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A UNILATERAL CONTACT PROBLEM WITH

SLIP-DEPENDENT FRICTION

Abstract. We consider a mathematical model which describes a static
contact between a nonlinear elastic body and an obstacle. The contact is
modelled with Signorini’s conditions, associated with a slip-dependent ver-
sion of Coulomb’s nonlocal friction law. We derive a variational formulation
and prove its unique weak solvability. We also study the finite element ap-
proximation of the problem and obtain an optimal error estimate under
extra regularity for the solution. Finally, we establish the convergence of an
iterative method to the finite element problem.

1. Introduction. Contact problems involving deformable bodies are
quite frequent in industry as well as in daily life and play an important
role in structural and mechanical systems. A first attempt to study contact
problems within the framework of variational inequalities was made in [11].
The unilateral contact models take an important place in the theory of
variational inequalities and the approximation by finite element methods
(see [14, 15]). The mathematical analysis of unilateral contact problems,
including existence and uniqueness results, was widely developed in [13].
Numerical studies of the Signorini contact problem were made in [2, 4, 3, 15].
The mathematical and the numerical state of the art can be found in [18, 15].
Recently a static contact problem with normal compliance and unilateral
constraint associated with a slip-dependent version of Coulomb’s law of dry
friction was studied in [1] and numerical results were presented.

In this paper we deal with the analysis and numerical approximation of
a unilateral contact problem with Signorini’s conditions and slip-dependent
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nonlocal friction law for elastic materials. Historically for the first time
Signorini’s conditions and the nonlocal friction law first appeared respec-
tively in [17] and [11]. In [6, 16] the static unilateral contact problem with
nonlocal friction law was resolved by different numerical approaches, while
the quasistatic unilateral contact problem with nonlocal friction law was
studied in [9].

We recall that the model of slip-dependent friction is considered in geo-
physics and solid mechanics corresponding to a smooth dependence of the
friction coefficient on the slip uτ , i.e. µ = µ(|uτ |). Several authors have
been interested in the study of such models: see for instance [8, 10] and the
references therein.

The current paper represents a continuation of [19] concerning the study
of contact problems with slip-dependent friction. We assume that the elas-
ticity operator is nonlinear, strongly monotone and Lipschitz continuous.
We suppose that the displacement field is of class H2 (the standard Sobolev
space of degree 2). We deduce, under an extra regularity for the solution,
an optimal error estimate O(h), where h > 0 stands for the discretization
parameter.

The rest of the paper is structured as follows. In Section 2 the mechani-
cal problem (Problem P1) is formulated, some notation is presented and the
variational formulation is established. In Section 3 we prove an existence and
uniqueness result. In Section 4 we study the finite element approximation of
the displacement variational formulation. We establish the convergence of
the finite element method and derive order error estimates under appropri-
ate regularity assumptions on the solution. We also introduce an iterative
method to solve the finite element problem (Problem Ph), which converges
under certain assumptions.

2. Problem statement and variational formulation. Consider an
elastic body occupying a bounded Lipschitzian domain Ω ⊂ Rd (d = 2, 3).
The boundary Γ of Ω is partitioned into three measurable parts such that
Γ = Γ 1 ∪ Γ 2 ∪ Γ 3, where Γi, i = 1, 2, 3, are disjoint open sets and meas(Γ1)
> 0. The body is subjected to volume forces of density f1, and prescribed
zero displacements and tractions f2 on Γ1 and Γ2, respectively. On Γ3 the
body is in unilateral contact with an obstacle following a version of nonlocal
friction law where the coefficient of friction depends on the slip displacement.

Under these conditions, the classical formulation of the mechanical prob-
lem is the following.

Problem P1. Find a displacement field u : Ω → Rd such that

div σ(u) = −f1 in Ω,(2.1)
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σ(u) = Fε(u) in Ω,(2.2)

u = 0 on Γ1,(2.3)

σν = f2 on Γ2,(2.4)

uν ≤ 0, σν(u) ≤ 0, σν(u)uν = 0 on Γ3,(2.5)

|στ | ≤ µ(|uτ |)|Rσν |
|στ | < µ(|uτ |)|Rσν | ⇒ uτ = 0

|στ | = µ(|uτ |)|Rσν | ⇒ ∃λ ≥ 0 : στ = −λuτ

 on Γ3.(2.6)

Here (2.1) represents the equilibrium equation where σ = σ(u) denotes the
stress tensor, while (2.2) is the elastic constitutive law in which ε(u) is the
small strain and F is a given nonlinear function.

Equations (2.3) and (2.4) are the displacement and traction boundary
conditions, respectively, in which ν denotes the unit outward normal vector
on Γ and σν represents the Cauchy stress vector.

Condition (2.5) is the classical Signorini contact condition without a gap
and (2.6) represents a version of Coulomb’s law of dry friction in which µ
depends on the displacement uτ .

We note that in (2.5), σν denotes the normal stress and uν is the normal
displacement. When uν < 0, i.e. when there is separation between the body
and the obstacle, condition (2.5) shows that σν = 0; when uν = 0, i.e. when
there is contact, then σν < 0. In (2.6) the tangential shear cannot exceed
the maximal frictional resistance µ(|uτ |)|Rσν(u)|.

Next, in the study of Problem P1 we shall adopt the following notation
and hypotheses:

We denote by Sd the space of second order symmetric tensors on Rd
(d = 2, 3), while ‘.’ and | · | will represent the inner product and Euclidean
norm on Sd and Rd, respectively, i.e.

u.v = uivi, |v| = (v.v)1/2 ∀u, v ∈ Rd,

σ.τ = σijτij , |τ | = (τ.τ)1/2 ∀σ, τ ∈ Sd.
Here and below the indices i and j run between 1 and d, and the summation
convention over repeated indices is adopted.

To proceed with the variational formulation, we need some function
spaces:

H = (L2(Ω))d,

Q = {τ = (τij) : τij = τji ∈ L2(Ω)},
H1 = (H1(Ω))d.

H,Q are Hilbert spaces equipped with the respective inner products:

(u, v)H =
�

Ω

uivi dx, 〈σ, τ〉Q =
�

Ω

σijτij dx.
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The linearized strain tensor is defined as

ε(v) = (εij(v)) =

(
1

2
(vi,j + vj,i)

)
∀v ∈ H1.

For every element v ∈ H1, we also write v for the trace of v on Γ and we
denote by vν and vτ the normal and the tangential components of v on the
boundary Γ given by vν = v.ν, vτ = v − vνν. Similarly, σν and στ denote
the normal and the tangential traces of a function

σ ∈ Q1 = {τ ∈ Q : div τ ∈ H}.

When σ is a regular function, we have

σν = (σν).ν, στ = σν − σνν,

and the following Green’s formula holds:

〈σ, ε(v)〉Q + (div σ, v)H =
�

Γ

σν.v da ∀v ∈ H1,

where da is the measure surface element.

Next let V be the closed subspace of H1 defined by

V = {v ∈ H1 : v = 0 on Γ1}

and let the set of admissible displacements fields be given by

K = {v ∈ V : vν ≤ 0 a.e. on Γ3}.

Since meas(Γ1) > 0, the following Korn’s inequality holds [12]:

(2.7) ‖ε(v)‖Q ≥ cΩ‖v‖H1 ∀v ∈ V,

where cΩ > 0 is a constant which depends only on Ω and Γ1. We equip V
with the inner product given by

(u, v)V = 〈ε(u), ε(v)〉Q

and let ‖ · ‖V be the associated norm. It follows from (2.7) that the norms
‖·‖H1 and ‖·‖V are equivalent and (V, ‖·‖V ) is a real Hilbert space. Moreover,
by Sobolev’s trace theorem, there exists a constant dΩ > 0 depending only
on the domain Ω, Γ1 and Γ3 such that

(2.8) ‖v‖
(L2(Γ3))

d
≤ dΩ‖v‖V ∀v ∈ V.

In the study of the mechanical problem P1, we assume that the operator
of elasticity F satisfies
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(2.9)



(a) F : Ω × Sd → Sd;

(b) there exists M > 0 such that

|F (x, ε1)− F (x, ε2)| ≤M |ε1 − ε2|
for all ε1, ε2 ∈ Sd and a.e. x ∈ Ω;

(c) there exists m > 0 such that

(F (x, ε1)− F (x, ε2)).(ε1 − ε2) ≥ m|ε1 − ε2|2

for all ε1, ε2 ∈ Sd and a.e. x ∈ Ω;

(d) the mapping x 7→ F (x, ε) is Lebesgue measurable on Ω,

for all ε ∈ Sd;
(e) F (x, 0) = 0 for a.e. x ∈ Ω.

The forces and the tractions are assumed to satisfy

(2.10) f1 ∈ H, f2 ∈ (L2(Γ2))
d,

and we denote by f the element of V given by

(f, v)V =
�

Ω

f1.v dx+
�

Γ2

f2.v da ∀v ∈ V.

We assume that the coefficient of friction µ satisfies

(2.11)



(a) µ : Γ3 × R+ → R+;

(b) there exists Lµ > 0 such that

|µ(x, u)− µ(x, v)| ≤ Lµ|u− v|
for all u, v ∈ R+ and a.e. x ∈ Γ3;

(c) there exists µ0 > 0 such that

µ(x, u) ≤ µ0 for all u ∈ R+ and a.e. x ∈ Γ3;
(d) the function x 7→ µ(x, u) is Lebesgue measurable on Γ3

for all u ∈ R+.

R : H−1/2(Γ ) → L2(Γ3) is a continuous linear operator (see [6]), that is,
there exists a positive constant cR such that

(2.12) ‖Rτ‖L2(Γ3) ≤ cR‖τ‖H−1/2(Γ ) ∀τ ∈ H−1/2(Γ ).

Next, we define a subset W of H1 as

W = {v ∈ H1 : div σ(v) ∈ H}

and let j : W × V → R be the functional defined by

j(v, w) =
�

Γ3

µ(|vτ |)|Rσν(v)| |wτ | da ∀(v, w) ∈W × V.
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We note that if v ∈ W then σ(v) belongs to Q1 and σν(v) is an element of
H−1/2(Γ ). Thus, j(v, ·) makes sense.

Now, using Green’s formula, it is straightforward to see that if u is a suf-
ficiently regular function which satisfies (2.1)–(2.6), we obtain the following
variational formulation of the mechanical problem P1.

Problem P2. Find a displacement field u ∈ K ∩W such that

(2.13) 〈Fε(u), ε(v − u)〉Q + j(u, v)− j(u, u) ≥ (f, v − u)V ∀v ∈ K.

3. Existence and uniqueness of solution. The main result of this
section is the existence and uniqueness theorem for the weak formulation P2:

Theorem 3.1. Let (2.9)–(2.12) hold. If

(3.1) LµcR
d2Ω
m

((M/m+ 1)‖f1‖H/cΩ + (dΩM/m)‖f2‖(L(Γ2))d)

+ µ0cRM
dΩ
m

< 1,

then Problem P2 has a unique solution.

Proof. The proof will be carried out in several steps. It is based on fixed
point arguments.

Let g ∈ L2
+(Γ3) where L2

+(Γ3) is the nonempty closed subset of L2(Γ3)
defined as

L2
+(Γ3) = {s ∈ L2(Γ3) : s ≥ 0 a.e. on Γ3}

and let the functional jg : V → R be given by

jg(v) =
�

Γ3

g|vτ |da ∀v ∈ V.

We now consider the following contact problem with given friction.

Problem Pg. Find ug ∈ K such that

(3.2) 〈Fε(ug), ε(v − ug)〉Q + jg(v)− jg(ug) ≥ (f, v − ug)V ∀v ∈ K.
We prove the following lemma.

Lemma 3.2. For any g ∈ L2
+(Γ3), Problem Pg has a unique solution.

Proof. Let A : V →V be the operator given by (Au, v)V =〈Fε(u), ε(v)〉Q
for u, v ∈ V . We use (2.8) and (2.9)(b) & (c) to show that A is strongly mono-
tone and Lipschitz continuous. The functional jg : V → R is a continuous
seminorm; since K is a nonempty closed convex subset of V , it follows from
the theory of elliptic variational inequalities (see [5]) that the inequality
(3.2) has a unique solution.

We now consider the mapping Ψ : L2
+(Γ3)→ L2

+(Γ3) defined as

(3.3) Ψ(g) = µ(|ugτ |)|Rσν(ug)| ∀g ∈ L2
+(Γ3).
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We have the following result.

Lemma 3.3. If (3.1) holds, then the mapping Ψ admits a unique fixed
point g∗ and ug∗ is a unique solution of Problem P2.

Proof. Let g1, g2 ∈ L2
+(Γ3). Thus, by (2.12) and Green’s formula,

(3.4) ‖R(σν(ug1))−R(σν(ug2))‖L2(Γ3) ≤ cRM‖ug1 − ug2‖V .

We take v = ug2 in the inequality equivalent to (3.2) with g = g1, v = ug1 in
the inequality equivalent to (3.2) with g = g2 and add the results to obtain

(3.5) 〈Fε(ug1)−Fε(ug2), ε(ug1)−ε(ug2)〉Q ≤
�

Γ3

(g1−g2)(|ug2τ |− |ug1τ |) da.

Therefore using (2.8) we deduce from (3.5) that

‖ug1 − ug2‖V ≤
dΩ
m
‖g1 − g2‖L2(Γ3).

Hence applying (3.4), we get

‖R(σν(ug1))−R(σν(ug2)))‖L2(Γ3) ≤ cRM
dΩ
m
‖g1 − g2‖L2(Γ3)

and furthermore using (2.8), (2.12) and (3.2), one obtains

‖Ψ(g1)− Ψ(g2)‖L2(Γ3) = ‖µ(|ug1τ |)|Rσν(ug1)| − µ(|ug2τ |)|Rσν(ug2)|‖L2(Γ3)

=
∥∥(µ(|ug1τ |)− µ(|ug2τ |)

)
|Rσν(ug1)|

+ µ(|ug2τ |)
(
|Rσν(ug1)| − |Rσν(ug2)|

)∥∥
L2(Γ3)

≤
[
LµcR

d2Ω
m

((M/m+ 1)‖f1‖H/cΩ + (dΩM/m)‖f2‖(L(Γ2))d) + µ0cRM
dΩ
m

]
× ‖g1 − g2‖L2(Γ3).

Thus if (3.1) holds, the mapping Ψ is a contraction. It admits a unique fixed
point g∗ and ug∗ is a unique solution to inequality (2.13).

Next denote ug∗ = u.

Remark 3.4. As ug ∈W for all g ∈ L2
+(Γ3), it follows that u ∈W.

4. Finite element approximation. In this section we study the fi-
nite element approximation of the variational problem P1. Suppose Ω is a
polygonal domain in Rd and let Vh ⊂ V be a finite element subspace where
h→ 0+. We define a nonempty closed convex set Kh by

Kh = {vh ∈ Vh : vhν ≤ 0 a.e. on Γ3}.

We note that Kh ⊂ K and formulate a discrete problem:
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Problem Ph. Find uh ∈ Kh ∩W such that

(4.1) 〈Fε(uh), ε(vh − uh)〉Q + j(uh, vh)− j(uh, uh)

≥ (f, vh − uh)V ∀vh ∈ Kh.

It is clear that under the assumptions of Theorem 3.1 and condition
(3.1), Problem Ph has a unique solution uh ∈ Kh.

Now we shall establish the following Cea-type inequality.

Theorem 4.1. Assume (2.9)–(2.12) and (3.1) hold. Then there exists a
constant c > 0 independent of h such that

(4.2) ‖u− uh‖V ≤ c inf
vv∈Vh

(
‖u− vh‖V + ‖u− vh‖

1/2
V + ‖u− vh‖

1/2

(L2(Γ3))d

)
.

Proof. Using (2.9)(c) we have

m‖u− uh‖2V ≤ (Au−Auh, u− uh)V .

On the other hand, for any vh ∈ Kh we have

(Au−Auh, u−uh)V ≤ (Au−Auh, u−vh)V +(Au, vh−uh)V −(Auh, vh−uh)V ,

hence

(4.3) m‖u− uh‖2V
≤ (Au−Auh, u− vh)V + (Au, vh − uh)V − (Auh, vh − uh)V .

We now use (2.13) with v = uh and (4.1) to find that

(4.4) (Au, vh − uh)V − (Auh, vh − uh)V ≤ (Au, vh − u)V

+ j(uh, vh)− j(uh, uh) + j(u, uh)− j(u, u) + (f, u− vh)V .

From (4.3) and (4.4) we obtain

m‖u− uh‖2V ≤ A1 +A2 +A3 +A4,

where

A1 = (Au−Auh, u− vh)V ,

A2 = (Au, vh − u)V + j(u, vh)− j(u, u)− (f, vh − u)V ,

A3 = j(u, uh)− j(uh, uh) + j(uh, u)− j(u, u),

A4 = j(uh, vh)− j(u, vh) + j(u, u)− j(uh, u).

Now we estimate each term Ai, i = 1, . . . , 4. First,

(4.5) |A1| ≤M‖u− uh‖V ‖u− vh‖V .
The second term A2 can be estimated as follows. We have

A2 =
�

Ω

Fε(u).ε(vh − u) dx+
�

Γ3

µ(|uτ |)|Rσν(u)|(|vhτ | − |uτ |) da

− (f, vh − u)V .
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Using the properties of R and µ, we get

|A2| ≤ (|Fε(u)|Q + ‖f‖V )‖u− vh‖V(4.6)

+ µ0‖Rσν(u)‖L2(Γ3)‖u− vh‖(L2(Γ3))
d
.

In the same way we estimate the term A3 as

(4.7) |A3| ≤
[LµcRd

2
Ω((M/m+ 1)‖f1‖H/cΩ + (dΩM/m)‖f2‖(L(Γ2))d) + µ0cRMdΩ)]

× ‖u− uh‖2V .

Finally, to estimate the last term A4, we use again the properties of R and
µ and to obtain

|A4| = |j(uh, vh)− j(uh, u) + j(u, u)− j(u, vh)|

=
∣∣∣ �
Γ3

(
µ(|uτ |)|Rσν(u)| − µ(|uhτ )|Rσν(uh)|

)
(|uτ | − |vhτ |) da

∣∣∣
≤

�

Γ3

∣∣(µ(|uτ |)|Rσν(u)| − µ(|uhτ |)|Rσν(uh)|
)
(|uτ | − |vhτ |)

∣∣ da
≤

�

Γ3

µ(|uhτ |)
∣∣|Rσν(u)| −

∣∣Rσν(uh)|
∣∣ · |u− vh| da

+
�

Γ3

(µ(|uτ |)− µ(|uhτ |))|Rσν(u)| · |u− vh| da

≤ µ0cRdΩ(M + ‖f‖V )‖u− uh‖V ‖u− vh‖V
+ 2µ0‖Rσν(u)‖L2(Γ3)‖u− vh‖(L2(Γ3))d ,

and so

|A4| ≤ µ0cRdΩM‖u− uh‖V ‖u− vh‖V(4.8)

+ 2µ0‖Rσν(u)‖L2(Γ3)‖u− vh‖(L2(Γ3))d .

Now to end the proof we use (3.1), (4.5)–(4.8) and the elementary in-
equality

ab ≤ δa2 +
1

4δ
b2 ∀δ > 0.

Hence we obtain an inequality of the form (4.2).

Now to derive an optimal error estimate, we assume in addition that

(4.9) u ∈ (H2(Ω))d,

and use linear elements for the finite element space Vh. We need the follow-
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ing standard interpolation error estimates (see [7]):

‖u− πhu‖V ≤ ch‖u‖(H2(Ω))d ,

‖u− πhu‖(L2(Γ3))d ≤ ch
3/2‖u‖(H2(Ω))d ,

where πhu denotes the Vh-interpolant of the function u. Therefore, using the
regularity (4.9), we deduce from (4.2) the error estimate

‖u− uh‖V ≤ ch1/2.

However, following [6] we remark that this type of error estimate is not op-
timal. In order to obtain an optimal error estimate we assume an additional
regularity for the solution.

Theorem 4.2. Let the hypotheses of Theorem 4.1 hold and, in addition,
suppose that σν ∈ (L2(Γ3))

d. Then there exists a constant c > 0 independent
of h such that

(4.10) ‖u− uh‖V ≤ c inf
vh∈Kh

(‖u− vh‖V + ‖u− vh‖
1/2

(L2(Γ3))d
)

where c is a positive constant independent of h.

Proof. We see that it suffices to provide an estimate of A2. Indeed, using
Green’s formula we have

|A2| ≤
∣∣∣ �
Γ3

σν(vhν − uν) da+
�

Γ3

στ .(vhτ − uτ ) da
∣∣∣

+
∣∣∣ �
Γ3

µ(|uτ |)|Rσν(u)|(|vhτ | − |uτ |) da
∣∣∣

≤
(
‖σν‖L2(Γ3) + ‖στ‖(L2(Γ3))d + µ0‖Rσν(u)‖L2(Γ3)

)
‖u− vh‖(L2(Γ3))d .

Hence if we take c ≥ ‖σν‖L2(Γ3) + ‖στ‖(L2(Γ3))d + µ0‖Rσν(u)‖L2(Γ3) we con-
clude the proof.

Now to derive an optimal error estimate, we assume in addition that

(4.11) u ∈ (H2(Ω))d, u|Γ3 ∈ (H2(Γ3))
d.

We again need the following standard interpolation error estimates

‖u− πhu‖V ≤ c1h‖u‖(H2(Ω))d ,

‖u− πhu‖(L2(Γ3))d ≤ c1h
2‖u‖(H2(Γ3))d .

Therefore, using the regularity (4.11), we deduce from (4.10) the optimal
error estimate

‖u− uh‖V ≤ ch.

Next the finite element system (4.1) can be approximated by a fixed-
point iterative method. Indeed, by choosing the initial guess u0h ∈ Kh ∩W
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we define recursively a sequence (unh) ⊂ Kh by

(4.11) 〈Fε(un+1
h ), ε(vh − un+1

h )〉Q + j(unh, vh)− j(unh, un+1
h )

≥ (f, vh − un+1
h )V ∀vh ∈ Kh.

We have the following theorem.

Theorem 4.3. Suppose the assumptions of Theorem 3.1 hold. Then the
iterative method (4.11) converges:

(4.12) ‖unh − uh‖V → 0 as n→∞.

Moreover, there exists a constant k ∈ ]0, 1[ such that

(4.13) ‖unh − uh‖V ≤ ckn.

Proof. We take vh = un+1
h in (3.1), then take vh = uh in (4.11), after

adding the resulting inequalities we obtain

(4.14) 〈Fε(uh)− Fε(un+1
h ), ε(uh − un+1

h )〉Q
≤ j(uh, un+1

h )− j(uh, uh) + j(unh, uh)− j(unh, un+1
h ).

Now by the same arguments used in the proof of Theorem 4.1 we find from
(4.14) that

(4.15) ‖un+1
h − uh‖V

≤
[
LµcR

d2Ω
m

((M/m+ 1)‖f1‖H/cΩ + (dΩM/m)‖f2‖(L(Γ2))d) + µ0cRM
dΩ
m

]
× ‖unh − uh‖V .

Then if we let k denote the quantity in the square brackets, we immediately
conclude that (4.15) implies (4.13) and then (4.12).
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