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LEFT GENERAL FRACTIONAL MONOTONE

APPROXIMATION THEORY

Abstract. We introduce left general fractional Caputo style derivatives
with respect to an absolutely continuous strictly increasing function g. We
give various examples of such fractional derivatives for different g. Let f be
a p-times continuously differentiable function on [a, b], and let L be a linear
left general fractional differential operator such that L(f) is non-negative
over a closed subinterval I of [a, b]. We find a sequence of polynomials Qn
of degree ≤ n such that L(Qn) is non-negative over I, and furthermore f is
approximated uniformly by Qn over [a, b].

The degree of this constrained approximation is given by an inequality
using the first modulus of continuity of f (p). We finish with applications of
the main fractional monotone approximation theorem for different g. On the
way to proving the main theorem we establish useful related general results.

1. Introduction and preparation. The topic of monotone approxi-
mation started in [10] has become a major trend in approximation theory.
A typical problem in this subject is: given a positive integer k, approximate
a given function whose kth derivative is ≥ 0 by polynomials having this
property.

In [2] the authors replaced the kth derivative with a linear differential
operator of order k.

Furthermore in [1], the author generalized the result of [2] to linear frac-
tional differential operators.

To describe the motivating result here we need
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Definition 1 ([4, p. 50]). Let α > 0 with dαe = m (d·e is the ceiling of
the number). Consider f ∈ Cm([−1, 1]). We define the left Caputo fractional
derivative of f of order α as follows:

(Dα
∗−1f)(x) =

1

Γ (m− α)

x�

−1
(x− t)m−α−1f (m)(t) dt

for any x ∈ [−1, 1], where Γ is the gamma function, Γ (ν) =
	∞
0 e−ttν−1 dt,

ν > 0. We set

D0
∗−1f(x) = f(x),

Dm
∗−1f(x) = f (m)(x), ∀x ∈ [−1, 1].

We proved

Theorem 2 ([1]). Let 0 ≤ h ≤ k ≤ p be integers, and let f be a real
function such that f (p) continuous on [−1, 1] with modulus of continuity
ω1(f

(p), δ), δ > 0, there. Let αj(x), j = h, h + 1, . . . , k, be real functions,
defined and bounded on [−1, 1], and assume that for all x ∈ [0, 1] either
αh(x) ≥ α > 0 or α(x) ≤ β < 0. Let α0 = 0 < α1 ≤ 1 < α2 ≤ 2 <
· · · < αp ≤ p be real numbers. Let D

αj
∗−1f stand for the left Caputo fractional

derivative of f of order αj anchored at −1. Consider the linear left fractional
differential operator

L :=
k∑
j=h

αj(x)[D
αj
∗−1]

and suppose that, throughout [0, 1],

(1) L(f) ≥ 0.

Then, for any n ∈ N, there exists a real polynomial Qn(x) of degree ≤ n
such that

(2) L(Qn) ≥ 0 throughout [0, 1],

and

(3) max
−1≤x≤1

|f(x)−Qn(x)| ≤ Cnk−pω1(f
(p), 1/n),

where C is independent of n and f .

Notice that the monotonicity property is only true on [0, 1]: see (1), (2).
However the approximation property (3) holds over the whole interval
[−1, 1].

In this article we extend Theorem 2 to much more general linear left
fractional differential operators.

We use the following generalized fractional integral.
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Definition 3 (see also [7, p. 99]). The left generalized fractional integral
of a function f with respect to a given function g is defined as follows:

Let a, b ∈ R, a < b, and α > 0. Assume that g ∈ AC([a, b]) (absolutely
continuous functions) is strictly increasing, and f ∈ L∞([a, b]). We set

(Iαa+;gf)(x) =
1

Γ (α)

x�

a

(g(x)− g(t))α−1g′(t)f(t) dt, x ≥ a;

clearly (Iαa+;gf)(a)=0. When g is the identity function id, we get Iαa+;id=Iαa+,
the ordinary left Riemann–Liouville fractional integral, where

(Iαa+f)(x) =
1

Γ (α)

x�

a

(x− t)α−1f(t) dt, x ≥ a,

with (Iαa+f)(a) = 0.

When g(x) = lnx on [a, b], 0 < a < b <∞, we get

Definition 4 ([7, p. 110]). Let 0 < a < b < ∞ and α > 0. The left
Hadamard fractional integral of order α of f ∈ L∞([a, b]) is given by

(Jαa+f)(x) =
1

Γ (α)

x�

a

(
ln
x

y

)α−1 f(y)

y
dy, x ≥ a.

Definition 5. The left fractional exponential integral of f ∈ L∞([a, b])
is defined as follows: Let a, b ∈ R, a < b, and α > 0. We set

(Iαa+;exf)(x) =
1

Γ (α)

x�

a

(ex − et)α−1etf(t) dt, x ≥ a.

Definition 6. Let a, b ∈ R, a < b, α > 0, f ∈ L∞([a, b]), and A > 1.
We introduce the fractional integral

(Iαa+;Axf)(x) =
lnA

Γ (α)

x�

a

(Ax −At)α−1Atf(t) dt, x ≥ a.

Definition 7. Let α, σ > 0, 0 ≤ a < b <∞, and f ∈ L∞([a, b]). We set

(Kα
a+;xσf)(x) =

1

Γ (α)

x�

z

(xσ − tσ)α−1f(t)σtσ−1 dt, x ≥ a.

We introduce the following general fractional derivatives.

Definition 8. Let α > 0 and dαe = m. Consider f ∈ ACm([a, b]) (the
space of functions f with f (m−1) ∈ AC([a, b])). We define the left general
fractional derivative of f of order α with respect to g as follows:

(Dα
∗a;gf)(x) =

1

Γ (m− α)

x�

a

(g(x)− g(t))m−α−1g′(t)f (m)(t) dt

for any x ∈ [a, b], where Γ is the gamma function.
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We set

Dm
∗α;gf(x) = f (m)(x),

D0
∗a;gf(x) = f(x), ∀x ∈ [a, b].

If g = id, then Dα
∗af = Dα

∗a;idf is the left Caputo fractional derivative.

So we have the specific general left fractional derivatives.

Definition 9.

Dα
∗a;lnxf(x) =

1

Γ (m− α)

x�

a

(
ln
x

y

)m−α−1 f (m)(y)

y
dy, x ≥ a > 0,

Dα
∗a;exf(x) =

1

Γ (m− α)

x�

a

(ex − et)m−α−1etf (m)(t) dt, x ≥ a,

Dα
∗a;Axf(x) =

lnA

Γ (m− α)

x�

a

(Ax −At)m−α−1Atf (m)(t) dt, x ≥ a,

(Dα
∗a;xσf)(x) =

1

Γ (m− α)

x�

a

(xσ − tσ)m−α−1σtσ−1f (m)(t) dt, x ≥ a ≥ 0.

We need a modification of

Theorem 10 (Trigub, [11], [12]). Let g ∈ Cp([−1, 1]), p ∈ N. Then there
exists a real polynomial qn(x) of degree ≤ n such that

max
−1≤x≤1

|g(j)(x)− q(j)n (x)| ≤ Rpnj−pω1(g
(p), 1/n),

j = 0, 1, . . . , p, where Rp is independent of n and g.

Remark 11. Let a < b. Let ϕ : [−1, 1]→ [a, b] be defined by

x = ϕ(t) =
b− a

2
t+

b+ a

2
.

Clearly ϕ is a 1-1 and onto map. We get

x′ = ϕ′(t) =
b− a

2
,

and

(4) t =
2x− b− a
b− a

= 2
x

b− a
− b+ a

b− a
.

In fact,
ϕ(−1) = a and ϕ(1) = b.

Theorem 12. Let f ∈ Cp([a, b]), p ∈ N. Then there exist real polyno-
mials Q∗n(x) of degree ≤ n ∈ N such that

(5) max
a≤x≤b

|f (j)(x)−Q∗(j)n (x)| ≤ Rp
(
b− a
2n

)p−j
ω1

(
f (p),

b− a
2n

)
,

j = 0, 1, . . . , p, where Rp is independent of n and g.



Left general fractional monotone approximation theory 121

Proof. We use Theorem 10 and Remark 11.
Since f ∈ Cp([a, b]), it is clear that the function

g(t) = f

(
b− a

2
t+

b+ a

2

)
, t ∈ [−1, 1],

is in Cp([−1, 1]). We notice that

dg(t)

dt
=
df
(
b−a
2 t+ b+a

2

)
dt

= f ′(x)
b− a

2
,

and thus

g′(t) = f ′(x)
b− a

2
= f ′

(
b− a

2
t+

b+ a

2

)
b− a

2
.

Moreover

g′′(t) =
df ′
(
b−a
2 t+ b+a

2

)
dt

b− a
2

.

Since as before
df ′
(
b−a
2 t+ b+a

2

)
dt

= f ′′(x)
b− a

2
,

we obtain

g′′(x) = f ′′(x)
(b− a)2

22
.

In general,

g(j)(t) = f (j)(x)
(b− a)j

2j

for j = 0, 1, . . . , p. Hence by Theorem 10, for any t ∈ [−1, 1], we have

(6) |g(j)(t)− q(j)n (t)| ≤ Rpnj−pω1(g
(p), 1/n)

for j = 0, 1, . . . , p, where Rp is independent of n and g.
Notice that

q(j)n (t)
(4)
= q(j)n

(
2x− b− a
b− a

)
, j = 0, 1, . . . , p.

So, for t ∈ [−1, 1], we have

qn(t) = qn

(
2

b− a
x− b+ a

b− a

)
=: Q∗n(x), x ∈ [a, b],

a polynomial of degree n.
Also

(7) Q∗′n (x) =
dqn
(

2
b−ax−

b+a
b−a
)

dx
=
dqn(t)

dt

dt

dx
= q′n(t)

2

b− a
.

That is,

q′n(t) = Q∗′n (x)
b− a

2
.
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Similarly we get

Q∗′′n (x) =
dQ∗′n (x)

dx

(7)
=
dq′n
(

2
b−ax−

b+a
b−a
)

dx

2

b− a

=
dq′n(t)

dt

dt

dx

2

b− a
= q′′n(t)

22

(b− a)2
.

Hence

q′′n(t) = Q∗′′n (x)
(b− a)2

22
.

In general,

q(j)n (t) = Q∗(j)n (x)
(b− a)j

2j
, j = 0, 1, . . . , p.

Thus we have

L.H.S.(6) =
(b− a)j

2j
|f (j)(x)−Q∗(j)n (x)|

for j = 0, 1, . . . , p and x ∈ [a, b].
Next we observe that

(8) ω1(g
(p), 1/n) = sup

|t1−t2|≤1/n
t1,t2∈[−1,1]

|g(p)(t1)− g(p)(t2)|

sup
|x1−x2|≤ b−a2n
x1,x2∈[a,b]

(b− a)p

2p
|f (p)(x1)− f (p)(x2)| =

(b− a)p

2p
ω1

(
f (p),

b− a
2n

)
,

since for any t1, t2 ∈ [−1, 1] with |t1 − t2| ≤ 1/n the corresponding x1, x2 ∈
[a, b] satisfy

|x1 − x2| ≤
b− a
2n

.

Finally, by (6) we can find

(b− a)j

2j
|f (j)(x)−Q∗(j)n (x)| ≤ Rpnj−p

(b− a)p

2p
ω1

(
f (p),

b− a
2n

)
for j = 0, 1, . . . , p, and so

|f (j)(x)−Q∗(j)n (x)| ≤ Rp
(b− a)p−j

(2n)p−j
ω1

(
f (p),

b− a
2n

)
,

for any x ∈ [a, b] and j = 0, 1, . . . , p, proving the claim.

Remark 13. Let g ∈ AC([a, b]) be increasing over [a, b], and let α > 0.
Suppose g(a) = c, g(b) = d. We want to calculate

I =

b�

a

(g(b)− g(t))α−1g′(t) dt.
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Consider the function

f(y) = (g(b)− y)α−1 = (d− y)α−1, ∀y ∈ [c, d].

We have f(y) ≥ 0, f(d) =∞ when 0 < α < 1, but f is measurable on [c, d].
By [8, exercise 13d, p. 107],

(f ◦ g)(t)g′(t) = (g(b)− g(t))α−1g′(t)

is measurable on [a, b], and

I =

d�

c

(d− y)α−1 dy =
(d− c)α

α

(notice that (d− y)α−1 is Riemann integrable). That is,

I =
(g(b)− g(a))α

α
.

Similarly,

(9)

x�

a

(g(x)− g(t))α−1g′(t) dt =
(g(x)− g(a))α

α
, ∀x ∈ [a, b].

Theorem 14. Let α > 0, N 3 m = dαe, and f ∈ Cm([a, b]). Then
(Dα
∗a;gf)(x) is continuous in x ∈ [a, b].

Proof. By [3, p. 78], we know that g−1 exists and is strictly increasing
on [g(a), g(b)]. Since g is continuous on [a, b], so is g−1 on [g(a), g(b)]. Hence
f (m) ◦ g−1 is a continuous function on [g(a), g(b)].

If α = m ∈ N, then the claim is trivial.

We treat the case of 0 < α < m. The function

G(z) = (g(x)− z)m−α−1(f (m) ◦ g−1)(z)

is integrable on [g(a), g(x)], and by assumption g : [a, b] → [g(a), g(b)] is
absolutely continuous.

Since g is strictly increasing, the function

(g(x)− g(t))m−α−1g′(t)(f (m) ◦ g−1)(g(t))

is integrable on [a, x] (see [6]). Furthermore (see also [6]),

1

Γ (m− α)

g(x)�

g(a)

(g(x)− z)m−α−1(f (m) ◦ g−1)(z) dz

=
1

Γ (m− α)

x�

a

(g(x)− g(t))m−α−1g′(t)(f (m) ◦ g−1)(g(t)) dt

= (Dα
∗a;gf)(x), ∀x ∈ [a, b].
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And we can write

(Dα
∗a;gf)(x) =

1

Γ (m− α)

g(x)�

g(a)

(g(x)− z)m−α−1(f (m) ◦ g−1)(z) dz,

(Dα
∗a;gf)(y) =

1

Γ (m− α)

g(y)�

g(a)

(g(y)− z)m−α−1(f (m) ◦ g−1)(z) dz.

Here a ≤ x ≤ y ≤ b, and g(a) ≤ g(x) ≤ g(y) ≤ g(b), and 0 ≤ g(x)− g(a) ≤
g(y)− g(a).

Let λ = g(x)− z; then z = g(x)− λ. Thus

(Dα
∗a;gf)(x) =

1

Γ (m− α)

g(x)−g(a)�

0

λm−α−1(f (m) ◦ g−1)(g(x)− λ) dλ.

Clearly, if g(a) ≤ z ≤ g(x), then −g(a) ≥ −z ≥ −g(x), and g(x) − g(a) ≥
g(x)− z ≥ 0, i.e. 0 ≤ λ ≤ g(x)− g(a).

Similarly

(10) (Dα
∗a;gf)(y) =

1

Γ (m− α)

g(y)−g(a)�

0

λm−α−1(f (m) ◦ g−1)(g(y)− λ) dλ.

Hence

(Dα
∗a;gf)(y)− (Dα

∗a;gf)(x) =
1

Γ (m− α)

·
[g(x)−g(y)�

0

λm−α−1
(
(f (m) ◦ g−1)(g(y)− λ)− (f (m) ◦ g−1)(g(x)− λ)

)
dλ

+

g(y)−g(a)�

g(x)−g(a)

λm−α−1(f (m) ◦ g−1)(g(y)− λ)dλ
]
.

Thus we obtain

|(Dα
∗a;gf)(y)− (Dα

∗a;gf)(x)| ≤ 1

Γ (m− α)

·
[

(g(x)− g(a))m−α

m− α
ω1(f

(m) ◦ g−1, |g(y)− g(x)|)

+
‖f (m) ◦ g−1‖∞,[g(a),g(b)]

m− α
((g(y)− g(a))m−α − (g(x)− g(a))m−α)

]
=: (ξ).

As y → x, we have g(y) → g(x) (since g ∈ AC([a, b])). So (ξ) → 0. As a
result

(Dα
∗a;gf)(y)→ (Dα

∗a;gf)(x),

proving that (Dα
∗a;gf)(x) is continuous in x ∈ [a, b].
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2. Main result. We will prove

Theorem 15. Assume that g ∈ AC([a, b]) is strictly increasing with
g(b) − g(a) > 1. Let 0 ≤ h ≤ k ≤ p be integers, and let f ∈ Cp([a, b]),
a < b, with modulus of continuity ω1(f

(p), δ), 0 < δ ≤ b − a. Let αj(x),
j = h, h+1, . . . , k, be real functions, defined and bounded on [a, b] and assume
that, for all x ∈ [g−1(1+g(a)), b], either αh(x) ≥ α∗ > 0, or αn(x) ≤ β∗ < 0.
Let α0 = 0 < α1 ≤ 1 < α2 ≤ 2 < · · · < αp ≤ p be real numbers. Consider
the linear left general fractional differential operator

L =

k∑
j=h

αj(x)[D
αj
∗a;g],

and suppose that throughout [g−1(1 + g(a)), b],

L(f) ≥ 0.

Then, for any n ∈ N, there exists a real polynomial Qn(x) of degree ≤ n
such that

L(Qn) ≥ 0 throughout [g−1(1 + g(a)), b],

and

(11) max
x∈[a,b]

|f(x)−Qn(x)| ≤ Cnk−pω1

(
f (p),

b− a
2n

)
,

where C is independent of n and f .

Proof. Let Q∗n(x) be as in Theorem 12.

We have

(D
αj
∗a;gf)(x) =

1

Γ (j − αj)

x�

a

(g(x)− g(t))j−αj−1g′(t)f (j)(t) dt,

(D
αj
∗a;gQ

∗
n)(x) =

1

Γ (j − αj)

x�

a

(g(x)− g(t))j−αj−1g′(t)Q∗n
(j)(t) dt,

for j = 1, . . . , p.

Also

(Dj
∗a;gf)(x) = f (j)(x), (Dj

∗a;gQ
∗
n)(x) = Q∗(j)n (x), j = 1, . . . , p.

By [9], g′ exists a.e., and g′ is measurable and non-negative.

We notice that

|(Dαj
∗a;gf)(x)−Dαj

∗a;gQ
∗
n(x)|

=
1

Γ (j − αj)

∣∣∣ x�
a

(g(x)− g(t))j−αj−1g′(t)(f (j)(t)−Q∗(j)n (t)) dt
∣∣∣
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≤ 1

Γ (j − αj)

x�

a

(g(x)− g(t))j−αj−1g′(t)|f (j)(t)−Q∗(j)n (t)| dt

(5)

≤ 1

Γ (j − αj)

(x�
a

(g(x)− g(t))j−αj−1g′(t) dt
)
Rp

(
b− a
2n

)p−j
ω1

(
f (p),

b− a
2n

)
(9)
=

(g(x)− g(a))j−αj

Γ (j − αj + 1)
Rp

(
b− a
2n

)p−j
ω1

(
f (p),

b− a
2n

)
≤ (g(b)− g(a))j−αj

Γ (j − αj + 1)
Rp

(
b− a
2n

)p−j
ω1

(
f (p),

b− a
2n

)
.

Hence for all x ∈ [a, b],

|(Dαj
∗a;gf)(x)−Dαj

∗a;gQ
∗
n(x)|

≤ (g(b)− g(a))j−αj

Γ (j − αj + 1)
Rp

(
b− a
2n

)p−j
ω1

(
f (p),

b− a
2n

)
and

(12) max
x∈[a,b]

|Dαj
∗a;gf(x)−Dαj

∗a;gQ
∗
n(x)|

≤ (g(b)− g(a))j−αj

Γ (j − αj + 1)
Rp

(
b− a
2n

)p−j
ω1

(
f (p),

b− a
2n

)
,

for j = 0, 1, . . . , p.

Above we set D0
∗a;gf(x) = f(x) and D0

∗a;gQ
∗
n(x) = Q∗n(x), for all x ∈

[a, b], and α0 = 0, i.e. dα0e = 0.

Define

sj = sup
a≤x≤b

|α−1h (x)αj(x)|, j = h, . . . , k,

and

(13) ηn = Rpω1

(
f (p),

b− a
2n

) k∑
j=h

sj
(g(b)− g(a))j−αj

Γ (j − αj + 1)

(
b− a
2n

)p−j
.

I. Suppose αh(x) ≥ α∗ > 0 throughout [g−1(1 + g(a)), b]. Let Qn(x) be
the real polynomial of degree ≤ n that corresponds to f(x) + ηn(h!)−1xh,
x ∈ [a, b], so by Theorem 12 and (12) we get

(14) max
x∈[a,b]

|Dαj
∗a;g(f(x) + ηn(h!)−1xh)− (D

αj
∗a;gQn)(x)|

≤ (g(b)− g(a))j−αj

Γ (j − αj + 1)
Rp

(
b− a
2n

)p−j
ω1

(
f (p),

b− a
2n

)
for j = 0, 1, . . . , p.
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In particular (for j = 0)

(15) max
x∈[a,b]

|(f(x) + ηn(h!)−1xh)−Qn(x)| ≤ Rp
(
b− a
2n

)p
ω1

(
f (p),

b− a
2n

)
,

and

max
x∈[a,b]

|f(x)−Qn(x)|

≤ ηn(h!)−1(max(|a|, |b|))h +Rp

(
b− a
2n

)p
ω1

(
f (p),

b− a
2n

)
= ηn(h!)−1 max(|a|h, |b|h) +Rp

(
b− a
2n

)p
ω1

(
f (p),

b− a
2n

)
= Rpω1

(
f (p),

b− a
2n

) k∑
j=h

sj
(g(b)− g(a))j−αj

Γ (j − αj + 1)

(
b− a
2n

)p−j
× (h!)−1 max(|a|h, |b|h) +Rp

(
b− a
2n

)p
ω1

(
f (p),

b− a
2n

)
≤ Rpω1

(
f (p),

b− a
2n

)
nk−p

×
[ k∑
j=h

sj
(g(b)− g(a))j−αj

Γ (j − αj + 1)

(
b− a

2

)p−j
(h!)−1 max(|a|h, |b|h) +

(
b− a

2

)p]
.

proving (11).
Notice that for j = h+ 1, . . . , k,

(16) (D
αj
∗a;gx

h) =
1

Γ (j − αj)

x�

a

(g(x)− g(t))j−αj−1g′(t)(th)(j) dt = 0.

Here

L =

k∑
j=h

αj(x)[D
αj
∗a;g],

and suppose Lf ≥ 0 throughout [g−1(1 + g(a)), b]. So over g−1(1 + g(a)) ≤
x ≤ b, we get

α−1h (x)L(Qn(x))
(16)
= α−1h (x)L(f(x)) +

ηn
h!

(Dαh
∗a;g(x

h))

+

k∑
j=h

α−1h (x)αj(x)

[
D
αj
∗a;gQn(x)−Dαj

∗a;gf(x)− ηn
h!
D
αj
∗a;gx

h

]
(14)

≥ ηn
h!

(Dαh
∗a;g(x

h))−
k∑
j=h

sj
(g(b)− g(a))j−αj

Γ (j − αj + 1)

(
b− a
2n

)p−j
Rpω1

(
f (p),

b− a
2n

)
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(13)
=

ηn
h!

(Dαh
∗a;g(x

h))− ηn = ηn

(
Dαh
∗a;g(x

h)

h!
− 1

)
= ηn

(
1

Γ (h− αh)h!

x�

a

(g(x)− g(t))h−αh−1g′(t)(th)(h) dt− 1

)

= ηn

(
h!

h!Γ (h− αh)

x�

a

(g(x)− g(t))h−αh−1g′(t) dt− 1

)
(9)
= ηn

(
(g(x)− g(a))h−αh

Γ (h− αh + 1)
− 1

)
= ηn

(
(g(x)− g(a))h−αh − Γ (h− αh + 1)

Γ (h− αh + 1)

)
≥ ηn

(
1− Γ (h− αh + 1)

Γ (h− αh + 1)

)
≥ 0.

Clearly here g(x)− g(a) ≥ 1.

Moreover, Γ (1) = 1, Γ (2) = 1, and Γ is convex and positive on (0,∞).
Here 0 ≤ h− αh < 1 and 1 ≤ h− αh + 1 < 2. Thus

(17) Γ (h− αh + 1) ≤ 1 and 1− Γ (h− αh + 1) ≥ 0.

Hence

L(Qn(x)) ≥ 0 for x ∈ [g−1(1 + g(a)), b].

II. Suppose αh(x) ≤ β∗ < 0 throughout [g−1(1 + g(a)), b].

Let Qn(x), x ∈ [a, b], be a real polynomial of degree ≤ n, according to
Theorem 12 and (12), so that

(18) max
x∈[a,b]

|Dαj
∗a;g(f(x)− ηn(h!)−1xh)− (D

αj
∗a;gQn)(x)|

≤ (g(b)− g(a))j−αj

Γ (j − αj + 1)
Rp

(
b− a
2n

)p−j
ω1

(
f (p),

b− a
2n

)
for j = 0, 1, . . . , p.

In particular (for j = 0)

max
x∈[a,b]

|(f(x)− ηn(h!)−1xh)−Qn(x)| ≤ Rp
(
b− a
2n

)p
ω1

(
f (p),

b− a
2n

)
,

and

max
x∈[a,b]

|f(x)−Qn(x)| ≤ ηn(h!)−1(max(|a|, |b|))h+Rp

(
b− a
2n

)p
ω1

(
f (p),

b− a
2n

)
= ηn(h!)−1 max(|a|h, |b|h) +Rp

(
b− a
2n

)p
ω1

(
f (p),

b− a
2n

)
,
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etc. We find again that

max
x∈[a,b]

|f(x)−Qn(x)| ≤ Rp
[(

b− a
2

)p
+ (h!)−1 max(|a|h, |b|h)

·
( k∑
j=h

sj
(g(b)− g(a))j−αj

Γ (j − αj + 1)

(
b− a

2

)p−j)]
nk−pω1

(
f (p),

b− a
2n

)
,

reproving (11).

Here again

L =
k∑
j=h

αj(x)[D
αj
∗a;g],

and suppose Lf ≥ 0 throughout [g−1(1 + g(a)), b]. So over g−1(1 + g(a)) ≤
x ≤ b, we get

α−1h (x)L(Qn(x))
(16)
= α−1h (x)L(f(x))− ηn

h!
(Dαh
∗a;g(x

h))

+

k∑
j=h

α−1h (x)αj(x)

[
D
αj
∗a;gQn(x)−Dαj

∗a;gf(x) +
ηn
h!
D
αj
∗a;gx

h

]
(18)

≤ − ηn
h!

(Dαh
∗a;g(x

h))

+

( k∑
j=h

sj
(g(b)− g(a))j−αj

Γ (j − αj + 1)

(
b− a
2n

)p−j)
Rpω1

(
f (p),

b− a
2n

)
(13)
= − ηn

h!
(Dαh
∗a;g(x

h)) + ηn = ηn

(
1−

Dαh
∗a;g(x

h)

h!

)
= ηn

(
1− 1

Γ (h− αh)h!

x�

a

(g(x)− g(t))h−αh−1g′(t)(th)(h) dt

)
= ηn

(
1− h!

h!Γ (h− αh)

x�

a

(g(x)− g(t))h−αh−1g′(t) dt

)
(9)
= ηn

(
1− (g(x)− g(a))h−αh

Γ (h− αh + 1)

)
= ηn

(
Γ (h− αh + 1)− (g(x)− g(a))h−αh

Γ (h− αh + 1)

)
(17)

≤ ηn

(
1− (g(x)− g(a))h−αh

Γ (h− αh + 1)

)
≤ 0.

Hence again

L(Qn(x)) ≥ 0, ∀x ∈ [g−1(1 + g(a)), b].

The case of αh = h is trivially deduced from the above. The proof of the
theorem is now complete.
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Remark 16. By Theorem 14, D
αj
∗a;gf are continuous functions, j =

0, 1, . . . , p. Suppose that αh(x), . . . , αk(x) are continuous functions on [a, b],
and L(f) ≥ 0 on [g−1(1+g(a)), b] is replaced by L(f) > 0 on [g−1(1+g(a)), b].
Disregard the assumption made in the main theorem on αh(x). For n ∈ N,
let Qn(x) be the Q∗n(x) of Theorem 12, and f as in Theorem 12 (same as
in Theorem 15). Then Qn(x) converges to f(x) at the Jackson rate 1/np+1

([5, p. 18, Theorem VIII]) and at the same time, since L(Qn) converges uni-
formly to L(f) on [a, b], L(Qn) > 0 on [g−1(1 + g(a)), b] for all n sufficiently
large.

3. Applications (of Theorem 15)

1) When g(x) = lnx on [a, b], 0 < a < b <∞.
Here we assume that b > ae, αh(x) restriction true on [ae, b], and

Lf =
k∑
j=h

αj(x)[D
αj
∗a;lnxf ] ≥ 0

throughout [ae, b]. Then L(Qn) ≥ 0 on [ae, b].

2) When g(x) = ex on [a, b], a < b <∞.
Here we assume that b > ln(1+ea), αh(x) restriction true on [ln(1+ea), b],

and

Lf =
k∑
j=h

αj(x)[D
αj
∗a;exf ] ≥ 0

throughout [ln(1 + ea), b].
Then L(Qn) ≥ 0 on [ln(1 + ea), b].

3) When A > 1, g(x) = Ax on [a, b], a < b <∞.
Here we assume that b > logA(1+Aa), αh(x) restriction true on [logA(1+

Aa), b], and

Lf =

k∑
j=h

αj(x)[D
αj
∗a;Axf ] ≥ 0

throughout [logA(1 +Aa), b]. Then L(Qn) ≥ 0 on [logA(1 +Aa), b].

4) When σ > 0, g(x) = xσ, 0 ≤ a < b <∞.
Here we assume that b > (1 + aσ)1/σ, αh(x) restriction true on

[(1 + aσ)1/σ, b], and

Lf =
k∑
j=h

αj(x)[D
αj
∗a;xσf ] ≥ 0

throughout [(1 + aσ)1/σ, b]. Then L(Qn) ≥ 0 on [(1 + aσ)1/σ, b].



Left general fractional monotone approximation theory 131

References

[1] G. A. Anastassiou, Fractional monotone approximation theory, Indian J. Math. 57
(2015), 141–149.

[2] G. A. Anastassiou and O. Shisha, Monotone approximation with linear differential
operators, J. Approx. Theory 44 (1985), 391–393.

[3] T. Apostol, Mathematical Analysis, Addison-Wesley, Reading, MA, 1969.
[4] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in

Math. 2004, Spinger, New York, 2010.
[5] D. Jackson, The Theory of Approximation, Amer. Math. Soc. Colloq. Publ. 9, Amer.

Math. Soc., 1930.
[6] R.-Q. Jia, Chapter 3. Absolutely continuous functions, https://www.ualberta.

ca/˜rjia/Math418/Notes/Chap.3.pdf.
[7] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Frac-

tional Differential Equations, North-Holland Math. Stud. 204, Elsevier, 2006.
[8] H. L. Royden, Real Analysis, 2nd ed., Macmillan, New York, 1968.
[9] A. R. Schep, Differentiation of monotone functions, people.math.sc.edu/schep/

diffmonotone.pdf.
[10] O. Shisha, Monotone approximation, Pacific J. Math. 15 (1965), 667–671.
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