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Summary. We study the deductive strength of properties under basic set-theoretical
operations of the subclass E-Fin of the Dedekind finite sets in set theory without the
Axiom of Choice (AC), which consists of all E-finite sets, where a set X is called E-finite
if for no proper subset Y of X is there a surjection f : Y → X.

1. Introduction, terminology, and preliminary results

Definition 1.1. ZF is the Zermelo-Fraenkel set theory minus the Ax-
iom of Choice AC; and ZFA is ZF with the Axiom of Extensionality weak-
ened in order to allow the existence of atoms.

The classical definition of a finite set is that a set X is finite if there exists
a bijection f : X → n where n is a natural number (n = {m ∈ ω : m < n},
where as usual ω denotes the set of all natural numbers). Otherwise, X is
said to be infinite. In other words, X is finite if there exists an injection
f : X → ω and there is no injection g : ω → X. In this paper, we shall
use the word “finite” in this classical sense and, as usual, infinite will mean
“not finite”.

We shall adopt the standard notation for comparability of sets as follows.
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Definition 1.2. Let X and Y be two sets.

X ≤ Y if there exists an injection f : X → Y ,

X ≈ Y if there exists a bijection f : X → Y ,

X < Y if X ≤ Y and X 6≈ Y ,

X ≤∗ Y if X = ∅ or there exists a surjection f : Y → X,

X <∗ Y if X ≤∗ Y and X 6≈ Y .

Definition 1.3. Let X be a set.

(1) X is called A-finite if X cannot be expressed as the disjoint union of
two infinite sets. Otherwise, X is called A-infinite. If X is an infinite,
A-finite set, then X is called amorphous.

(2) X is called B-finite if X has no infinite linearly orderable subsets.
Otherwise, X is called B-infinite.

(3) X is called C-finite if there is no surjection f : X → ω. Equivalently
(see [He, Lemma 4.11] or [Ta, pp. 94–95]), X is C-finite if there is
no injection from P(X) (the power set of X) into a proper subset of
P(X) (equivalently, X is C-finite if P(X) has no countably infinite
subsets, i.e., P(X) is Dedekind-finite, see next item (4)). Otherwise,
X is called C-infinite.

(4) X is called D-finite (or Dedekind-finite) if ω 6≤ X. Equivalently, X is
D-finite if there is no injection from X into a proper subset of X.
Otherwise, X is called D-infinite. An infinite, D-finite set is called a
Dedekind set.

(5) X is called E-finite if for no proper subset Y of X is there a surjection
f : Y → X. Otherwise, X is called E-infinite.

The notions of A-, B-, C-, and D-finite are due to Herrlich [Her]. We also
note that A-finite was called Ia-finite by Lévy [L], and in the paper [Tr] by
Truss the class of A-finite sets is denoted by ∆1. In [Tr], the class of B-finite
sets is denoted by ∆3. C-finite is (equivalent to) III-finite in Lévy [L] (1),
weakly Dedekind finite in Degen [De], and almost finite in Diel [Di]. In [Tr],
the class of C-finite sets is denoted by ∆4, and the class of D-finite sets
by ∆.

The notion of E-finite has been suggested to us by Ulrich Felgner and it
is the motivation for the research in this paper. In a way, the current paper
continues the research in Herrlich–Howard–Tachtsis [HHT], in which prop-
erties of certain subclasses of the D-finite sets with respect to comparability
of their elements and to boundedness of such classes were investigated. Here,

(1) Lévy’s formulation of III-finiteness is in particular the second clause of (3) in
Definition 1.3, that is, X is III-finite if and only if P(X) is D-finite.
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we specifically examine the class of all E-finite sets with respect to stability
properties under basic set-theoretical operations.

Definition 1.4. Let n ≥ 2 be an integer. An n-Russell set is a set X
which can be written as X =

⋃
k∈ωXk where

• for each k ∈ ω, Xk ≈ n,
• for i and j in ω, if i 6= j then Xi ∩Xj = ∅, and
• no infinite subset of {Xk : k ∈ ω} has a choice function.

A 2-Russell set is also called a Russell set. It is clear that every n-Russell
set, n ∈ ω \ 2, is A-infinite, B-finite, C-infinite, and D-finite. We will prove
in Theorem 2.2 that, in ZF, for every n ≥ 2, every n-Russell set is E-finite.

Truss [Tr] introduced the following class of sets:

∆5 = {X : there is no surjection f : X → X ∪ {a}, where a /∈ X},

and proved that ∆5 ⊂ ∆, that is, every element of ∆5 is a D-finite set.

It turns out that a set X is E-finite if and only if X ∈ ∆5 (hence,
∆5 is the class of all E-finite sets, which in our paper will be denoted by
E-Fin—see also Definition 1.9). Indeed, we have the following proposition.

Proposition 1.5. A set X is E-finite if and only if X ∈ ∆5.

Proof. (→) Let X be an E-finite set. Toward a contradiction assume
that there is a surjection f : X → X ∪ {a}, a /∈ X. Then Y = X \ f−1({a})
is a proper subset of X and f�Y is a function from Y onto X. Thus, X is
E-infinite, a contradiction.

(←) This can be proved in a similar manner and is left to the reader.

We also point out that E-finite is equivalent to dually Dedekind finite (2)
of Degen [De] and to strongly Dedekind finite of Diel [Di].

In [Tr], the following result was proved, giving the relationship between
the above notions of finite.

Proposition 1.6. The following hold:

(1) “Finite” implies “A-finite” implies “C-finite” implies “E-finite” im-
plies “D-finite”. None of these implications is reversible in ZF.

(2) “A-finite” implies “B-finite” implies “D-finite”. None of these im-
plications is reversible in ZF.

(3) “B-finite” does not imply “C-finite” and “C-finite” does not imply
“B-finite” in ZF. Hence “E-finite” does not imply “B-finite” in ZF.

(4) “B-finite” does not imply “E-finite” in ZF.

(2) A set X is dually Dedekind finite if there is no non-injective surjection from X
onto X.
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The following definitions are from Herrlich [Her] (except for the class
E-Fin in Definition 1.9(2)).

Definition 1.7. Let U be a class of sets.

(1) U is called cardinality-determined if U contains, together with any
set A, every set X with X ≈ A.

(2) U is called hereditary if U contains, together with any set A, every
set X with X ≤ A.

(3) U is called cohereditary if U contains, together with any set A, every
set X with X ≤∗ A.

(4) U is called summable if U contains the union
⋃

i∈I Ai of any family
{Ai : i ∈ I} of members of U, indexed by a member I of U.

(5) U is called weakly summable if
⋃
L ∈ U for every member L of U, all

of whose members belong to U.
(6) U is called disjointly summable if U contains the union

⋃
i∈I Ai of

any pairwise disjoint family {Ai : i ∈ I} of members of U, indexed
by a member I of U.

(7) U is called productive if U contains the product
∏

i∈I Ai of any family
{Ai : i ∈ I} of members of U, indexed by a member I of U.

(8) U is called power-stable if U contains, together with any set A, also
the power set P(A).

Definition 1.8. A class U of sets is called a finiteness class if it satisfies
the following conditions:

(1) U contains every finite set.
(2) U is hereditary.
(3) ω /∈ U.

We note that parts (2) and (3) of the definition imply that all finiteness
classes consist of D-finite sets.

Definition 1.9. Fin is the class of all finite sets; and if L ∈ {A,B,C,
D,E}, then L-Fin is the class of all L-finite sets.

Proposition 1.10. The following statements hold:

(1) ([Her]) Let U be a finiteness class. Then:

(a) U is summable if and only if U is weakly summable.
(b) If U is summable, then U is disjointly summable.
(c) If U is summable, then U is cohereditary.
(d) If U is productive, then U is power-stable.

(2) ([Her], [Tr]) Fin and L-Fin, where L ∈ {A,B,C,D,E}, are finite-
ness classes.
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(3) ([Her]) Fin is the smallest (with respect to inclusion) finiteness class.
Further, Fin is the only productive and the only power-stable finite-
ness class.

(4) ([Her]) D-Fin is the largest (with respect to inclusion) finiteness
class. Further, D-Fin is disjointly summable in ZF, but it is rela-
tively consistent with ZF that D-Fin is not summable.

(5) ([Her]) B-Fin is disjointly summable in ZF, but it is relatively con-
sistent with ZF that B-Fin is not summable.

(6) ([Her]) C-Fin is, in ZF, the largest cohereditary finiteness class and
the largest summable finiteness class.

(7) ([Tr]) A finite union of E-finite sets is E-finite. It is relatively con-
sistent with ZF that there are two E-finite sets whose product is not
E-finite.

(8) ([Tr]) A finite union of A-finite sets is A-finite if and only if
A-Fin = Fin.

(9) ([Tr]) A finite union or product of B-finite (resp. C-finite) sets is
B-finite (resp. C-finite).

In order to prove that a finite union of E-finite sets is E-finite, Truss
[Tr, Theorem 1(iv)] used the following result (labeled as Lemma 4 in [Tr])
by Lindenbaum and Tarski [LT]. Since Truss refers to [LT] for a proof and
we had no access to that paper, we include our own proof here.

Proposition 1.11. Let X, Y , Z be three sets such that X ∩Y = X ∩Z
= ∅ and (X ∪ Y ) ≤∗ X ∪ Z. Then Y can be partitioned into sets A and B
such that B ≤∗ Z and X ∪A ≤∗ X.

Proof. Without loss of generality assume that Y ∩Z = ∅ (if not, then the
proof goes through with obvious minor changes). If X ∪ Y = ∅, then there
is nothing to prove. Otherwise, there exists a surjection f : X ∪Z → X ∪Y .
Let B be the set of all y ∈ Y for which there exists a finite sequence

(1.1) (a(0), a(1), . . . , a(n))

such that

(a) a(i+ 1) = f(a(i)) for each i < n.
(b) a(0) ∈ Z.
(c) a(i) ∈ X for each 0 < i < n.
(d) a(n) = y.

If B = ∅, then B ≤∗ Z automatically. Otherwise, select b∗ ∈ B and define a
surjection g : Z → B as follows: g(a(0)) = a(n) for every finite sequence of
the form (1.1), and g(z) = b∗ for all the remaining elements of Z.
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Next we define a surjection h : X → X ∪A, where A = Y \B, as follows:
For each y ∈ A, define a sequence (X(y, n)) of non-empty, pairwise disjoint
subsets of X by recursion as follows:

X(y, 0) = f−1({y}), X(y, n+ 1) = f−1(X(y, n)).

Then {X(y) : y ∈ A}, where X(y) =
⋃
{X(y, n) : n ∈ ω}, is a pairwise

disjoint family of subsets of X. Define X∗ =
⋃
{X(y) : y ∈ A} and a map

h : X → X ∪A by requiring h(x) = f(x) if x ∈ X∗, and h(x) = x otherwise.
Then h is a surjection, finishing the proof of the proposition.

In this paper, we also plan to investigate variations (with respect to
finiteness classes and basically with respect to E-Fin) of the following prin-
ciple SP, called the shrinking principle in [BS]:

SP: For every family {Ai : i ∈ I} of sets there exists a family {Bi :
i ∈ I} of pairwise disjoint subsets Bi of Ai such that

⋃
i∈I Bi =⋃

i∈I Ai.

It is known (see [BS] or [Her, p. 13, Exercise E 5] or the proof of Theorem
2.12) that SP is, in ZF, equivalent to AC. If U is a class of sets, then we let

SPU: For every family {Ai : i ∈ I} of sets, where I ∈ U, there exists a
family {Bi : i ∈ I} of pairwise disjoint subsets Bi of Ai such that⋃

i∈I Bi =
⋃

i∈I Ai.
SPU: For every family {Ai : i ∈ I} of sets, where Ai ∈ U for all i ∈ I,

there exists a family {Bi : i ∈ I} of pairwise disjoint subsets Bi of
Ai such that

⋃
i∈I Bi =

⋃
i∈I Ai.

SPU
U: For every family {Ai : i ∈ I} of sets, where I ∈ U and Ai ∈ U

for all i ∈ I, there exists a family {Bi : i ∈ I} of pairwise disjoint
subsets Bi of Ai such that

⋃
i∈I Bi =

⋃
i∈I Ai.

For a class U of sets, we also consider the following restricted choice
forms:

ACU: Every family {Ai : i ∈ I} of non-empty sets, where I ∈ U, has a
choice function.

ACU: Every family {Ai : i ∈ I} of sets, where Ai ∈ U \ {∅} for all i ∈ I,
has a choice function.

ACU
U: Every family {Ai : i ∈ I} of sets, where I ∈ U and Ai ∈ U \ {∅}

for all i ∈ I, has a choice function.

The following result has been established in [Her, Theorem 12] (see also [He,
E 15, p. 51]).

Proposition 1.12. SPD-Fin holds if and only if SPD-Fin
D-Fin holds if and

only if “D-Fin = Fin” if and only if “D-Fin is summable”.
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In the current paper, we show that the situation with the finiteness
class E-Fin is strikingly different ! Among other results, we shall prove that
SPE-Fin implies “E-Fin is summable” (Theorem 2.13), but the implica-
tion is not reversible in ZFA (Theorem 2.14). In fact, we show something
stronger: SPE-Fin

E-Fin implies “E-Fin is summable” (Theorem 2.13), but the
implication is not reversible in ZFA (Theorem 2.14).

2. Main results

2.1. Stability properties for the class E-Fin and related propo-
sitions. The subsequent lemma (Truss’ Lemma 8 of [Tr, p. 192]) will play
a crucial role in our investigation.

Lemma 2.1. If X =
⋃
{Xi : i ∈ ω} where each Xi is C-finite, and X is

E-infinite, then there is a surjection f : X → X ∪{a}, a /∈ X, and a strictly
increasing function n : ω → ω such that for each i ∈ ω,

f−(i+1)({a}) ⊆ Xn(i).

Theorem 2.2. Let m ≥ 2 be an integer. Then every m-Russell set is
E-finite.

Proof. Toward a contradiction, we assume that there exists an m-Russell
set X =

⋃
{Xi : i ∈ ω} which is E-infinite. Then the hypotheses of Lemma

2.1 apply to X, so let f : X → X ∪ {a}, a /∈ X, and n : ω → ω be the two
functions obtained from the conclusion of that lemma. For each i ∈ ω, let
Yi = f−(i+1)({a}). Then for all i ∈ ω, f restricted to Yi+1 is a function from
Yi+1 onto Yi. Since for all i ∈ ω, Yi ⊆ Xn(i) and Xn(i) is finite, we conclude
that for all i ∈ ω, Yi ≤ Yi+1. Since Xi ≈ m for all i ∈ ω, it follows that
Yi ≤ m for all i ∈ ω, so there is an n0 ∈ ω such that Yi ≈ Yj for all i, j ≥ n0.
Therefore for all i ≥ n0, f restricted to Yi+1 is an injective function from
Yi+1 onto Yi, hence f−1 restricted to Yi is an injective function from Yi onto
Yi+1.

Choose t ∈ Yn0 . Then the set

Y =
⋃
{{t}, f−1({t}), f−2({t}), f−3({t}), . . .}

is a countably infinite subset of X. This contradicts the fact that X is an
m-Russell set and completes the proof of the theorem.

We continue now with the investigation of stability properties under set
theoretical operations for the class E-Fin. The subsequent simple Theorem
2.3, and in particular the equivalence between its parts (a) and (d), is one
of the key results for this paper.

Theorem 2.3. The following statements are pairwise equivalent:

(a) E-Fin is summable.
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(b) E-Fin is weakly summable.
(c) E-Fin is cohereditary.
(d) E-Fin = C-Fin.

Proof. (a)↔(b) holds for every finiteness class (Proposition 1.10(a)),
hence for E-Fin too.

(b)→(c). This follows from (a)↔(b) and from Proposition 1.10(c).
(c)→(d). By Proposition 1.6(1) we have C-Fin ⊆ E-Fin. Suppose now,

toward a contradiction, that there is an E-finite, C-infinite set X. Then
ω ≤∗ X, hence by (c), ω ∈ E-Fin, a contradiction.

(d)→(a). This follows from our assumption and Proposition 1.10(6).

Theorem 2.4. The following three statements can be added to the list
of the pairwise equivalent statements of Theorem 2.3:

(1) E-Fin is disjointly summable.
(2) There are no E-finite countably infinite unions of non-empty sets.
(3) There are no E-finite countably infinite unions of non-empty E-finite

sets.

Proof. “E-Fin is summable” → (1). This is straightforward.
(1)→(2). We first prove the following lemma.

Lemma 2.5. “E-Fin is disjointly summable” implies “E-Fin is closed
under finite products”.

Proof. It suffices to show that our assumption implies that the product
of two E-finite sets is E-finite. Then one proceeds via a straightforward
induction. So let A and B be two E-finite sets and let U = {A×{b} : b ∈ B}.
Clearly, U is an E-finite (U ≈ B, B ∈ E-Fin, and E-Fin is hereditary in ZF
(Proposition 1.10(2)) pairwise disjoint family of E-finite sets (A is E-finite,
hence A × {b} (≈ A) is E-finite for all b ∈ B). Thus, by our assumption,⋃
U = A×B is E-finite.

We return now to the proof of (1)→(2). Toward a contradiction, we
assume that there is an E-finite set X which is a union of a countably infinite
family of non-empty sets. Then P(X) has a countably infinite subset and
is therefore D-infinite. As noted in Definition 1.3(3), X is C-infinite and
therefore there is a countably infinite partition {Xi : i ∈ ω} of X into
non-empty sets. Since X is E-finite and Xi ⊆ X for all i ∈ ω, each Xi is
E-finite.

Let Y (0) = X0, and for i ∈ ω \ 1 and x ∈ Xi, let

Y (x) = X0 ×X1 × · · · ×Xi−1 × {x}.
Then Y (x) 6= ∅ for all x ∈ X \ X0, and by Lemma 2.5, Y (x) ∈ E-Fin
for all x ∈ X \ X0. Furthermore, Y = {Y (x) : x ∈ X \ X0} ∪ {Y0} is
pairwise disjoint and belongs to E-Fin since X ∈ E-Fin, and E-Fin is
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hereditary and contains all finite sets. Thus, by our assumption, Z =
⋃
Y

is E-finite. Define a function f : Z \ Y (0) → Z as follows: Let x ∈ Xn for
some n ≥ 1 and let (x0, x1, . . . , xn−1) ∈ X0 ×X1 × · · · ×Xn−1. Then define
f((x0, . . . , xn−1, x)) = (x0, . . . , xn−1). It is straightforward to verify that f is
a surjection, thus Z is E-infinite, a contradiction. This completes the proof
of (1)→(2).

(2)→(3). This is straightforward.
(3) → “E-Fin is summable”. Assume (3) holds. By Theorem 2.3, it

suffices to show that E-Fin = C-Fin. Assume otherwise; then since
C-Fin ⊆ E-Fin (see Proposition 1.6(1)), there exists a C-infinite, E-finite
set X. Thus, X can be expressed as a countably infinite disjoint union⋃
{Xn : n ∈ ω}, where each Xn is non-empty and E-finite (E-Fin is heredi-

tary, hence each subset Xn of the E-finite set X is E-finite). This contradicts
our assumption, hence E-Fin is summable as required.

Remark 2.6. We note that the statement “E-Fin is closed under finite
products” is independent of the axioms of ZF + (¬AC) set theory. Indeed,
in [Tr, Theorem 5(iii)], it is shown that “E-Fin = C-Fin” is relatively
consistent with ZF + (¬AC), hence (by Proposition 1.10(9)), “E-Fin is
closed under finite products” is also relatively consistent with ZF+ (¬AC).

On the other hand, Truss [Tr, p. 193] constructs a permutation model
of ZFA in which there exist two E-finite sets whose product is E-infinite.
Then the latter result is transferred to ZF + (¬AC) via the Jech–Sochor
Theorem (see also [J, Problem 1 in Chapter 6]). Thus, “E-Fin is not closed
under finite products” is also relatively consistent with ZF + (¬AC).

Theorem 2.7. Each of the following statements implies the one beneath it:

(1) E-Fin is summable.
(2) The Partial Kinna–Wagner Selection Principle for countable fami-

lies of C-finite sets, each with at least two elements (i.e., for every
family A = {Ai : i ∈ ω} of C-finite sets, each with at least two ele-
ments, there is an infinite subfamily B of A and a function f with
domain B such that for every B ∈ B, f(B) is a non-empty proper
subset of B).

(3) There are no n-Russell sets, for all integers n ≥ 2.

The implication “(2)→(3)” is not reversible in ZFA.

Proof. (1)→(2). Let X = {Xi : i ∈ ω} be a countable family of C-finite
sets, each with at least two elements. Without loss of generality, we assume
that X is pairwise disjoint (if not, replace each Xi by Xi × {i}; then since
C-Fin is hereditary, it follows that Xi × {i} is C-finite).

Toward a contradiction, we assume thatX does not admit a partial Kinna–
Wagner selection function. By (1), it follows thatX =

⋃
X isE-infinite, hence
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by Lemma 2.1, let f : X → X ∪ {a}, a /∈ X, and let n : ω → ω be the two
functions obtained by the conclusion of that lemma applied to the family X .
For each i ∈ ω, set Yi = f−(i+1)({a}). Since Yi ⊆ Xn(i) for all i ∈ ω, and X
has no partial Kinna–Wagner selection function, there is an i0 ∈ ω such that

(2.1) (∀i ∈ ω) [i ≥ i0 ⇒ Yi = Xn(i)].

Choose any x ∈ Yi0 (= Xn(i0)). Since Xn(i0+1) = Yi0+1 = f−1(Yi0) and

f is a surjection, it follows that f−1({x}) is a non-empty proper subset of
Xn(i0+1). In a similar fashion it follows, by induction, that for all k ∈ ω \ 1,

f−k({x}) is a non-empty proper subset of Xn(i0+k), so that

K =
⋃{
{x}, f−1({x}), f−2({x}), f−3({x}), . . .

}
is a Kinna–Wagner selection set for the infinite subfamily {Xn(i) : i∈ω, i≥ i0}
of X , a contradiction.

(2)→(3). Use (2) and induction. We leave the details to the interested
reader.

For the last assertion of the theorem we employ the Fraenkel–Mostowski
(FM) model N6 in [HR] (Lévy’s Model I): The set of atoms A =

⋃
{Pn :

n ∈ ω} is a disjoint union, where P0 = {a0}, P1 = {a1, a2}, P2 = {a3, a4, a5},
P3 = {a6, a7, a8, a9}, . . . ; in general for n ∈ ω with n > 0, |Pn| = pn, where
pn is the nth prime. G is the group of all permutations of A generated by
{πn : n ∈ ω}, where, if Pn = {am+1, am+2, . . . , am+pn}, then

πn : am+1 7→ am+2 7→ · · · 7→ am+pn 7→ am+1, πn(x) = x for all x /∈ Pn.

I is the normal ideal of all finite subsets of A. It is known that the axiom of
choice for families of n-element sets, n ∈ ω, n > 0, holds in the model (see
[HR] or [J, Theorem 7.11]). Hence, there are no n-Russell sets, n ∈ ω, n ≥ 2,
in N6. On the other hand, using standard techniques of FM models, it can
be easily verified that the family {Pn : n ∈ ω} is countable in the model,
consists of finite, hence C-finite, sets, and admits no partial Kinna–Wagner
selection function in the model. Hence, our assertion is valid.

Theorem 2.8.

(1) “E-Fin = Fin” if and only if “E-Fin is power-stable” if and only
if “E-Fin is productive”.

(2) Each of the following statements implies the one beneath it:

(a) D-Fin = Fin.
(b) E-Fin = Fin.
(c) For every infinite set X, 2× P(X) ≈ P(X).
(d) For every infinite set X, P(X) is D-infinite (if and only if

“C-Fin = Fin”).
(e) A-Fin = Fin.
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Hence, “E-Fin = Fin” is not provable in ZF. In addition, (c), hence
(d) and (e), does not imply (b) in ZFA.

(3) “E-Fin = Fin” if and only if “(C-Fin = Fin) + (E-Fin is summ-
able)”. Hence, “E-Fin = Fin” implies each one of the statements
listed in Theorem 2.7.

(4) “E-Fin is summable” does not imply “E-Fin = Fin” in ZFA.
Hence, “E-Fin is summable” implies neither “D-Fin = Fin” nor
“For all infinite cardinals m, 2m = m” in ZFA.

(5) The axiom of multiple choice (MC) implies, in ZFA, “C-Fin =
Fin”.

(6) The Kinna–Wagner selection principle (KW) implies, in ZF,
“C-Fin = Fin”.

(7) “C-Fin = Fin” does not imply “E-Fin = Fin”, in both ZFA and
ZF.

Proof. (1). This follows from Proposition 1.10(3).

(2) (a)→(b). This follows from Proposition 1.6(1).

(b)→(c). Let X be an infinite set. By our assumption, X is E-infinite,
hence there is a surjection f : X → X ∪ {a}, a /∈ X. It is clear that
P(X∪{a}) ≈ 2×P(X) for a /∈ X. Define a function g : P(X∪{a})→ P(X)
by setting g(A) = f−1(A) for all A ⊆ X ∪ {a}. Then g is injective, thus (by
the Cantor–Bernstein theorem, which is provable in ZF) 2×P(X) ≈ P(X).

(c)→(d). This can be proved similarly to the proof of Theorem 2.3 in
Halpern and Howard [HH, p. 488]. The details are left to the reader. For the
second assertion, see Definition 1.3(3).

(d)→(e). This follows from our assumption and Proposition 1.6(1). The
reader is also refered to [Her, Proposition 21] for several characterizations
of “A-Fin = Fin”.

For the second assertion of (2), note that the existence of an amorphous
set—hence the existence of an infinite E-finite set—is relatively consistent
with ZF (see [J]).

For the third and also the last assertion of (2), we note first that in
Howard and Spǐsiak [HS, Theorem 2.1], it is shown that, under AC2 (the
axiom of choice for families of pairs), “C-Fin = Fin” implies that for every
infinite set X, 2 × P(X) ≈ P(X) (in particular, the authors in [HS] show
that, under AC2 + (C-Fin = Fin), for every infinite set X, there is a set
D 6= ∅ such that 2ω ×D ≈ P(X); D is a suitable partition of P(X)).

Consider now the FM modelN6 in [HR]; see the proof of Theorem 2.7 for
the description of the model. Since MC (the axiom of multiple choice) holds
in N6 (see [HR]), by (5) every infinite set in the model is C-infinite, i.e.,
C-Fin = Fin in N6. Further, as AC2 holds in N6 (see [HR] or [J]), by the
above result of Howard and Spǐsiak, 2×P(X) ≈ P(X) for every infinite set
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X ∈ N6. However, the family {Pn : n ∈ ω}, where A =
⋃
{Pn : n ∈ ω} is the

set of atoms, does not admit a partial Kinna–Wagner selection function (see
[HR]), hence since each Pn is a finite set, by the proof of (2)→(3) of Theorem
2.7 we deduce that the infinite set A is E-finite, thus E-Fin 6= Fin in N6.

(3) This follows from (b)→(d) of (2) and Theorem 2.3.

(4) In Mostowski’s linearly ordered permutation model (model N3 in
[HR]), E-Fin = C-Fin and E-Fin 6= Fin (see [Tr, pp. 203–204]); the set A
of atoms is an infinite E-finite, henceD-finite, set inN3. Thus,D-Fin 6= Fin
in N3 and, by Theorem 2.3, E-Fin is summable in N3. On the other hand,
it is well-known that the infinite set A of atoms is a D-finite set in N3,
hence “D-Fin = Fin” fails in N3.

The last assertion of (4) follows from the fact that “For all infinite car-
dinals m, 2m = m” implies every infinite set is D-infinite (see [HH]).

(5) MC is the principle: For every family {Xi : i ∈ I} of non-empty sets
there exists a function F with domain I such that for each i ∈ I, F (i) is a
non-empty finite subset of Xi.

It is known (see [HR]) that MC is equivalent to the proposition: Every
infinite set has a well-orderable partition into non-empty finite sets (this is
Lévy’s characterization of MC) and that MC is equivalent to AC in ZF.
Using Lévy’s characterization of MC, it can be readily verified now that,
under MC, every infinite set is C-infinite, hence C-Fin = Fin.

(6) The principle KW is the proposition: For every family A of sets
there is a function f (called a Kinna–Wagner selection function) such that
for all A ∈ A, if 2 ≤ A, then ∅ 6= f(A) ( A.

Now, KW implies “For every infinite set X, P(X) is D-infinite”: to
see this it suffices to suitably adopt the proof of the Lemma (KW implies
every infinite set can be linearly ordered) of Felgner [F, p. 123]. Since the
statement “For every infinite set X, P(X) is D-infinite” is equivalent to
“C-Fin = Fin”, the result follows.

(7) In the second Fraenkel permutation model (model N2 in [HR]) MC
is true (see [HR]). Thus, by (5), also C-Fin = Fin in N2. On the other
hand, it is known that the infinite set A of atoms is a Russell set, hence, by
Theorem 2.2, A is E-finite. Thus, E-Fin 6= Fin in N2.

Now, in the basic Cohen modelM1, KW holds (see [HR]). Thus, by (5),
also C-Fin = Fin in M1. On the other hand, the infinite set A of the
countably many added generic reals is E-finite (see [Tr]), hence, in M1,
E-Fin 6= Fin.

Remark 2.9. (1) The fact that C-Fin = Fin in N2 has been shown
differently in [Tr] via techniques of FM models and properties of N2. How-
ever, the result of Theorem 2.8(5) is more general (recall that N2 |= MC),
thus providing a strengthening of the aforementioned result by Truss.
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(2) Let KW(R) be the Kinna–Wagner selection principle restricted to
families of sets of reals, each with at least two elements. It is clear that
KW(R) is a theorem of ZF, thus it can be proved without using any form
of choice. As in Theorem 2.8(6), it can be verified that KW(R) implies that
for every infinite set X of reals, P(X) is D-infinite. It follows that, in ZF,
every infinite set of reals is C-infinite. A different proof of this fact has
been given in Degen [De, Corollary 15]. A third proof will be given in our
Theorem 2.11 below.

(3) We point out that “E-Fin = D-Fin” if and only if “D-Fin = Fin”.
Indeed, assuming that E-Fin = D-Fin, let X be a D-finite set, and toward a
contradiction, assume that it is infinite (i.e.,X is a Dedekind set in the termi-
nology of Definition 1.3(4)). Let Y =

⋃
{Yn : n ∈ ω} where Yn = {f ∈ Xn :

f is an injection}. It is easy to see that Y is D-finite, hence by our as-
sumption, it is also E-finite. However, it is not hard to verify that Y is
E-infinite. Define f : Y \ Y0 → Y by setting f(s) = ∅ for all s ∈ Y1, and for
(x1, . . . , xn) ∈ Y , n > 1, let f((x1, . . . , xn)) = (x1, . . . , xn−1). Clearly, f is a
surjection (see also [Tr, Lemma 6, p. 190]), a contradiction.

(4) In [HR, Note 94] the following definition is given: Let F be a definition
of finite (say for example, in our paper, standard finite, or A-, B-, C-, D,
or E-finite). Then a set A is F ′′-finite if P(A) is F -finite. Also, a set A
is called V -finite if A = ∅ or A < 2 × A. In [HR, Note 94, p. 280], the
question on the relationship between E-finite and V ′′-finite is raised. The
proof of (b)→(c) of Theorem 2.8(2) gives a partial answer to this question.
In particular, V ′′-finite implies E-finite. The latter implication has also been
established in [Cr, Theorem 5].

2.2. C-finiteness, E-finiteness, and sets of reals

Theorem 2.10. Consider the basic Cohen model (model M1 in [HR])
and let A = {ai : i ∈ ω} ∈ M1 be the D-finite set of the countably many
added generic reals. Then:

(1) For every natural number n ≥ 1, An is E-finite. Hence, the existence
of an infinite, E-finite subset of R (or of Rn, n ∈ ω, or of Rω) is
relatively consistent with ZF.

(2) “E-Fin is summable” fails in M1. Hence, “E-Fin is disjointly
summable” also fails in M1 (see Theorem 2.4).

(3) ACE-Fin
E-Fin fails in M1. Hence, in view of Theorem 2.13(4) below, the

shrinking principle SPE-Fin
E-Fin also fails in M1.

Proof. (1) The fact that A is E-finite in M1 has been proved in [Tr,
p. 199]. We only show that A2 is also E-finite in M1; the proof that any
other finite power n of A is E-finite is similar, and we leave the details
to the interested reader. (We remind the reader that “E-Fin is not closed
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under finite products” is consistent relative to ZF—see Proposition 1.10.
Furthermore, a careful reading of the proof of Proposition 1.11 should reveal
why one should not be tempted to use this result for the proof.) For our
proof, we follow the terminology in [J]. Toward a contradiction, we assume
that, in M1, there exists a surjection f : A × A → (A × A) ∪ {a} where
a /∈ A×A. Let ḟ be a hereditarily symmetric name of f with support E (a
finite subset of ω), that is, every permutation π of ω which fixes E pointwise
fixes ḟ . Let p be a forcing condition in the generic filter G such that

p  “ḟ is a surjection from ˙(A×A) to ˙((A×A) ∪ {a})”.

Since every finite set is E-finite, it follows that there are infinitely many
points (x, y) ∈ A × A such that f((x, y)) 6= (x, y). Furthermore, since f is
a surjection, it cannot be the case that for all x ∈ A \ Ē, where Ē = {ae :
e ∈ E}, A× {x} and {x} ×A are mapped onto A× {u} or {u} ×A, where
u ∈ Ē. In addition, using standard forcing arguments and the fact that A
is E-finite, it follows that it is not the case that for all x ∈ A \ Ē, A× {x}
is mapped (via f) onto {x} × A and vice versa. We leave the fairly easy
checking of the details to the interested reader.

In view of the above and the fact that E and Dom(p) are finite, we may
conclude that there exist i, j, r, s ∈ ω such that f((ai, aj)) = (ar, as) and
either r 6= i, j, r > n for all n ∈ E, and (r,m) /∈ Dom(p) for all m ∈ ω,
or s 6= i, j, s > n for all n ∈ E, and (s,m) /∈ Dom(p) for all m ∈ ω.
Without loss of generality assume that r 6= i, j, r > n for all n ∈ E, and
(r,m) /∈ Dom(p) for all m ∈ ω.

Let q be a forcing condition in G such that q ≤ p and

(2.2) q  ḟ((ȧi, ȧj)) = (ȧr, ȧs),

and let k ∈ ω \{r} be such that k > n for all n ∈ E and (k,m) /∈ Dom(q) for
all m ∈ ω. Consider the permutation π of ω which swaps k and r but fixes
each of the remaining natural numbers. Since k, r /∈ E, π fixes E pointwise
and so π(ḟ) = ḟ . Further, q and π(q) are compatible forcing conditions,
hence q ∪ π(q) is a well-defined extension of q. From (2.2), we obtain π(q) 
ḟ((ȧi, ȧj)) = (ȧk, ȧs), and as q ∪ π(q) ≤ q and q ∪ π(q) ≤ π(q), we also have

q ∪ π(q)  ḟ((ȧi, ȧj)) = (ȧr, ȧs) and

q ∪ π(q)  ḟ((ȧi, ȧj)) = (ȧk, ȧs).

This is a contradiction.

(2) It is known (see [Co] or [HR]) that A is dense in R. Since A is
E-finite, it follows that A+ = {x ∈ A : x > 0} is E-finite (recall that
E-Fin is hereditary). Furthermore, A+ =

⋃
{A ∩ (n, n + 1) : n ∈ ω} and

A∩(n, n+1) 6= ∅ for all n ∈ ω. Hence, A+ is C-infinite, thus E-Fin 6= C-Fin,
and consequently, by Theorem 2.3, E-Fin is not summable.
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(3) Set A+ = {x ∈ A : x > 0} and U = {A+(x) : x ∈ A+}, where for
x ∈ A+, A+(x) = (x,∞) ∩ A = {y ∈ A : x < y}. Then U is indexed by an
E-finite set and each element of U is a non-empty E-finite set (recall that
A is dense in R). We show that U has no choice function in M1. Assume
otherwise and let f be a choice function for U which belongs to M1. Let ḟ
be a hereditarily symmetric name of f with support E and let p be a forcing
condition in the generic filter G such that

p  “ḟ is a choice function for U̇”.

Then there exist i, j ∈ ω such that f(A+(ai)) = aj , i 6= j, i, j > n for all
n ∈ E, and (j,m) /∈ Dom(p) for all m ∈ ω. Let q ∈ G (the generic filter) be
such that q ≤ p and

(2.3) q  ḟ( ˙A+(ai)) = ȧj ,

and let k ∈ ω\{j} be such that k > n for all n ∈ E and (k,m) /∈ Dom(q) for
all m ∈ ω. Considering the transposition π = (j, k), we may show similarly
to part (1) that q ∪ π(q) is a well-defined extension of q which forces a
contradiction (i.e., f(A+(ai)) = aj and f(A+(ai)) = ak).

Theorem 2.11. In ZF, every infinite set of reals is C-infinite, hence by
Proposition 1.6(1), A-infinite.

Proof. Let A be an infinite set of reals. Without loss of generality assume
that ω 6≤ A. (If ω ≤ A, then A is clearly C-infinite.) We consider the
following cases:

Case 1: A is unbounded to the right. Then for infinitely many n ∈ N
(= the set of positive integers) the sets A(n) = A∩ [n, n+ 1) are not empty.
Thus, there exists a strictly increasing sequence (n(k)), k ∈ N, such that
each A(n(k)) is non-empty. Then the map f : A→ N defined by

f(x) =

{
k if a ∈ A(n(k)),

0 otherwise,

is surjective.

Case 2: A is unbounded to the left. Replace A by g[A], where g(x) = −x
for all x ∈ A. Then proceed as in Case 1.

Case 3: A is bounded. Then A has an accumulation point, say p.

Case 3a: p is an accumulation point of A from the right. Then replace
the set A∗ = {a ∈ A : p < a} by {1/(a − p) : a ∈ A∗} and proceed as in
Case 1.

Case 3b: p is an accumulation point of A from the left. Replace A by
g[A], where g(x) = −x, x ∈ A, and proceed as in Case 3a.
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2.3. Certain choice and shrinking principles and stability prop-
erties of the class E-Fin. We start this section by proving that the shrink-
ing principle SPE-Fin is equivalent, in ZF, to the full AC, thus equivalent to
the full shrinking principle SP (see Section 1). In fact, we prove something
more, namely SPL-Fin is equivalent to AC for every L ∈ {0, A,B,C,D,E},
where for L = 0, 0-Fin stands for the class Fin.

Theorem 2.12. In ZF, AC is equivalent to SPL-Fin for every L ∈
{0, A,B,C,D,E}. Thus, in ZF, SP is equivalent to SPL-Fin for every L ∈
{0, A,B,C,D,E}.

Proof. Fix any L ∈ {0, A,B,C,D,E}, assume SPL-Fin holds, and let
A = {Ai : i ∈ I} be a pairwise disjoint family of non-empty sets. Set
X =

⋃
A and without loss of generality assume that X ∩ I = ∅. For each

x ∈ X, let i(x) be the unique i ∈ I such that x ∈ Ai and let A(x) = {x, i(x)}.
Set U = {A(x) : x ∈ X}. Clearly, for every x ∈ X, A(x), being a finite
set, is L-finite for every L ∈ {0, A,B,C,D,E}. Let, by our assumption,
V = {B(x) : x ∈ X} be a shrinking of the cover U of X ∪ I. It is clear that
for every i ∈ I, there is a unique xi ∈ X such that B(xi) = {xi, i}. Then
f = {(i, xi) : i ∈ I} is a choice function of A, finishing the proof.

Theorem 2.13. The following hold in ZF:

(1) “E-Fin = Fin” implies both SPE-Fin and ACE-Fin. Hence, under
“E-Fin = Fin”, SPE-Fin is equivalent to ACE-Fin.

(2) SPE-Fin implies SPE-Fin
E-Fin implies “There are no E-finite countable

disjoint unions of non-empty sets”.
(3) SPE-Fin

E-Fin implies “E-Fin is summable”. Hence, SPE-Fin implies “E-
Fin is summable”.

(4) SPE-Fin
E-Fin is equivalent to “ACE-Fin

E-Fin + (E-Fin is summable)”.

(5) ACE-Fin
E-Fin implies “A-Fin = Fin”. Hence, by (4), SPE-Fin

E-Fin also im-
plies “A-Fin = Fin”.

(6) ACE-Fin
E-Fin fails in the basic Fraenkel model. Hence, by (4), SPE-Fin

E-Fin

also fails in that model.
(7) “(E-Fin = Fin) + ACfin” is equivalent to ACE-Fin, where ACfin

is the axiom of choice for families of non-empty finite sets. Hence,
ACE-Fin implies “E-Fin is summable” and, by (4), it also implies

SPE-Fin
E-Fin.

(8) ACE-Fin implies both SPE-Fin and ACE-Fin.

Proof. (1) This is straightforward.
(2) The first implication is obvious. For the second implication, assume

SPE-Fin
E-Fin holds and, toward a contradiction, assume that X =

⋃
{Ai : i ∈ ω}

is an E-finite countable disjoint union of non-empty sets. Use now the proof
of Theorem 2.12 suitably, in order to define a choice function for the family
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{Ai : i ∈ ω} (simply replace, in that proof, I with ω and notice that U =
{A(x) : x ∈ X} is an (E-finite)-indexed family of finite, hence E-finite, sets;
the rest of the proof remains the same). It follows that X is D-infinite, a
contradiction (recall that E-Fin ⊆ D-Fin).

(3) Assume the hypotheses hold. In view of Theorem 2.3, it suffices to
show that E-Fin is a subclass of C-Fin. Assume on the contrary that there
exists an infinite E-finite set X which is C-infinite. Then X has a countable
partition {An : n ∈ ω} where An 6= ∅ for all n ∈ ω. Since X and An, n ∈ ω,
are E-finite, this contradicts (2).

(4) (→) “SPE-Fin
E-Fin → ACE-Fin

E-Fin” can be proved as in Theorem 2.12, using
the result of (3).

(←) Let A = {Ai : i ∈ I} be a family such that I is E-finite and Ai is
E-finite for all i ∈ I. We will find a shrinking B = {Bi : i ∈ I} of A. By
our assumption, X =

⋃
A is E-finite. For each x ∈ X, let J(x) = {i ∈ I :

x ∈ Ai} and set

J = {J(x) : x ∈ X}.

Then J(x) 6= ∅ for all x ∈ X, and since X is E-finite and J(x) is E-finite
for all x ∈ X (for J(x) ⊆ I, I is E-finite, and E-Fin is hereditary), we

may apply ACE-Fin
E-Fin to the family J in order to obtain a choice function fJ

for J . Then the family B = {Bi : i ∈ I}, where

Bi = {x ∈ Ai : fJ (x) = i},

is clearly a shrinking of A.

(5) Assume ACE-Fin
E-Fin and, towards a contradiction, assume that there

exists an amorphous set X.

We assert that for every natural number n, [X]n (the set of all n-element
subsets of X) is E-finite. Indeed, let n ∈ ω and define Inj(Xn) to be the set
of all injections from n into X. Since X is A-finite, it is also C-finite, and
since C-Fin is closed under finite products and hereditary (see Proposition
1.10(2) and (9)), it follows that Xn is C-finite and consequently Inj(Xn)
is C-finite. Now, it is clear that [X]n ≤∗ Inj(Xn), and since C-Fin is (the
largest) cohereditary (finiteness) class (see Proposition 1.10(6)), it follows
that [X]n is C-finite, thus E-finite.

To end the proof, pick any integer n > 1. By ACE-Fin
E-Fin, the family {Y :

Y ∈ [X]n} has a choice function. But then, by [Tr, Theorem 3, p. 196], the
set X is not amorphous, a contradiction.

(6) In the basic Fraenkel modelN1 in [HR] (see also the proof of Theorem
2.15 for the model’s description), the set A of atoms is amorphous, hence
“A-Fin = Fin” fails in that model. By (5), it follows that both ACE-Fin

E-Fin

and SPE-Fin
E-Fin fail in N1.

(7) (→) This is clear.
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(←) “ACE-Fin → ACfin” is clear. To prove that ACE-Fin implies
“E-Fin = Fin”, let, toward a contradiction, X be an infinite E-finite set.
Since E-Fin is hereditary, P(X) ⊂ E-Fin. Then, by ACE-Fin, P(X) \ {∅}
has a choice function, hence X is well-orderable, a contradiction (for, every
E-finite set is D-finite). Thus, X is finite and E-Fin = Fin as required.

(8) This follows from (7) and (1).

Theorem 2.14.

(1) “E-Fin is summable” implies none of the principles SPE-Fin
E-Fin,

SPE-Fin, ACE-Fin
E-Fin, ACE-Fin, in ZFA set theory.

(2) ACE-Fin does not imply AC in ZFA. Hence, it does not imply
SPE-Fin in ZFA either.

(3) ACfin does not imply any of ACE-Fin, ACE-Fin, SPE-Fin, in ZF.

Proof. (1) We employ the Mostowski linearly ordered model (model N3
in [HR]). Recall that N3 is constructed by starting with a ground modelM
of ZFA + AC with a countable set A of atoms together with a dense linear
ordering < of A without endpoints. (Hence, A is order isomorphic to the
set Q of all rational numbers with the order it inherits from R). The group
G of permutations of A used to define the model is the group of all order
automorphisms of (A,<). For each finite set E ⊆ A, let fixG(E) = {φ ∈ G :
(∀e ∈ E) (φ(e) = e)} be the pointwise stabilizer of E. Let Γ be the normal
filter of subgroups of G generated by the filter base {fixG(E) : E ∈ Pfin(A)}.
N3 is the FM model determined byM, G and Γ . If x ∈ N3 and E ∈ Pfin(A)
is such that fixG(E) ⊆ SymG(x) (= {φ ∈ G : φ(x) = x}), then we say that
E is a support of x.

By the proof of Theorem 2.8(4), the class E-Fin is summable in the
modelN3. Further, in view of Theorem 2.13, it suffices to show that ACE-Fin

E-Fin

fails inN3. To this end, we first recall that in [L] it is shown that A is C-finite
in N3, hence also E-finite in N3. Now consider the family

U = {(x,∞) : x ∈ A}

where (x,∞) = {y ∈ A : x < y}. Then for each x ∈ A, (x,∞) is an E-finite
set since (x,∞) ⊂ A and E-Fin is hereditary. We assert that ACE-Fin

E-Fin fails
for the family U . Assume to the contrary that f is a choice function for U
with support E = {e1 < · · · < en} ⊂ A. Let x ∈ A be such that en < x
(recall that A has no endpoints) and assume that f((x,∞)) = z. Let r ∈ A
be such that z < r. Let φ be an order automorphism of A such that φ fixes
E ∪ {x} pointwise and φ(z) = r. Then

(2.4) ((x,∞), z) ∈ f → (φ((x,∞)), φ(z)) ∈ φ(f) → ((x,∞), r) ∈ f.

Since r 6= z, (2.4) implies that f is not a function, a contradiction.
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(2) Consider the Howard/Rubin Model I (model N38 in [HR]). In this
model, “D-Fin = Fin”, hence “E-Fin = Fin”, holds, and ACfin also holds
(see [HR]). Thus, by Theorem 2.13(6), ACE-Fin also holds in N38. However,
AC fails in that model (see [HR]), hence the independence result.

(3) In Cohen’s basic modelM1, the Boolean Prime Ideal Theorem BPI
(Every Boolean algebra has a prime ideal) holds (see [HR]), hence ACfin

also holds inM1. Follow now the proof of Theorem 2.10(3) in order to verify
that ACE-Fin and ACE-Fin fail in M1. The fact that SPE-Fin fails in M1
follows from Theorems 2.13(3) and 2.10(2).

2.4. E-finiteness and two more definitions of finite. We start this
section by first pointing out that the proof of Theorem 2.13(5) immediately
yields Theorem 2.15(1) below.

Theorem 2.15.

(1) In ZF, for every amorphous set X and for every natural number n,
the set [X]n is C-finite, thus E-finite.

(2) The statement “For every A-finite set X, the set Pfin(X) of all finite
subsets of X is E-finite” is consistent relative to ZFA + ¬AC. In
particular, it holds in the basic Fraenkel model.

(3) In ZF, for every amorphous set X, Pfin(X) is E-finite if and only
if P(X) is E-finite.

Proof. (2) The basic Fraenkel permutation model N1 in [HR] is con-
structed by starting with a ground modelM of ZFA + AC with a countable
set A of atoms. The group G of permutations of A used to define the model is
the group of all permutations ofA. For each finite setE ⊆ A, let fixG(E) be the
pointwise stabilizer of E, i.e., fixG(E) = {φ ∈ G : (∀e ∈ E) (φ(e) = e)}. Let
Γ be the normal filter of subgroups ofG generated by the filter base {fixG(E) :
E ∈ Pfin(A)}. N1 is the FM model determined by M, G and Γ . If x ∈ N1
and E ∈ Pfin(A) is such that fixG(E) ⊆ SymG(x) = {φ ∈ G : φ(x) = x},
then as usual E is called a support of x. In N1, A is an amorphous set, as
can be easily checked.

We argue now that the statement “For every A-finite set X, the set
Pfin(X) is E-finite” is valid in N1. Let X ∈ N1 be an A-finite set. If X is
finite, then there is nothing to show. So assume that X is an amorphous
set. Since X is not well orderable, it follows by the Lemma on page 389
of Blass [B] that, in N1, there is an infinite subset B of A (hence, B is a
cofinite subset of A) and an injection f : B → X. Without loss of generality
assume that B ⊆ X and that X ∩A = B. Since X is amorphous, it follows
that D = X \B is a finite set. Assume that D ≈ m for some m ∈ ω.

Toward a contradiction, suppose that Pfin(X) =
⋃
{[X]n : n ∈ ω} is

E-infinite. By (1), for all n ∈ ω, [X]n is C-finite. From this, as well as from
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our assumption that Pfin(X) is an E-infinite set, we derive by Lemma 2.1
that there exist a surjection f : Pfin(X)→ Pfin(X) ∪ {a}, a /∈ Pfin(X), and
a strictly increasing function n : ω → ω such that f−(i+1)({a}) ⊆ [X]n(i) for
each i ∈ ω. Let K ⊂ A be a finite support for f and for each element of D.
Since the function n : ω → ω is strictly increasing, there exists an i ∈ ω such
that n(i) > |K|+ m (where m is the cardinality of D = X \ B). Therefore
(for such an i ∈ ω), there exists a set Y ∈ Pfin(X) such that n(i) ≈ Y , hence
Y * K ∪D, and Y ∈

⋃
{f−(i+1)({a}) : i ∈ ω}. Thus, ∅ 6= Y \ (K ∪D) ⊂ A,

and since K is finite, out of all such Y ’s we can pick a Y ∈ [X]n(i) such that
|Y ∩K| is maximal. Let Z ∈ [X]n(i+1) be such that f(Z) = Y . Since n is
strictly increasing we have Y < Z. We may continue now similarly to the
proof of [Tr] that Pfin(A) is E-finite in N1 in order to show that f cannot
be a function. We leave the checking to the interested reader.

(3) Let X be an amorphous set such that Pfin(X) is E-finite. Since every
subset of X is either finite or cofinite, it follows that P(X) ≈ 2 × Pfin(X)
(the mapping f(A) = 〈0, A〉 if A ⊂ X is finite and f(A) = 〈1, X \ A〉 if
A ⊆ X is infinite, is clearly a bijection).

Since for i ∈ 2 = {0, 1}, {i}×Pfin(X) ≈ Pfin(X), and E-Fin is hereditary,
the set {i} × Pfin(X), i ∈ 2, is E-finite. Furthermore, as a finite union of
E-finite sets is E-finite (Proposition 1.10(7)), it follows that 2× Pfin(X) =
({0} × Pfin(X)) ∪ ({1} × Pfin(X)) is E-finite. Hence, P(X) is E-finite.

Remark 2.16. We note that Theorem 2.15(2) enhances Truss’ result in
[Tr] that the amorphous set A of the atoms in the basic Fraenkel model N1
is such that Pfin(A) is E-finite in the model.

Theorem 2.15 provides a good reason for introducing and studying the
following two notions of finite (Definition 2.17) along with the corresponding
finiteness classes. Our goal here is to investigate their relationship with the
notions of finite already mentioned in this paper.

Definition 2.17. Let X be a set.

(a) X is called FD-finite if Pfin(X) is D-finite.
(b) X is called FE-finite if Pfin(X) is E-finite.

FD-Fin and FE-Fin denote the classes of FD-finite and FE-finite sets, re-
spectively.

We leave the verification of the following proposition to the reader.

Proposition 2.18. FD-Fin and FE-Fin are both finiteness classes and
FE-Fin ⊆ FD-Fin.

Theorem 2.19. The following hold:

(1) In ZF, C-Fin ⊆ FD-Fin.
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(2) It is relatively consistent with ZF that FD-Fin * E-Fin (hence,
FD-Fin * C-Fin and FD-Fin * FE-Fin) and E-Fin * FD-Fin
(hence, E-Fin * FE-Fin). However, under “E-Fin is summable”,
E-Fin ⊆ FD-Fin.

(3) C-Fin * FE-Fin is consistent relative to ZFA.
(4) In ZF, FE-Fin ⊆ C-Fin. Hence, in ZF, FE-Fin ⊆ E-Fin.
(5) “E-Fin is summable” implies that every infinite set is FE-infinite.

Thus, “E-Fin is summable” implies “FE-Fin = Fin”.
(6) In the Mostowski linearly ordered model N3, every infinite set is

FE-infinite. In particular, FE-Fin = Fin in N3.
(7) “E-Fin is summable” fails in the basic Fraenkel model N1 in [HR].
(8) “E-Fin is summable” does not imply “FE-Fin = E-Fin” in ZFA.
(9) Assume “E-Fin is summable”. Then “FE-Fin = E-Fin” if and

only if “E-Fin = Fin”.
(10) Assume “E-Fin is summable”. Then “C-Fin ⊆ FE-Fin” if and

only if “C-Fin = Fin”.
(11) “D-Fin = Fin” implies “FE-Fin = E-Fin = Fin”.
(12) “FD-Fin = FE-Fin” implies “A-Fin = Fin”. The implication is

not reversible in ZFA.

Proof. (1) For the proof of “C-Fin ⊆ FD-Fin” in ZF, see Definition
1.3(3).

(2) Consider any model M of ZF which has an amorphous set A. (A is
certainly FD-finite and also C-finite). For each n ∈ ω, let Bn = {f ∈ An :
f is an injection} and let B =

⋃
{Bn : n ∈ ω}. It can be easily verified

that B is FD-finite and E-infinite; for the latter, see Remark 2.9(3). Thus,
in M, FD-Fin * E-Fin, hence FD-Fin * FE-Fin—note also that Pfin(B)
is E-infinite (otherwise, since B ≤ Pfin(B) and E-Fin is hereditary, B is
E-finite, a contradiction)—and FD-Fin * C-Fin.

For “E-Fin * FD-Fin”, consider the second Cohen model M7 in [HR].
In M7, there exists a Russell set X =

⋃
{Xn : n ∈ ω} (see [HR]), hence X

is E-finite (Theorem 2.2) and X is clearly FD-infinite.

Now, if E-Fin is summable, then by Theorem 2.3, E-Fin = C-Fin,
hence by (1), it follows that E-Fin ⊆ FD-Fin.

(3) Consider the Mostowski linearly ordered model N3 and let A be the
set of atoms in that model. We know that A is C-finite (see [L]) and that E-
Fin = C-Fin in N3. Hence, by Theorem 2.3, the class E-Fin is cohereditary
inN3. It follows that A is FE-infinite, otherwise since ω ≤∗ Pfin(A) we would
infer that ω is E-finite, a contradiction.

(4) Let A be an FE-finite set. Toward a contradiction, assume that A
is C-infinite. Hence, A has a partition {Ai : i ∈ ω} into non-empty sets.
We argue that A is FE-infinite. Indeed, let p /∈ Pfin(A) and consider the
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function g : Pfin(A) → Pfin(A) ∪ {p} which is defined as follows: g(X) = p
for every X ∈ Pfin(A0), and g(X) = X for every X ∈ Pfin(An) for all
positive integers n. Now, for X ∈ Pfin(A)\

⋃
n∈ω Pfin(An), let tr(X) = {i1 <

· · · < in(X)} be the trace of X (i.e., tr(X) = {i ∈ ω : X ∩ Ai 6= ∅}) and

define g(X) = X ∩
⋃n(X)−1

j=1 Aij . It is easy to verify that g is surjective. This
contradicts A being FE-finite.

(5) Assume the hypothesis holds and let X be an infinite set. Toward
a contradiction, assume that X is FE-finite. Since E-Fin is hereditary, it
follows that [X]n is E-finite for all n ∈ ω. Now Pfin(X) =

⋃
{[X]n : n ∈ ω} is

an E-finite countably infinite (disjoint) union of (infinite) E-finite sets. But
this contradicts the result of Theorem 2.7 stating that if E-Fin is summable,
then there are no E-finite countably infinite unions of non-empty E-finite
sets.

(6) This follows from the fact that E-Fin is summable in the model N3
(see the proof of Theorem 2.14(1)), hence by (5), every infinite set in N3 is
FE-infinite.

(7) In N1, FE-Fin 6= Fin; in [Tr, pp. 202–203] it is shown that Pfin(A),
where A is the (infinite) set of atoms in N1, is E-finite, thus A is FE-finite
in N1. Thus, by (5), E-Fin is not summable in N1.

(8) In N3, E-Fin is summable and E-Fin 6= Fin = FE-Fin.

(9), (10), and (11) follow from (1) and (5) and the fact that “D-Fin =
Fin” → “E-Fin = Fin”.

(12) Let X be an A-finite set and, toward a contradiction, assume that
X is amorphous. For each n ∈ ω, let Yn = {f ∈ Xn : f is an injection} and
let Y =

⋃
{Yn : n ∈ ω}. Then Y is FD-finite, hence by our assumption, Y is

FE-finite, hence, by (1), Y is E-finite, a contradiction.

For the second assertion of (12), consider Mostowski’s model N3. In N3,
A-Fin = Fin (see [HR]). Now let A be the set of atoms of N3. Since A is
C-finite, it follows by (2) that A is FD-finite. However, by (5) every infinite
set in N3, hence A, is FE-infinite.

3. Questions

1. Is the statement “If X is an amorphous set, then X is FE-finite”
provable in ZF?

2. Is the implication “(E-Fin is summable)→ (A-Fin = Fin)” provable
in ZF? (Note that if Question 1 receives an affirmative answer, then
in view of Theorem 2.19(5), the answer to Question 2 is also in the
affirmative).

3. Is “(E-Fin = Fin) ∧ ¬(D-Fin = Fin)” relatively consistent with
ZFA? Is “E-Fin = Fin” equivalent to “D-Fin = Fin”?
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4. Does ACE-Fin
E-Fin imply SPE-Fin

E-Fin or equivalently (see Theorem 2.13(4))
“E-Fin is summable”?

5. What is the deductive strength of “E-Fin is closed under finite prod-
ucts”? In particular, does “E-Fin is closed under finite products”
imply “E-Fin is disjointly summable”? (Recall that we have proved
(see Lemma 2.5) that the converse is true.)

6. The proof of Lemma 2.5 actually shows that, in ZF, any disjointly
summable finiteness class is closed under finite products. Is the con-
verse true? That is, is the statement “If U is a finiteness class which
is closed under finite products, then U is disjointly summable” true
in ZF?

7. Is there a largest finiteness class which is disjointly summable?
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de Varsovie, Cl. III, Sciences Mathématiques et Physiques 1926, 299–330.

[Ta] A. Tarski, Sur les ensembles finis, Fund. Math. 6 (1924), 45–95.
[Tr] J. Truss, Classes of Dedekind finite cardinals, Fund. Math. 84 (1974), 187–208.

Horst Herrlich
(† March 13, 2015)

Eleftherios Tachtsis
Department of Mathematics
University of the Aegean
Karlovassi, Samos 83200, Greece
E-mail: ltah@aegean.gr

Paul Howard
Department of Mathematics
Eastern Michigan University
Ypsilanti, MI 48197, U.S.A.
E-mail: phoward@emich.edu

Received May 18, 2015 (8022)


	1 Introduction, terminology, and preliminary results
	2 Main results
	2.1 Stability properties for the class E-Fin and related propositions
	2.2 C-finiteness, E-finiteness, and sets of reals
	2.3 Certain choice and shrinking principles and stability properties of the class E-Fin
	2.4 E-finiteness and two more definitions of finite

	3 Questions
	References

