# Reciprocal Stern Polynomials 

by

## A. SCHINZEL

Summary. A partial answer is given to a problem of Ulas (2011), asking when the $n$th Stern polynomial is reciprocal.

Let $B_{n}(t)$ be defined by the formulae

$$
B_{1}(t)=1, \quad B_{2 n}(t)=t B_{n}(t), \quad B_{2 n+1}(t)=B_{n}(t)+B_{n+1}(t)
$$

Klavžar, Milutinović and Petr [2] have called $B_{n}(t)$ the $n$th Stern polynomial and Ulas [4] asked when $B_{n}(t)$ is reciprocal, i.e.

$$
\begin{equation*}
B_{n}^{*}(t)=t^{\operatorname{deg} B_{n}} B_{n}\left(t^{-1}\right)=B_{n}(t) \tag{1}
\end{equation*}
$$

As a partial answer we shall prove
Theorem 1. If $n$ has binary expansion

$$
\begin{equation*}
n=\stackrel{a_{1}}{1} \stackrel{a_{2}}{0} \ldots \stackrel{a_{k}}{1} \quad\left(k \text { odd, } a_{i} \geq 1 \text { for all } 1 \leq i \leq k\right) \tag{2}
\end{equation*}
$$

and $l_{1}, \ldots, l_{j}$ are the lengths of blocks of 1 occurring in the sequence $a_{2}, \ldots, a_{k}$, then (1) holds if and only if, identically in $t$,

$$
\begin{equation*}
\sum_{\mu=0}^{\lfloor k / 2\rfloor} \sum^{\prime} \frac{T_{a_{1}} \cdots T_{a_{k}}}{T_{a_{i_{1}}} \cdots T_{a_{i_{\mu}}}}\left(\prod_{\lambda=1}^{\mu} \frac{t^{a_{i_{\lambda}}}}{T_{a_{i_{\lambda}+1}}}-t^{d} \prod_{\lambda=1}^{\mu} \frac{t^{a_{i_{\lambda}+1}-2}}{T_{a_{i_{\lambda}+1}}}\right)=0 \tag{3}
\end{equation*}
$$

where $\sum^{\prime}$ is taken over all integer vectors $\left[i_{1}, \ldots, i_{\mu}\right]$ such that

$$
\begin{equation*}
1 \leq i_{1}<\cdots<i_{\mu}<k, \quad i_{\lambda+1} \geq i_{\lambda}+2(1 \leq \lambda<\mu) \tag{4}
\end{equation*}
$$

and where

$$
T_{a}=\frac{t^{a}-1}{t-1}, \quad d=\left\lfloor\frac{l_{1}+1}{2}\right\rfloor+\cdots+\left\lfloor\frac{l_{j}+1}{2}\right\rfloor .
$$

[^0]Key words and phrases: Stern polynomials.

Corollary. If $n$ has binary expansion (2) and

$$
\begin{equation*}
a_{i+1}=a_{i}+2 \quad(1 \leq i<k) \tag{5}
\end{equation*}
$$

then (1) holds.
TheOrem 2. If $n$ has binary expansion (2) and for all pairs $1 \leq i<$ $j \leq k$,

$$
\begin{equation*}
a_{i}+a_{j}>\max \left\{a_{1}, \ldots, a_{k}\right\}+2 \tag{6}
\end{equation*}
$$

then (1) is equivalent to (4).
The assumption (6) in Theorem 2 is not superfluous, as the two infinite sequences of odd $n$ satisfying (1) discovered by M. Gawron [1] show, as also does the following

Theorem 3. For $k \leq 3$, (1) holds if and only if either $k=1$, or $k=3$ and (4) holds, or $a_{1}=a-1, a_{2}=2 a, a_{3}=a+1$ ( $a$ an integer $>1$ ), or $a_{2}=1, a_{3}=2$, or $a_{1}=a_{2}-1\left(a_{2}>1\right), a_{3}=1$.

Proof of Theorem 1. It follows from [3, Theorem 1 and Lemma 5] that if (2) holds, then

$$
\begin{equation*}
B_{n}(t)=T_{a_{1}} \cdots T_{a_{k}}\left(1+\sum_{\mu=1}^{\lfloor k / 2\rfloor} \sum^{\prime} \frac{1}{T_{a_{i_{1}}} \cdots T_{a_{1 \mu}}} \prod_{\lambda=1}^{\mu} \frac{t^{a_{i_{\lambda}}}}{T_{a_{i_{\lambda}+1}}}\right) \tag{7}
\end{equation*}
$$

On the other hand, by [3, Theorem 2] and (2),

$$
\operatorname{deg} B_{n}=a_{1}+\cdots+a_{k}-k+d=\operatorname{deg} T_{a_{1}} \cdots T_{a_{k}}+d
$$

Also

$$
T_{a}\left(t^{-1}\right)=t^{1-a} T_{a}(t)
$$

hence by (1),

$$
\begin{equation*}
B_{n}^{*}(t)=t^{d} T_{a_{1}} \cdots T_{a_{k}}\left(1+\sum_{\mu=1}^{\lfloor k / 2\rfloor} \frac{1}{T_{a_{i_{1}}} \cdots T_{a_{i_{\mu}}}} \prod_{\lambda=1}^{\mu} \frac{t^{a_{i_{\lambda+1}}-2}}{T_{a_{i_{\lambda}+1}}}\right) \tag{8}
\end{equation*}
$$

Theorem 1 follows from (7) and (8).
Proof of Corollary. If $a_{i+1}-a_{i}=2(1 \leq i<k)$, then $d=0$ and the Corollary follows from Theorem 1 .

For the proof of Theorem 2 we need two lemmas.
Lemma 1. If $k \geq 2, a_{i}(1 \leq i \leq k)$ is a sequence of positive integers and

$$
\begin{equation*}
\sum_{i=1}^{k-1}\left(\frac{1}{t^{a_{i}}}-\frac{1}{t^{a_{i+1}-2}}\right)=0 \tag{9}
\end{equation*}
$$

identically in $t$, then

$$
\begin{gather*}
\left\{a_{2}, \ldots, a_{k-1}\right\}=\left\{a_{1}+2, \ldots, a_{1}+2(k-2)\right\}  \tag{10}\\
a_{k}=a_{1}+2(k-1) \tag{11}
\end{gather*}
$$

Proof. Differentiating (9) and substituting afterwards $t=1$ we obtain

$$
\sum_{i=1}^{k-1}\left(a_{i}-a_{i+1}+2\right)=0
$$

thus (11) holds. Substituting in (9) we obtain

$$
\begin{aligned}
\sum_{i=1}^{k-1} \frac{t^{2}-1}{t^{a_{i+1}}} & =\sum_{i=1}^{k-1}\left(\frac{1}{t^{a_{i}}}-\frac{1}{t^{a_{i+1}}}\right)=\frac{1}{t^{a_{1}}}-\frac{1}{t^{a_{k}}} \\
& =\frac{t^{2(k-1)}-1}{t^{a_{1}+2(k-1)}}=\frac{\left(t^{2}-1\right)\left(t^{2(k-2)}+t^{2(k-3)}+\cdots+1\right)}{t^{a_{1}+2(k-1)}}
\end{aligned}
$$

and on dividing both sides by $t^{2}-1$,

$$
\sum_{i=1}^{k-1} \frac{1}{t^{a_{i+1}}}=\sum_{i=1}^{k-1} \frac{1}{t^{a_{1}+2 i}}
$$

Substituting $t=u^{-1}$ we obtain an identity for polynomials which implies 10 .

Lemma 2. If (6) holds, then for any $2 \leq \mu<k$ integers $i_{\lambda}(1 \leq \lambda \leq \mu)$ satisfying (4) we have

$$
\begin{equation*}
a_{i_{1}}+\cdots+a_{i_{\mu}} \geq \frac{\mu}{2}\left(\max \left\{a_{1}, \ldots, a_{k}\right\}+3\right) \tag{12}
\end{equation*}
$$

Proof. By (6) for any positive integers $\lambda<\nu \leq \mu$ we have

$$
a_{i_{\lambda}}+a_{i_{\nu}} \geq \max \left\{a_{1}, \ldots, a_{k}\right\}+3
$$

Summing over all pairs $\lambda, \nu$ in question we obtain

$$
(\mu-1)\left(a_{i_{1}}+\cdots+a_{i_{\mu}}\right) \geq\binom{\mu}{2}\left(\max \left\{a_{1}, \ldots, a_{k}\right\}+3\right)
$$

which implies (12).
Proof of Theorem 2. Let us write the sum $S$ occurring in (3) in the form

$$
S=\sum_{\mu=0}^{\lfloor k / 2\rfloor} S_{\mu}
$$

If (6) holds, we have $a_{i}>2$ for all $i \leq k$, thus $d=0, S_{0}=0$ and by

Theorem 1 and Lemma 2, for all $\mu \geq 2$,

$$
\begin{aligned}
\operatorname{deg}(t-1)^{k-2} S_{\mu} \leq & a_{1}+\cdots+a_{k}-2+2 \mu-\min ^{*} \min \left(-2 \mu+\sum_{\lambda=1}^{\mu} a_{i_{\lambda}+1}, \sum_{\lambda=1}^{\mu} a_{i_{\lambda}}\right) \\
\leq & \max \left(a_{1}+\cdots+a_{k}-2+2 \mu-\frac{\mu}{2}\left(\max \left\{a_{1}, \ldots, a_{k}\right\}-3\right),\right. \\
& \left.a_{1}+\cdots+a_{k}-2-\max \left\{a_{1}, \ldots, a_{k}\right\}-3\right) \\
< & a_{1}+\cdots+a_{k}-\max \left\{a_{1}, \ldots, a_{k}\right\},
\end{aligned}
$$

where $\mathrm{min}^{*}$ is taken over all integer vectors $\left[i_{1}, \ldots, i_{\mu}\right]$ satisfying (4).
On the other hand, by (6), the sum of all terms of $(t-1)^{k-2} S_{1}$ of degree $\geq a_{1}+\cdots+a_{k}-\max \left\{a_{1}, \ldots, a_{k}\right\}$ equals

$$
\sum_{i=1}^{k-1} t^{a_{1}+\cdots+a_{k}-a_{i+1}}-\sum_{\substack{i=1 \\ a_{i}+2 \leq \max \left\{a_{1}, \ldots, a_{k}\right\}}}^{k-1} t^{a_{1}+\cdots+a_{k}-2-a_{i}}
$$

Substituting $t=1$ leads by Theorem 1 to the conclusion that for all $i<k$ we have $a_{i}+2 \leq \max \left\{a_{1}, \ldots, a_{k}\right\}$, and that

$$
\sum_{i=1}^{k-1}\left(\frac{1}{t^{a_{i+1}}}-\frac{1}{t^{a_{i}+2}}\right)=0
$$

By Lemma 1 we obtain

$$
\begin{aligned}
a_{k} & =a_{1}+2(k-1) \\
\left\{a_{2}, \ldots, a_{k-1}\right\} & =\left\{a_{1}+2, \ldots, a_{1}+2(k-2)\right\} \\
s=\sum_{i=1}^{k} a_{i} & =k\left(a_{1}+k-1\right)
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
&(t-1)^{k-2} S_{1}=-\sum_{i=1}^{k-1} \sum_{\substack{h=1 \\
h \neq i, i+1}}^{k} t^{s-a_{i+1}-a_{h}} \\
&+\sum_{i=1}^{k-1} \sum_{\substack{h=1 \\
h \neq i, i+1}}^{k} t^{s-2-a_{i}-a_{h}}+O\left(t^{s-3 a_{1}-6}\right), \\
&(t-1)^{k-2} S_{2}=(t-1)^{2}\left(\sum_{1<i+1<h<k} t^{s-a_{i+1}-a_{h+1}}\right. \\
&\left.-\sum_{1<i+1<h<k} t^{s-4-a_{h}-a_{k}}\right)+O\left(t^{s-3 a_{1}+4}\right), \\
&(t-1)^{k-2} S_{\mu}= O\left(t^{s-3 a_{1}-8}\right) \quad(\mu \geq 3)
\end{aligned}
$$

We shall show by induction on $i<k$ that

$$
\begin{equation*}
a_{i+1}=a_{1}+2 i \tag{13}
\end{equation*}
$$

Suppose that

$$
a_{j}=a_{i}+2, \quad j>2
$$

Then $(t-1)^{k-2} S_{1}$ contains the term $-t^{s-2 a_{1}-2}$ (for $i=1, h=i-1$ ) which does not cancel with any other term of $(t-1)^{k-2} S_{1}$ since $2+a_{i}+a_{h} \leq 2 a_{i}+2$ is impossible for $i \neq h$. Thus

$$
a_{2}=a_{1}+2 .
$$

Assume now that $a_{i+1}=a_{i}+2 i$ for $i \leq l \leq k-3, l \geq 1$. Then

$$
\begin{aligned}
(t-1)^{k-2} S_{1}= & -\sum_{i=l+1}^{k-1} \sum_{\substack{h=1 \\
h \neq i, i+1}}^{k} t^{s-a_{i+1}-a_{h}} \\
& +\sum_{i=l+1}^{k-1} \sum_{\substack{h=1 \\
h \neq i, i+1}}^{k} t^{s-2-a_{i}-a_{h}}+O\left(t^{s-3 a_{1}-6}\right) \\
(t-1)^{k-2} S_{2}= & (t-1)^{2}\left(\sum_{\substack{1<i+1<h<k \\
h>l}} t^{s-a_{i+1}-a_{h+1}}\right. \\
& \left.-\sum_{\substack{1<i+1<h<k \\
h>l}} t^{s-4-a_{i}-a_{h}}\right)+O\left(t^{s-3 a_{1}+4}\right) .
\end{aligned}
$$

Suppose that

$$
a_{j}=a_{1}+2 l, \quad j>l+1 .
$$

Then $(t-1)^{k-2} S_{2}$ contains the term $-2 t^{s-\left(2 a_{1}+2 l+1\right)}$ (for $i=1, h=j-1$ ), which does not cancel any other term of $(t-1)^{k-2} S$. Indeed, we have $2 a_{1}+2 l+1<3 a_{1}+2$ and the terms of $(t-1)^{k-2} S_{1}$ of degree $\geq s-\left(3 a_{1}+2\right)$ are of the form $t^{s-2 m}, m$ integer. So are also the terms of $(t-1)^{k-2} S_{2}$ of degree $\geq s-\left(3 a_{1}+2\right)$ except the terms of

$$
-2 t\left(\sum_{\substack{1<i+1<h<k \\ h>l}} t^{s-a_{i+1}-a_{h+1}}-\sum_{\substack{1<i+1<h<k \\ h>l}} t^{s-4-a_{i}-a_{h}}\right) .
$$

However, for $h>l$ we have

$$
3+a_{i}+a_{h}>2 a_{1}+2 l+1 .
$$

This proves (13), and (4) follows.
For the proof of Theorem 3 we need
Lemma 3. If $T_{\alpha} T_{\beta}=T_{\gamma} T_{\delta}$, where $\alpha, \beta, \gamma, \delta \in \mathbb{N} \backslash\{0\}, \alpha \leq \beta, \gamma \leq \delta$, then

$$
\alpha=\gamma, \quad \beta=\delta .
$$

Proof. Assume that $\beta>\delta$. Then $T_{\beta}\left(\zeta_{\beta}\right)=0$, where $\beta$ is a positive $\beta$ th root of unity, but $T_{\gamma}\left(\zeta_{\beta}\right) \neq 0, T_{\delta}\left(\zeta_{\beta}\right) \neq 0$, a contradiction. Thus $\beta \leq \delta$ and by symmetry $\beta=\delta$. Hence $T_{\alpha}=T_{\gamma}$ and $\alpha=\gamma$.

Proof of Theorem (3. (1) holds obviously for $k=1$. For $k=3$ we shall consider successively the following cases:
A. $a_{2} \geq 2, a_{3} \geq 2$,
B. $a_{2}=1, a_{3} \geq 2$,
C. $a_{2}=2, a_{3}=1$,
D. $a_{2}=a_{3}=1$.
A. Here we have $d=0$. By Theorem 1 the identity (1) is equivalent to the identity

$$
T_{a_{3}}\left(t^{a_{1}}-t^{a_{2}-2}\right)+T_{a_{1}}\left(t^{a_{2}}-t^{a_{3}-2}\right)=0
$$

thus to

$$
\varepsilon t^{\min \left\{a_{1}, a_{2}-2\right\}} T_{a_{3}} T_{\left|a_{1}-a_{2}+2\right|}+\eta t^{\min \left\{a_{2}, a_{3}-2\right\}} T_{a_{1}} T_{\left|a_{2}-a_{3}+2\right|}=0
$$

where

$$
\begin{equation*}
\varepsilon=\operatorname{sgn}\left(a_{1}-a_{2}+2\right), \quad \eta=\operatorname{sgn}\left(a_{2}-a_{3}+2\right) \tag{14}
\end{equation*}
$$

Hence, there are the following possibilities: either

1. $\varepsilon=\eta=0$, so $a_{2}=a_{1}+2, a_{3}=a_{2}+2$, and (4) holds; or
2. $\min \left\{a_{1}, a_{2}-2\right\}=\min \left\{a_{2}, a_{3}-2\right\}$,

$$
\begin{equation*}
\varepsilon=-\eta \neq 0 \tag{15}
\end{equation*}
$$

and by Lemma 3 either

$$
\begin{equation*}
a_{3}=a_{1}, \quad\left|a_{1}-a_{2}+2\right|=\left|a_{3}-a_{2}+2\right|, \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{3}=\left|a_{2}-a_{3}+2\right|, \quad a_{1}=\left|a_{1}-a_{2}+2\right| \tag{17}
\end{equation*}
$$

The formulae (16) give $a_{1}=a_{2}=a_{3}$, contrary to (14) and (15). We cannot have $a_{3}=a_{3}-a_{2}-2$, thus from (17) we obtain $a_{3}=a_{2}-a_{3}+2$, from (14) $\eta=1$, from (15) $\varepsilon=-1$ and from (17) $a_{1}=a_{2}-a_{1}-2$. Taking $a_{2}=2 a$, we obtain $a_{1}=a-1, a_{3}=a+1$ (with integer $a>1$ ).
B. Here we have $d=1$. By Theorem 1 the identity (1) is equivalent to the identity

$$
T_{a_{1}} T_{a_{3}}(1-t)+T_{a_{3}}\left(t^{a_{1}}-1\right)+T_{a_{1}}\left(t-t^{a_{3}-1}\right)=0
$$

hence

$$
T_{a_{1}}\left(t-t^{a_{3}-1}\right)=0, \quad a_{3}=2
$$

C. Here we have $d=1$. By Theorem 1 the identity (1) is equivalent to the identity

$$
T_{a_{1}} T_{a_{2}}(1-t)+t^{a_{1}}-t^{a_{2}-1}+T_{a_{1}}\left(t^{a_{2}}-1\right)=0,
$$

hence

$$
t^{a_{1}}-t^{a_{2}-1}=0, \quad a_{1}=a_{2}-1
$$

D. Here we have $d=1$. By Theorem 1 the identity (1) is equivalent to the identity

$$
T_{a_{1}}(1-t)+t^{a_{1}}-1+T_{a_{1}}(t-1)=0,
$$

hence

$$
t^{a_{1}}=1, \quad \text { impossible }
$$

## References

[1] M. Gawron, A note on the arithmetic properties of Stern polynomials, Publ. Math. Debrecen 85 (2014), 453-465.
[2] S. Klavžar, U. Milutinović and C. Petr, Stern polynomials, Adv. Appl. Math. 39 (2007), 86-95.
[3] A. Schinzel, Stern polynomials as numerators of continued fractions, Bull. Polish Acad. Sci. Math. 62 (2014), 23-27.
[4] M. Ulas, On certain arithmetic properties of Stern polynomials, Publ. Math. Debrecen 79 (2011), 55-81.

A. Schinzel<br>Institute of Mathematics<br>Polish Academy of Sciences<br>Śniadeckich 8<br>00-656 Warszawa, Poland<br>E-mail: schinzel@impan.pl

Received April 17, 2015;
received in final form September 7, 2015


[^0]:    2010 Mathematics Subject Classification: Primary 11B83.

