

[0,2]n

n∏
k=1

uαkk R~α~tuf(r)D~αh(u) du
∣∣∣
H

. sup
~t>0

‖m(~t·)φ‖L2
~α

(Rn)

( �

[0,2]n

|R~α~tuf(r)|2H du
)1/2

.

The proof is completed by taking the L2((R+)n, d~t/~t ) norm and making use
of Fubini’s theorem and a change of variable.

Proof of (4.3). First observe that one may write

m(ρ)

ρ1 · · · ρn
= m(ρ)χ(ρ)

for a smooth function χ supported in [1/4, 4]n if m supported in [1/2, 2]n.
We apply the product version of the Riemann–Liouville lemma to the

function mχ without the use of the square function g. Arguing as in the
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proof of (4.2), we obtain

|Tm(·/~t)f(r)| = C~α

∣∣∣∣ �

(R+)n

R~α~tuf(r)u~α+~1D~α[mχ](u)
du

u

∣∣∣∣
. G~αf(r)

( �

(R+)n

|u~α+~1D~α[mχ](u)|2 du
u

)1/2

. G~αf(r)‖mχ‖L2
~α

(Rn),

where ~1 = (1, . . . , 1), du/u =
∏n
k=1 duk/uk, and we have used the fact that

supp(D~α[mχ]) ⊂ (−∞, 2]n. Finally, ‖mχ‖L2
~α

(Rn) . ‖m‖L2
~α

(Rn) since χ̂ is a
Schwartz function.

5. Reductions toward Theorem 2.2

5.1. Littlewood–Paley theory. Split the multiplier of Rα as

ρ(1− ρ)α−1
+ = ρχ0(ρ) + (1− ρ)α−1

+ χ(ρ),

where χ0, χ ∈ S(R+) and χ0 and χ are supported on [0, 3/4] and [1/2, 2],
respectively. Then gΦ with Φ(ρ) = ρχ0(ρ) is a standard Littlewood–Paley
function, which is bounded on Lp(µd) for 1 < p <∞. Thus, we may assume
that

Hd[Rαt f ](ρ) =

(
1− ρ

t

)α−1

+

χ

(
ρ

t

)
Hdf(ρ).

Using this reduction and the Littlewood–Paley theory, we may localize
the t-integral on the interval [1, 2]. Choose a cut-off function η ∈ C∞0 (R+)
supported on (1/8, 8) such that η(ρ) = 1 on [1/4, 4] and define the Little-
wood–Paley projection Lj by Hd[Ljf ](ρ) = η(2−jρ)Hdf(ρ). We have

[Gαf(r)]2 =

∞�

0

|Rαt f(r)|2H
dt

t
=
∑
j

2j+1�

2j

|Rαt f(r)|2H
dt

t

=
∑
j

2�

1

|Rα2jtf(r)|2H
dt

t
=
∑
j

2�

1

|Rα2jt[Ljf ](r)|2H
dt

t
,

where the last equality follows from η(ρ)χ(ρ/t) = χ(ρ/t) for t ∈ [1, 2]. Thus
by the Littlewood–Paley inequality (see (7.15)), Theorem 2.2 follows from

(5.1)
∥∥∥∥(∑

j

2�

1

|Rα2jtfj |
2
H

dt

t

)1/2∥∥∥∥
Lp(µd)

.
∥∥∥(∑

j

|fj |2H
)1/2∥∥∥

Lp,2(µd)

for p = 2d/(d− 2α) and 1/2 < α < d/2.
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5.2. Dualization. Let us denote by L2
t the Hilbert space L2([1, 2], dt/t).

If gj is a function which takes values in L2
t (H

∗), namely that (gj)t(r) :=
[gj(r)](t) ∈ H∗, then

∞�

0

2�

1

〈Rα2jtfj(r), (gj)t(r)〉
dt

t
dµd(r) =

∞�

0

〈fj(s),Rαj gj(s)〉 dµd(s),

where
Rαj g(s) =

2�

1

Rα2jtgt(s)
dt

t

for L2
t (H

∗)-valued functions g. Thus by duality, (5.1) is equivalent to

(5.2)
∥∥∥(∑

j

|Rαj gj |2H
)1/2∥∥∥

Lp,2(µd)
.
∥∥∥(∑

j

|gj |2L2
t (H)

)1/2∥∥∥
Lp(µd)

for p = 2d/(d+ 2α) and 1/2 < α < d/2.

5.3. Decomposition. We make a dyadic decomposition following [12].
For m ∈ Z, we let Im = [2m, 2m+1), I∗m = [2m−1, 2m+2), I∗∗m = [2m−2, 2m+3),
Lm = (0, 2m), and Rm = [2m,∞). Then we may write

Rαj f =
∑
m

[Eαj,mf + Sαj,mf + V α
j,mf ]

=
∑
m

Eαj,m−jf +
∑
m

Sαj,mf +
∑
m

V α
j,m−jf,

where Eαj,mf , S
α
j,mf and V α

j,mf are defined by Rαj (fχIm) times the charac-
teristic functions χLm−2 , χI∗∗m and χRm+3 , respectively.

We shall prove the following propositions in Section 7.

Proposition 5.1. Let 1/2 < α < d/2 and p = 2d/(d+ 2α). Then there
is a constant δ(p) > 0 such that

‖V α
j,m−jf‖Lp,2(µd,H) ≤ C2−|m|δ(p)‖fχIm−j‖Lp,∞(µd,L

2
t (H)),

where the constant C does not depend on j or m.

Proposition 5.2. Let α > 1/2 and 1 ≤ p ≤ 2. Then there is a constant
δ > 0 such that

‖Eαj,m−jf‖Lp(µd,H) ≤ C2−|m|δ‖fχIm−j‖Lp(µd,L
2
t (H)),

where the constant C does not depend on j or m. In fact, one may take
δ = min(α− 1/2, d).

We shall use the vector notation ~f = {fj}j and ~Sαm
~f = {Sαj,mfj}j .

Proposition 5.3. Let α > 1/2. For each 1 < p ≤ 2,

‖~Sαm ~f‖Lp(µd,l2(H)) ≤ C‖~fχIm‖Lp(µd,l2(Lt(H)))

with a constant C which does not depend on m.
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Proof of (5.2) given Propositions 5.1–5.3. The proof is just a minor mod-
ification of the proof given in [12], but we include it for the convenience of
the reader. We show (5.2) for

∑
m V

α
j,m−j first:∥∥∥(∑

j

∣∣∣∑
m

V α
j,m−jfj

∣∣∣2
H

)1/2∥∥∥
Lp,2(µd)

≤
∑
m

(∑
j

‖V α
j,m−jfj‖

p
Lp,2(µd,H)

)1/p

.
∑
m

2−|m|δ(p)
(∞�

0

∑
j

χIm−j (r)|fj(r)|
p
L2
t (H)

dµd(r)
)1/p

,

where we have used Minkowski’s inequality to pull out the sum over m, and
the inclusion lp(Z) ⊂ l2(Z). To be more precise, [12, Lemma 2.1] was used
in order to deal with the Lorentz space Lp,2. Next, the trivial bound

|fj(r)|pL2
t (H)

≤
(∑

j

|fj(r)|2L2
t (H)

)p/2
will finish the proof by making use of the disjointness of χIm−j and the
summability of 2−|m|δ(p). The proof is similar for

∑
mE

α
j,m−j except that we

may show the stronger Lp(µd) bounds.
For the case

∑
m S

α
j,m, we shall use the fact that I∗∗m overlap only finitely

many times to get(∑
j

∣∣∣∑
m

χI∗∗m S
α
j,mfj

∣∣∣2
H

)1/2
.
(∑
m

χI∗∗m

∑
j

|Sαj,mfj |2H
)1/2

.
∑
m

χI∗∗m

(∑
j

|Sαj,mfj |2H
)1/2

.

Thus, by Proposition 5.3,∥∥∥(∑
j

∣∣∣∑
m

Sαj,mfj

∣∣∣2
H

)1/2∥∥∥
Lp(µd)

.
(∑
m

∥∥∥(∑
j

|Sαj,mfj |2H
)1/2∥∥∥p

Lp(µd)

)1/p

.
(∑
m

∥∥∥χIm(∑
j

|fj |2L2
t (H)

)1/2∥∥∥p
Lp(µd)

)1/p

=
∥∥∥(∑

j

|fj |2L2
t (H)

)1/2∥∥∥
Lp(µd)

.

6. Kernel estimate. Let α > 1/2 be fixed. In what follows, we shall
often suppress the dependence on α.
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6.1. Estimate I. The goal of this section is to obtain an estimate for
the kernel of the operator Rαj . Note that Rαj f(r) can be written as
∞�

0

2jd
∞�

0

2�

1

(
1− ρ

t

)α−1

+

χ

(
ρ

t

)
ft(s)

dt

t
Bd(2

jrρ)Bd(2
jsρ) dµd(ρ) dµd(s)

:=

∞�

0

2jdK(2jr, 2js)[f(s)] dµd(s),

where K(r, s) is a bounded linear operator from L2
t (H) := L2([1, 2], dt/t,H)

to H. For f ∈ L2
t (H), define the operator K by

K[f ](u) =

2�

1

tκ(tu)f(t)
dt

t
,

where FRκ(ρ) = (1− ρ)α−1
+ χ(ρ). Then K(r, s)[f ] can be written as

K(r, s)[f ] =

∞�

0

2�

1

(
1− ρ

t

)α−1

+

χ

(
ρ

t

)
f(t)

dt

t
Bd(rρ)Bd(sρ) dµd(ρ)

=

∞�

0

FR[K[f ]](ρ)Bd(rρ)Bd(sρ) dµd(ρ).

We shall borrow the kernel estimate from [12] for the characterization of
Hankel multipliers to obtain a rather precise estimate for the kernel K(r, s).
We quote here a special case of [12, Proposition 3.1]. Here and in what
follows, we set ωN (u) = (1 + |u|)−N .

Proposition A. Let d ≥ 1, N > 1, and m ∈ L2 be compactly supported
in (0,∞). Then for β, γ = 0, 1, 2, . . . ,

(6.1)
∣∣∣∂βr ∂γs ∞�

0

m(ρ)Bd(ρr)Bd(ρs) dµd(ρ)
∣∣∣

≤ CN,β,γ
∑
±,±

|F−1
R [m]| ∗ ωN (±r ± s)

[(1 + r)(1 + s)](d−1)/2
,

where CN,β,γ does not depend on m, r, s.

It is a routine matter to verify that (6.1) continues to work for functions
m taking values in a Hilbert space. Applying (6.1) with F−1

R [m] = K[f ] we
immediately obtain the following.

Proposition 6.1. Let f ∈ L2
t (H). Then for N ≥ 1,

(6.2) |K(r, s)[f ]|H ≤ CN,α
∑
±,±

W [f ](±r ± s)
[(1 + r)(1 + s)](d−1)/2

,

where W [f ](x) = |K[f ]|H ∗ ωN+α(x).
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6.2. Estimate II. In what follows, we shall write fα(t) = t−αf(t). The
main result of this section is the following.

Proposition 6.2. Let f ∈ L2
t (H). Then for all sufficiently large N ,

(6.3) W [f ](x) .
1

(1 + |x|)α
|F−1

R [fα]|H ∗ ωN (x) +
1

(1 + |x|)α+1
|f |L2

t (H).

In addition, there is a uniform estimate

(6.4) W [f ](x) . |f |L2
t (H).

Proof. Since W [f ] is a convolution of |K[f ]|H and ωN+α, it suffices to
prove

|K[f ](u)|H .
1

(1 + |u|)α
|F−1

R [fα](u)|H +
1

(1 + |u|)α+1
|f |L2

t (H),(6.5)

|K[f ](u)|H . |f |L2
t (H).(6.6)

Indeed, we may obtain (6.3) from (6.5) via the inequality∣∣∣∣ g

(1 + | · |)α

∣∣∣∣ ∗ ωN+α(x) .
|g| ∗ ωN (x)

(1 + |x|)α
,

which follows from (1 + |x− u|)−1 ≤ (1 + |u|)(1 + |x|)−1.
(6.6) follows from the Cauchy–Schwarz inequality since κ ∈ L∞(R).
For (6.5), we need a standard asymptotic formula for κ (see [10, p. 48]):

(6.7) κ(u) =
Γ (α)

2π
eiu(iu)−α +O(|u|−(α+1)) as u→ ±∞.

Let us assume |u| ≥ C for some large constant C. By (6.7),

|K[f ](u)|H .
∣∣∣2�
1

eitu(itu)−αf(t) dt
∣∣∣
H

+
∣∣∣2�
1

O(|tu|−(α+1))f(t) dt
∣∣∣
H

. |u|−α|F−1
R [fα](u)|H + |u|−(α+1)|f |L2

t (H).

This estimate combined with (6.6) implies (6.5).

7. Proof of the main propositions. Throughout the section, we shall
omit the summation notation

∑
±,± in the kernel estimate (6.2).

7.1. Proof of Proposition 5.1. By a scaling argument, we may assume
that j = 0. Indeed, we have V α

j,m−jf(r) = V α
0,m[f(2−j ·)](2jr). By (6.2),

|V α
0,mf(r)|H .

�

Im

χRm+3(r)W [f(s)](±r ± s)
(1 + r)(d−1)/2

dµd(s)

(1 + s)(d−1)/2
.
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Then by the Minkowski integral inequality (for Banach function spaces),
‖V α

0,mf‖Lp,2(µd,H) is bounded by

(7.1) C
�

Im

∥∥∥∥χRm+3W [f(s)](± · ±s)
(1 + ·)(d−1)/2

∥∥∥∥
Lp,2(µd)

dµd(s)

(1 + s)(d−1)/2
.

The norm inside of the integral is bounded by∥∥∥∥χRm+2W [f(s)](±·)
(1 + ·)(d−1)/2

∥∥∥∥
Lp,2(µd)

.

∥∥∥∥ W [f(s)](·)
(1 + | · |)(d−1)/2

∥∥∥∥
Lp,2(νd)

(7.2)

by a change of variable r → r ± s and (r ± s) ∼ r, where νd is the measure
on R defined by dνd(x) = (1 + |x|)d−1 dx.

We claim that (7.2) is bounded by C|f(s)|L2
t (H), which would imply

‖V α
0,mf‖Lp,2(µd,H) .

�

Im

|f(s)|L2
t (H)

dµd(s)

(1 + s)(d−1)/2

. ‖fχIm‖Lp,∞(µd,L
2
t (H))‖χIm(1 + ·)−(d−1)/2‖Lp′,1(µd)

by a variant of Hölder’s inequality in Lorentz spaces (see [20]). The proof is
complete if we observe that

‖χIm(1 + ·)−(d−1)/2‖Lp′,1(µd) ≤ min(2md/p
′
, 2−m(d(1/p−1/2)−1/2)).

Here we have used the assumption that 1 < p < 2d/(d+ 1).
We turn to the proof of the claim. We separately estimate the main term

and the error term given by Proposition 6.2. For the error term, we control
the Lp,2 norm by the Lp norm to obtain(�

R

(1 + |x|)−p[α+1−(d−1)(1/p−1/2)] dx
)1/p
|f(s)|L2

t (H) . |f(s)|L2
t (H).

For the main term, we apply Hölder’s inequality and Plancherel’s identity:∥∥∥∥ |F−1
R [fα(s)]|H ∗ ωN (1 + | · |)−(d−1)/2

(1 + | · |)α

∥∥∥∥
Lp,2(νd)

.
∥∥|F−1

R [fα(s)]|H ∗ ωN
∥∥
L2(R)

‖(1 + | · |)−α‖
L(1/p−1/2)−1,∞(νd)

. ‖ωN‖L1(R)

(2�

1

|ft(s)|2Ht−2α dt
)1/2

. |f(s)|L2
t (H).

For the second inequality, α = d(1/p− 1/2) was required.
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7.2. Proof of Proposition 5.2. By scaling, we may assume that j = 0.

7.2.1. The case m ≤ 0. By (6.2) and the change of variable s→ s± r,

|Eα0,mf(r)|H . 2m(d−1)χLm−2(r)
�

Im

W [fχIm(s)](±r ± s) ds

. 2m(d−1)χLm−2(r)
�

I∗m

W [fχIm(s± r)](±s) ds.

By Minkowski’s inequality, ‖Eα0,mf‖Lp(µd,H) is bounded by

C2m(d−1)2m(d−1)/p
�

I∗m

( �

Lm−2

W [fχIm(s± r)](±s)p dr
)1/p

ds

. 2m(d−1)
�

I∗m

( �

I∗∗m

W [fχIm(r)](±s)prd−1 dr
)1/p

ds,

since I∗m ± Lm−2 ⊂ I∗∗m . Applying the uniform estimate (6.4), we get

‖Eα0,mf‖Lp(µd,H) . 2md‖fχIm‖Lp(µd,L
2
t (H)).

7.2.2. The case m ≥ 0. By (6.2) and the change of variable s→ s± r,

|Eα0,mf(r)|H
. 2m(d−1)/2χLm−2(r)(1 + r)−(d−1)/2

�

Im

W [fχIm(s± r)](±s) ds.

Then we take the Lp(µd) norm, and next apply Minkowski’s inequality. With
the use of r ≤ 2m and (6.3), ‖Eα0,mf‖Lp(µd,H) is bounded by

(7.3) C2m(d−1)/p
�

I∗m

( �

Lm−2

W [fχIm(s± r)](±s)p dr
)1/p

ds

.
�

I∗m

( �

I∗∗m

W [fχIm(r)](±s)prd−1 dr
)1/p

ds . I + II,

where

I =
�

I∗m

( �

I∗∗m

[|F−1
R [[fχIm(r)]α]|H ∗ ωN (±s)]prd−1 dr

)1/p ds

(1 + |s|)α

II =
�

I∗m

( �

I∗∗m

|fχIm(r)|p
L2
t (H)

rd−1 dr
)1/p ds

(1 + |s|)α+1
,

II is the error term. Observe that

II . 2−mα‖fχIm‖Lp(µd,L
2
t (H))

which has the desired decay term 2−mα.
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The estimate for the main term I uses the assumption α > 1/2. We first
apply the Cauchy–Schwarz inequality for the s-integral. Then I is bounded
by a constant times

(7.4) 2−m(α−1/2)
( �

I∗m

( �

I∗∗m

[|F−1
R [[fχIm(r)]α]|H ∗ ωN (±s)]prd−1 dr

)2/p
ds
)1/2

.

By Minkowski’s inequality, Young’s inequality, and Plancherel’s identity,
(7.4) is bounded by

2−m(α−1/2)
(∞�

0

‖F−1
R [[fχIm(r)]α]‖p

L2(R,H)
rd−1 dr

)1/p

. 2−m(α−1/2)‖fχIm‖Lp(µd,L
2
t (H)).

7.3. Proof of Proposition 5.3. We may assume that the function ~f
is supported on Im. To show that the estimate holds for p = 2, it is enough
to show that

‖Tαj,mfj‖L2(µd,H) . ‖fj‖L2(µd,Lt(H)),

uniformly in j. But this easily follows from Plancherel’s identity and the
Cauchy–Schwarz inequality since ‖Hd[Rα2jt]‖L∞ ≤ 1.

Thus it suffices to prove a weak type inequality for p = 1, namely

(7.5) µd({r ∈ I∗∗m : |~Sαm ~f |l2(H) > λ}) ≤ C

λ
‖~f‖L1(µd,B)

for λ > 0 andB = l2(Lt(H)), by a vector-valued version of the Marcinkiewicz
interpolation theorem.

We follow the usual strategy for proving weak type inequalities. We apply
the Calderón–Zygmund decomposition, Proposition 7.1, to get ~f = ~g +~b =
~g+

∑
ν
~bν , where ~bν = {bν,j}j is supported on Jν ⊂ Im and has cancellation.

Let us denote by J∗ν the interval with the same center as Jν and twice its
length and by Ω the union of the J∗ν .

Then (7.5) for ~g can be shown as usual by applying theL2(µd, B) bounded-
ness of ~Sαm. In addition, (7.5) for ~b reduces to

(7.6) µd({r ∈ I∗∗m \Ω : |~Sαm~b|l2(H) > λ}) ≤ C

λ
‖~f‖L1(µd,B).

The left hand side of (7.6) is bounded by

(7.7) λ−1
�

I∗∗m \Ω

|~Sαm~b(r)|l1(H) dµd(r)

≤ λ−1
∑
ν

∑
j

�

I∗∗m \J∗ν

|Sαj,mbν,j(r)|H dµd(r).
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Let us denote the integral on the right hand side of (7.7) by Ij,ν . We
claim that there is ε > 0 such that

Ij,ν . min(2j |Jν |, [2j |Jν |]−ε)‖bν,j‖L1(µd,L
2
t (H)).(7.8)

Then (7.8) implies∑
j

Ij,ν .
∑
j

min(2j |Jν |, [2j |Jν |]−ε)‖~bν‖L1(µd,B)

. ‖~bν‖L1(µd,B).

Then (7.7) is bounded by

Cλ−1
∑
ν

‖~bν‖L1(µd,B) .
∑
ν

µd(Jν)

. λ−1‖~f ‖L1(µd,B),

as desired by Proposition 7.1.

Proof of the claim (7.8). By the kernel estimate (6.2),

|Sαj,mbν,j(r)|H . χI∗∗m (r)
�

Jν

2jdW [bν,j(s)](2
j(±r ± s)) dµd(s)

[(1 + 2jr)(1 + 2js)](d−1)/2

.
χI∗∗m (r)

2m(d−1)

�

Jν

2jW [bν,j(s)](2
j(±r ± s)) dµ(s)

using r ∼ s ∼ 2m. Then

(7.9) Ij,ν .
�

Jν

�

I∗∗m \J∗ν

2jW [bν,j(s)](2
j(±r ± s)) dr dµd(s)

.
�

Jν

�

|x|≥|Jν |/2

2jW [bν,j(s)](2
jx) dx dµd(s)

.
�

Jν

�

|x|≥2j−1|Jν |

W [bν,j(s)](x) dx dµd(s)

.
�

Jν

�

|x|≥2j−1|Jν |

( |F−1
R [bαν,j(s)]|H ∗ ωN (x)

(1 + |x|)α
+
|bν,j(s)|L2

t (H)

(1 + |x|)α+1

)
dx dµd(s).

For the second inequality, we have used the fact that

|±r ± s| ≥ |r − s| ≥ |Jν |/2

whenever r ∈ I∗∗m \ J∗ν and s ∈ Jν . For the last inequality, we have used
Proposition 6.2.
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Choose ε = (α− 1/2)/2 > 0. Then the main term of (7.9) is bounded by

(7.10) C(2j |Jν |)−ε
�

Jν

�

R

|F−1
R [bαν,j(s)]|H ∗ ωN (x)

(1 + |x|)α−ε
dx dµd(s)

. (2j |Jν |)−ε
�

Jν

∥∥|F−1
R [bαν,j(s)]|H ∗ ωN

∥∥
L2(R)

dµd(s)

. (2j |Jν |)−ε
�

Jν

‖bν,j(s)‖L2
t (H) dµd(s)

= (2j |Jν |)−ε‖bν,j‖L1(µd,L
2
t (H)),

where we have applied the Cauchy–Schwarz inequality, Young’s inequality,
and Plancherel’s identity. The estimation of the error term of (7.9) is straight-
forward.

Next we seek an inequality which is good when 2j |Jν | is small. Let sν be
the center of the interval Jν . Using the cancellation of bν,j , we may write

Sαj,mbν,j(r) = χI∗∗m (r)
�

Jν

2jd[K(2jr, 2js)−K(2jr, 2jsν)][bν,j(s)] dµd(s).

Let f be an L2
t (H)-valued function. Then [K(2jr, 2js)−K(2jr, 2jsν)][f ]

can be written as�
FR[K[f ]](ρ)Bd(2

jrρ)[Bd(2
jsρ)−Bd(2jsνρ)] dµd(ρ)

= 2j(s− sν)

1�

0

[ �
FR[K[f ]](ρ)Bd(2

jrρ)ρB′d(2
js(τ)ρ) dµd(ρ)

]
dτ,

where s(τ) = sν + τ(s− sν).
We apply (6.1) (with β = 0 and γ = 1) to the inner integral above.

Since |s − sν | ≤ |Jν | and r ∼ s(τ) ∼ 2m for τ ∈ [0, 1], we may bound
2jd|[K(2jr, 2js)−K(2jr, 2jsν)][f ]|H by a constant times

2j |Jν |
1�

0

2jdW [f ](2j(±r ± s(τ)))

[(1 + 2jr)(1 + 2js(τ))](d−1)/2
dτ

. 2j |Jν |
1�

0

2jdW [f ](2j(±r ± s(τ)))

2(m+j)(d−1)
dτ.

Therefore,

Ij,ν =
�

I∗∗m \J∗ν

|Sαj,mbν,j(r)|H dµd(r)(7.11)

. 2j |Jν |
1�

0

�

Jν

�

I∗∗m \J∗ν

2jW [bν,j(s)](2
j(±r ± s(τ))) dr dµd(s) dτ
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. 2j |Jν |
�

Jν

�

R

2jW [bν,j(s)](2
jx) dx dµd(s)

. 2j |Jν | ‖bν,j‖L1(µd,L
2
t (H)),

where we have used the fact that 2−m(d−1)rd−1 . 1 if r ∈ I∗∗m in the second
line. The last inequality follows by the change of variable x → 2−jx and
arguing as in (7.10) except that we do not need the decay (2j |Jν |)−ε.

Appendix: A note on g-function. In this section, we shall give a
proof of Lp bounds of the square function gΦ by Calderón–Zygmund theory
in the vector-valued setting. We shall obtain an analogue of the gradient
condition for the Hankel convolution operator TKf := K ∗d f . The material
to be discussed is quite standard and well-known, but Lemma 7.3 does not
seem to appear in the literature.

Calderón–Zygmund decomposition. Let B be a Banach space, and let
Lp(µd, B) be the Bochner space, i.e.

‖f‖pLp(µd,B) =

∞�

0

|f(r)|pB dµd(r)

for strongly measurable functions f : R+ → B. Then there is a Calderón–
Zygmund decomposition for functions f ∈ L1(µd, B):

Proposition 7.1. Let f ∈ L1(µd, B) and λ > 0. Then there are dyadic
intervals Jν with disjoint interiors and a decomposition

f = g + b = g +
∑
ν

bν

such that:

(i) |g(s)|B ≤ Cλ s-a.e. and ‖g‖L1(µd,B) ≤ ‖f‖L1(µd,B).
(ii) bν is supported on Jν and

	
bν(s) dµd(s) = 0.

(iii)
	
|bν(s)|B dµd(s) . λµd(Jν).

(iv)
∑

ν µd(Jν) . λ−1‖f‖L1(µd,B).

A proof may be found in [12], but we shall give a sketch. Split f =
∑

j fj
where fj = fχIj and Ij = [2j , 2j+1). Define Fj(r) by the equation

(7.12) 2j(d−1)Fj(r) = fj(r)r
d−1

and perform the usual Calderón–Zygmund decomposition Fj = Gj +Bj for
the B-valued function Fj . Then we obtain fj = gj + bj , where gj and bj are
given by equations similar to (7.12), and then sum in j.
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The square function gΦ. Consider the Hankel convolution operator

TKf(r) = K ∗d f(r) =

∞�

0

τ sK(r)f(s) dµd(s),

where τ s is the generalized translation given byHd[τ sf ](ρ) = Bd(sρ)Hdf(ρ).
See (7.16) and (7.17) for an explicit formula for τ s.

As in the Euclidean case (see e.g. [21]), one may extend this to the vector-
valued setting. Let A and B Banach spaces, and K : R+ → L(A,B) be
an operator-valued kernel, where L(A,B) is the space of bounded linear
operators from A to B.

Lemma 7.2 (Calderón–Zygmund). Suppose that TK is a bounded opera-
tor from Lr(µd, A) to Lr(µd, B) for some r, 1 ≤ r ≤ ∞. In addition, suppose
that

(7.13)
�

|r−s|>2|s−s̄|

|τ sK(r)− τ s̄K(r)|L(A,B) dµd(r) ≤ C.

Then TK is bounded from Lp(µd, A) to Lp(µd, B) for 1 < p <∞, and there
is a weak-type inequality

µd({r ∈ R+ : |TKf(r)|B > λ}) ≤ C

λ
‖f‖L1(µd,A).

This can be shown by using Proposition 7.1, or by the general theory
of spaces of homogeneous type. We provide here a condition on K which
implies (7.13) and is easier to verify.

Lemma 7.3. The condition

(7.14) |K ′(r)|L(A,B) ≤ Cr−(d+1)

implies (7.13).

Before we turn to the proof of this fact, we give an application for
Littlewood–Paley square functions. Note that the g-function defined in Sec-
tion 2 can be regarded as a vector-valued convolution operator

gΦf(r) = Hd[Φ(·/t)] ∗d f(r),

where we regard Hd[Φ(·/t)] as an operator-valued kernel taking values in
L(H, H̃) for H-valued functions f , where H̃ = L2(R+, dt/t,H).

Theorem 7.4. Let Φ ∈ S(R+) with Φ(0) = 0, and H̃ and gΦ be as
described above. Then for 1 < p <∞,

C−1
p ‖f‖Lp(µd,H) ≤ ‖gΦf‖Lp(µd,H̃) ≤ Cp‖f‖Lp(µd,H).

Proof. We prove the second inequality. The first follows from the second
via the polarization identity. We may assume that H = l2 and f = {fj}j ,
since, for instance, we may write an H-valued function f as the sum f(x) =∑

j fj(x)ej for an orthonormal basis {ej}j , then using Parseval’s identity.
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First we consider the case p = 2. By Plancherel’s identity,

‖g(f)‖2
L2(µd,H̃)

=

∞�

0

∑
j

‖Hd[Φ(·/t)] ∗d fj‖2L2(µd)

dt

t

=

(∞�
0

|Φ(t)|2 dt
t

)∑
j

‖fj‖2L2(µd) = C‖f‖2L2(µd,H).

Next we verify (7.14). Let K = Hd[Φ(·/t)] = tdHd[Φ](t ·). As Φ ∈ S(R+),
we have

|K ′(r)|L(H,H̃) = |K ′(r)|L2(R+,dt/t)

=

(∞�
0

|td+1Hd[Φ]′(tr)|2 dt
t

)1/2

=
C

rd+1
.

Remark. Choose a cut-off function η ∈ C∞0 (R+) supported on (1/8, 8)
such that η(ρ) = 1 on [1/4, 4] and define the Littlewood–Paley projection
Lj by Hd[Ljf ](ρ) = η(2−jρ)Hdf(ρ). Consider the l2(H)-valued operator
g(f) = {Ljf}. Then by using the above argument, one can verify that

(7.15) ‖g(f)‖Lp(µd,l2(H)) ≤ Cp‖f‖Lp(µd,H)

for 1 < p < ∞. Moreover, by real interpolation, one can replace Lp by the
Lorentz spaces Lp,q for 1 ≤ q ≤ ∞.

For the proof of Lemma 7.3, we need explicit formulae for the generalized
translation. In what follows, we shall ignore multiplicative constants, and
write A = B if A = CB for a constant C depending only on d. One has

(7.16) τ sf(r) =

π�

0

f((r, s)θ) dν(θ),

where (r, s)θ = (r2 + s2− 2rs cos θ)1/2 and dν(θ) is a probability measure on
[0, π]. One may also write

(7.17) τ sf(r) =

r+s�

|r−s|

f(t)dWr,s(t),

where dWr,s(t) is a probability measure on [|r − s|, r + s] (see [15]).

Proof of Lemma 7.3. This observation is a combination of estimates
from [15], where an analogue of the Hörmander–Mikhlin multiplier theo-
rem for Hankel multipliers is proved. We shall denote by | · | the operator
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norm | · |L(A,B). By (7.16),
�

|r−s|≥2|s−s̄|

|τ sK(r)− τ s̄K(r)| dµd(r)

=
�

|r−s|≥2|s−s̄|

∣∣∣π�
0

K((r, s)θ)−K((r, s̄)θ) dν(θ)
∣∣∣ dµd(r)

=
�

|r−s|≥2|s−s̄|

∣∣∣∣π�
0

1�

0

d

dt
[K((r, ts+ (1− t)s̄)θ)] dt dν(θ)

∣∣∣∣ dµd(r).
Let Ψ(t) = (r, ts + (1 − t)s̄)θ. Then |Ψ ′(t)| ≤ |s − s̄| (see [15, eq. (2.9)]).
Therefore, the last integral is bounded by

(7.18) |s− s̄|
1�

0

�

|r−s|≥2|s−s̄|

π�

0

|K ′|((r, ts+ (1− t)s̄)θ) dν(θ) dµd(r) dt

≤ |s− s̄|
1�

0

∞�

0

τ ts+(1−t)s̄|K ′|(r)χ(r) dµd(r) dt,

where χ(r) is the characteristic function of the set {r : |r − s| ≥ 2|s− s̄|}.
Next, we use the identity

	
τ sf(r)g(r) dµd(r) =

	
f(r)τ sg(r) dµd(r) and

then analyse τ ts+(1−t)s̄χ(r). It follows by considering (7.17) that

τ ts+(1−t)s̄χ(r) ≤ χ[|s−s̄|,∞)(r)

for any t ∈ [0, 1], as was observed in [15, eq. (3.9) and (3.10)]. Thus, (7.14)
implies that (7.18) is bounded by

|s− s̄|
∞�

|s−s̄|

|K ′(r)| dµd(r) . |s− s̄|
∞�

|s−s̄|

r−(d+1)rd−1 dr ≤ C.
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