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A MAP MAINTAINING THE ORBITS OF A GIVEN Zd-ACTION

BY

BARTOSZ FREJ and AGATA KWAŚNICKA (Wrocław)

Abstract. Giordano et al. (2010) showed that every minimal free Zd-action of a
Cantor space X is orbit equivalent to some Z-action. Trying to avoid the K-theory used
there and modifying Forrest’s (2000) construction of a Bratteli diagram, we show how to
define a (one-dimensional) continuous and injective map F on X \ {one point} such that
for a residual subset of X the orbits of F are the same as the orbits of a given minimal
free Zd-action.

1. Introduction. In two papers published in 1959 and 1963, Dye [3]
contributed to the theory of classification of dynamical systems by proving
that any two measure preserving ergodic transformations of a Lebesgue space
are orbit equivalent. In 1980 Ornstein and Weiss [9] generalized this result by
showing that any two free, ergodic, measure preserving actions of amenable
groups are orbit equivalent. In particular, every such action is orbit equiv-
alent to an ergodic action of Z. Further generalizations (in the language of
relations) can be found in [1].

The topological theory of orbit equivalence seems to be more complex
and more delicate. In particular, it turns out that not all minimal Z-actions
fall into the same class of orbit equivalence (see [8] for a deep study of the
subject). In the last decade, Giordano, Matui, Putnam and Skau showed
that, similarly to the measure case, every minimal Zd-action of a Cantor
space is orbit equivalent to some Z-action (see [6] for the case d = 2 and [7]
for the general result). They employed quite complicated tools of K-theory,
used already in [8], and the main idea was to study certain invariants of orbit
equivalence, namely the dimension groups. Though undoubtedly brilliant,
the papers are not of the kind with which one should start one’s adventure
with Cantor dynamics. On the other hand, knowing that a multidimensional
system is orbit equivalent to a one-dimensional system, one would like to
see the appropriate orbit preserving map. Roughly speaking, the question is
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how to cleverly linearize an orbit which is a d-dimensional lattice, so that
the procedure used does not depend on the position of the origin. We try
to carry out this beginner’s attempt to establish orbit equivalence between
Zd- and Z-actions. Inspired by Forrest’s results [4], we construct a Bratteli
diagram of a given Zd-action. The main tool is a kind of marker lemma, but
instead of cutting the orbits into pieces that are Voronoi regions, we apply
the maximolexicographic order, which was also used in [5]. Though not fully
successful, we keep our faith that using this technique one may get a better
outcome, perhaps imposing some additional requirements on the structure of
markers. At this point we also want to express our gratitude to the referee,
whose remarks allowed us to improve the paper.

We consider a compact (perfect) zero-dimensional metrizable space X
(i.e. a Cantor space) and a collection T = {T1, . . . , Td} of commuting homeo-
morphisms ofX. For n = (n1, . . . , nd) ∈ Zd we write Tn for the superposition
Tn1

1 . . . Tnd
d . We say that a system (X,T ) is aperiodic or that T acts freely

on X if Tn(x) 6= x for all x ∈ X and all n 6= (0, . . . , 0). It is minimal if
X contains no proper nonempty closed subset which is invariant (a set F is
invariant if TiF = F for all i = 1, . . . , d). Equivalently, (X,T ) is minimal if
and only if the orbit {Tnx : n ∈ Zd} of every x ∈ X is dense.

To perform our construction we will encode a given system (X,T ) into
a d-dimensional symbolic system over a compact alphabet Λ. As usual, on a
compact space ΛZd we define shift maps σi by setting (σi(y))n = yn+ei for all
y ∈ ΛZd , n ∈ Zd and i = 1, . . . , d, where ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zd with
the only 1 at the ith place. A d-dimensional symbolic system is a nonempty
closed subset Y of ΛZd which is invariant under all σi.

We use the following conventions. For a set Λ a functionM : Zd → Λ, i.e.
an element of ΛZd , is called an array. For a finite set A ⊂ Zd and an array
M we define a configuration MA to be M restricted to A. To comply with
the standard notation, for n ∈ Zd we denote by Mn a single symbol M{n}.
If Ã = A + m for some m ∈ Zd, and M̃n+m = Mn for every n ∈ A, then
we say that MA and M̃

Ã
have the same pattern. In this case both A and Ã

represent the shape of the pattern. More formally, shapes and patterns are
cosets of the equivalence relation based on translation of the domain. Thus
one can define inclusion for shapes S, S′ as follows: S′ ⊂ S if A′ ⊂ A for
some A′ ⊂ Zd representing S′ and A ⊂ Zd representing S. A shape S is
bounded if the sets representing S are bounded. A cube with maximal vertex
v = (v1, . . . , vd) and edge length p is the set Kv

p = {n ∈ Zd : vi−p < ni ≤ vi}.
For p ∈ N0 and v = (p, . . . , p) we also write Kp = Kv

p+1, the cube fixed at
the origin. We will also use the name ‘cube’ when referring to shapes based
on cubes in Zd. In a symbolic system (Y, σ), by blocks we will mean patterns
having bounded shapes. For p ∈ N0 we denote the centered cube with edge
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length 2p+ 1 by

K̄p =
{
n = (n1, . . . , nd) ∈ Zd : max{|n1|, . . . , |nd|} ≤ p

}
.

Definition. A set F ⊂ X is a marker of order p ∈ N0 or simply a
p-marker if:

(i) the elements of {TnF : n ∈ K̄p} are pairwise disjoint,
(ii) {TnF : n ∈ K̄N} is a cover of X for some minimal N ∈ N0; the

number 2N + 1 is then called the covering constant of F .

The following lemma is the base of our construction—it allows us to
produce for each x a certain sequence of partitions of Zd into finite subsets
on which we perform linearization of the orbit. The lemma is quite well
known, but we add three demands and so present a proof to ensure that these
are easy to obtain just by being more specific in carrying out the standard
argument. In particular, the third condition guarantees that the set of those
points for which our construction fails is meager (Proposition 10), and that
even then we keep partial control over the linearization process by assembling
the one-dimensional orbit from finitely many pieces (Lemma 3).

Lemma 1. For any aperiodic minimal Zd-action (X,T ) on a compact
metrizable zero-dimensional Hausdorff space and any x0 ∈ X there is an
increasing sequence (pt) of integers and a descending sequence (Ft) of clopen
pt-markers satisfying:

(1)
⋂∞
t=1 Ft = {x0},

(2) pt+1 ≥ tpt,
(3) the sequence (pt/qt)

∞
t=1, where qt is a covering constant of Ft, is

bounded away from zero.

Proof. We define Ft recursively. Let p1 = 1. To construct the first marker
choose a clopen neighborhood F1 of x0 such that {TnF1 : n ∈ K̄2} consists
of pairwise disjoint sets. Since the action is minimal, there is an integer q1

such that the collection TnF1, where n ∈ K̄q1 , is a cover of X.
Let B(x0, r) and B̄(x0, r) denote the open and closed balls with center

at x0 and radius r, respectively. Next choose δ1 < 1 so that B(x0, δ1)⊂ F1.
Again by minimality, there is an integer N1 such that the collection
TnB(x0,

1
2δ1), where n ∈ K̄N1 , covers X. Suppose that we have already con-

structed pt-markers F1, . . . , Fn and chosen radii δ1, . . . , δn with δt < 1/t sat-
isfying B(x0, δt) ⊂ Ft ⊂ B(x0, δt−1) (note that we can take δ0 > diam(X))
with

pt+1 = qt ·Nt for t = 1, . . . , n− 1,

where Nt denotes the size of the orbit of B(x0,
1
2δt) (i.e. the edge length

of an appropriate cube) needed to cover the whole X. To obtain condition
(2) of the hypothesis we demand that Nt ≥ t (increasing Nt at each step
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if necessary). To construct a pn+1-marker Fn+1 with pn+1 = qn · Nn, for
every x ∈ B̄(x0,

1
2δn) we choose a clopen neighborhood Ex of x, contained in

B(x0, δn), such that {TnEx : n ∈ K̄2pn+1} consists of pairwise disjoint sets.
From the cover {Ex} of the closed ball B̄(x0,

1
2δn) we choose a finite subcover

V = {Vl : l = 1, . . . , L}. Assume that V1 3 x0. Now we set

G1 = V1, Gl+1 = Gl ∪
(
Vl+1 \

⋃
m∈K̄2pn+1

TmGl

)
.

Finally, Fn+1 = GL. Obviously, Fn+1 is clopen and x0 ∈ Fn+1 ⊂ B(x0, δn).
We omit the elementary proof that the elements of {TnFn+1 : n ∈ K̄pn+1}

are pairwise disjoint; we only check that TnFn+1 for n ∈ K̄2pn+1+Nn cover the
whole X. Every x ∈ B̄(x0,

1
2δn) belongs to one of Vl’s. Either it was added

to Gl ⊂ Fn+1 at the lth step of the construction, or it had already been
contained in TmGl−1 ⊂ TmFn+1 for some m ∈ K̄2pn+1 . Thus B̄(x0,

1
2δn) ⊂⋃

n∈K̄2pn+1
TnFn+1, and X ⊂

⋃
n∈K̄2pn+1+Nn

TnFn+1 by definition of Nn.
Clearly,

⋂∞
t=1 Ft ⊂

⋂∞
t=1B(x0, δt) = {x0}. To verify (3), we calculate

pt
qt
≥ pt

4pt + 2Nt−1 + 1
=

1

4 + 2/qt−1 + 1/pt

t→∞−−−→ 1

4
.

2. t-blocks. Let us fix a summable sequence, εt = 1/2t+3, t ∈ N0. Let
dN0

be a metric on N0 = N∪{0,∞} given by dN0
(k, l) =

∑l
t=k+1 εt for k ≤ l.

Let dX denote a metric on X. We define a metric dΛ on Λ = N0 ×X by

dΛ((m,x), (n, y)) = dN0
(m,n) + dX(x, y).

Note that (Λ, dΛ) is a compact metric space. Let κ = 1 + diam(Λ). By
Tikhonov’s theorem the product ΛZd is also compact when equipped with
the pointwise convergence topology. For n ∈ Zd set

|n| = max{ni : i = 1, . . . , d}
and define a metric compatible with the Tikhonov topology by

ρ(M,M ′) =
∞∑
n=1

1

κn
max
|n|=n

dΛ(Mn,M
′
n) for M,M ′ ∈ ΛZd

.

Let (pt), (qt), (Ft) be as in Lemma 1. Additionally, let p0 = q0 = 1,
F0 = X, Q−1 = 0, and Qt =

∑t
i=0 qi for t ≥ 0. In the construction of (X∗, σ)

we replace each x ∈ X by an array [x] : Zd → Λ such that [x]n = (t, Tnx)
if Tnx ∈ Ft and Tnx /∈ Ft+1, and [x]n = (∞, Tnx) if Tnx belongs to
all markers. We say that [x] has marker t at position n ∈ Zd if the first
coordinate of [x]n is equal to t; a configuration [x]A contains the marker t if
[x] has marker t on some position n ∈ A. The space X∗ = {[x] : x ∈ X} is
homeomorphic to X and in an obvious manner the collection σ of the shifts
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σi is topologically conjugate to T . According to the definition of a marker,
every [x] ∈ X∗ has the following properties:

(1) every configuration in [x] based on a cube with edge length pt has
(at some position) at most one marker ≥ t,

(2) every configuration in [x] based on a cube with edge length qt has at
least one marker ≥ t.

Below we describe an inductive algorithm of partitioning every [x] ∈ X∗
into disjoint configurations. The resulting sequence of partitions will allow us
to create a local (independent of the shift map) rule of linearizing d-dimen-
sional orbits. On every cone n + Nd0 = {m ∈ Zd : m ≥ n}, where n ∈ Zd, we
define a maximolexicographic order ‘<∗’ as follows. For m ∈ Nd let sort(m)
denote the element of Zd whose coordinates are equal to those of m, but
arranged in a nonincreasing order, and let ‘≺’ be the usual lexicographic
order. To define the order on Nd0 we write m <∗ m′ if either

• sort(m) ≺ sort(m′), or
• sort(m) = sort(m′) and m ≺m′.

The order on n+Nd0 is a translation of the order from Nd0. The relation ‘<∗’
is a well-order. The operation of taking minimum with respect to this order
will be denoted by ‘min∗’. In this notation we do not indicate the dependence
on the vertex of the cone, because the choice of the order is always clear from
the context.

Table 1. The scheme of the maximolexicographic order for d = 2. The number 0 is the
vertex of a cone; consecutive integers are placed according to the maxlex order on this
cone. ...

9 11 13 15
4 6 8 14
1 3 7 12
0 2 5 10 . . .

First, we define 0-configurations to be single symbols [x]n, n ∈ Zd. To
proceed inductively, we assume that we have defined t-configurations in such
a way that every t-configuration contains exactly one marker u not smaller
than t. Denote the position of this marker in a t-configuration [x]A by n(t, A).
We define a (t + 1)-configuration as a concatenation of t-configurations as
follows. Every (t+1)-configuration [x]C consists of exactly one t-configuration
[x]A with a marker u not less than t+1 and all t-configurations [x]A′ such that

n(t, A) = min∗{m ≥∗ n(t, A′) : [x] has marker at least t+ 1 at m},
where the ordering ‘≥∗’ is inverse to ‘<∗’ defined for the cone n(t, A′) + Nd0.
We obtain n(t + 1, C) = n(t, A). Roughly speaking, the t-marker of A′
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searches for the nearest (in ‘<∗’) (t + 1)-marker of some A, and then the
t-configuration A′ is glued to A at the (t + 1)st step of the construction.
Thus for each x ∈ X and t ∈ N distinct t-configurations are supported
by disjoint subsets of Zd, and every t-configuration is a part of a (t + 1)-
configuration.

Example. Let (Zi)i∈N be a decreasing sequence of subgroups of Z2 iso-
morphic to Z2 and let G ⊂

∏∞
i=0 Zd/Zi be a two-dimensional odometer (for

the definition see e.g. [2]). Denoting by 0i the neutral element in Zd/Zi and
setting

Ft = {(gn) ∈ G : gi = 0i for i < t}

we obtain a convenient decreasing sequence of clopen markers. Every point
visits the marker Ft regularly, at times belonging to the, perhaps shifted,
lattice Zi. In the process of forming 1-configurations into an array [x], each
coordinate (m,n) searches for the nearest (in ‘<∗’) 1-marker which is located
at some point from g1 +Z1, where (gn) = x. Then every coordinate marked
with a 1-marker searches for the nearest 2-marker situated in g2 + Z2 to
glue its 1-configuration to it, and so on. The regularity of the distribution of
t-markers causes that for each t all t-configurations will share just one shape.
In particular, if G is a product of two one-dimensional odometers with scales
(pt) and (qt), these t-configurations will have the shape of a rectangle with
edges pt and qt.

The patterns of t-configurations will be called t-blocks. The collection of
all t-blocks which occur in the system X∗ will be denoted by Bt. As in [5],
we summarize the main properties of t-blocks (see also Fig. 1).

Lemma 2 ([5]). Let B be a t-block. Then:

(1) B is a finite concatenation of (t− 1)-blocks (t > 0).
(2) B contains exactly one marker u not less than t.
(3) The marker u not less than t is situated at the maximal vertex of B,

i.e. at the maximal vertex of the smallest cube containing the domain
of B.

(4) The shape of B contains a cube with edge length pt −Qt−1.
(5) The shape of B is contained in a cube with edge length Qt.

For every [x] ∈ X∗ we define an equivalence relation x∼ on Zd as follows:
n

x∼ m if for some t they belong to the domain of the same t-configuration
induced by [x]. In this case they clearly belong to the same s-configuration
for every s ≥ t.

Lemma 3. For every [x] ∈ X∗ the lattice Zd consists of finitely many
equivalence classes (of the relation x∼).
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Fig. 1. The construction of 1- and 2-blocks in two dimensions for p1 = 3, q1 = 7, p2 = 22.
1-blocks are distinguished by shades of grey. The bold line separates 2-blocks. Each of the
marked squares with edge length p1 has a unique 1-marker in the upper right corner. The
big hatched square is an area with a unique 2-marker.

Proof. Since pt/qt is bounded away from zero by some δ = 1/N , and
pt+1 ≥ tpt for each t, we have

Qt
pt

=

∑
i≤t qi

pt
≤
N
∑

i≤t pi

pt
≤ 2Npt

pt
= 2N.

Now assume that there are at least m equivalence classes for some [x] ∈ X∗.
Choose one element from every class. All these elements lie in a cube K̄R
for some R > 0. According to Lemma 2, for each of the fixed elements (and
any t) the t-configuration covering it contains a cube with edge length

pt −Qt−1 ≥ pt − 2Npt−1

Lem. 1(2)

≥ pt

(
1− 2N

t− 1

)
,

which is greater than 1
2pt for sufficiently large t. On the other hand, it is
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contained in a cube with edge length Qt. Therefore, all these covering t-con-
figurations are contained in a cube K̄R+Qt . Thus we have

m

(
pt
2

)d
≤ (2R+ 1 + 2Qt)

d ≤ (2R+ 1 + 4Npt)
d,

hence

m ≤
(

4R+ 2

pt
+ 8N

)d
.

Since pt →∞ we conclude that m ≤ (8N)d.

3. Towers and diagrams. We follow [4] in making the following defi-
nitions.

Definition.

• A tower is a collection {TnF : n ∈ A} of disjoint clopen sets, where A
is a finite subset of Zd containing 0, and F is some clopen set.
• The levels of the tower based on A ∈ Zd are the sets TnF , where
n ∈ A. A traverse of the tower {TnF : n ∈ A} is a set of the form
{Tnx : n ∈ A}, where x ∈ F .
• The boundary of a set A ∈ Zd is defined by

∂A = {n ∈ A : n± ej 6∈ A for some 1 ≤ j ≤ d},

where the ej are the elements of the standard unit basis of Zd. The
boundary of the tower is the union of TnF , where n ∈ ∂A.
• A KR decomposition Q is a collection of towers covering X, whose

levels are mutually disjoint. We write |Q| for the underlying partition
of the space.
• A KR decomposition Q refines a KR decomposition Q′ if |Q| refines
|Q′| in the usual sense, and if each traverse of a tower in Q is a union
of traverses of towers in Q′.
• A Vershik model for (X,Zd) is a sequence of refining KR decomposi-

tions. We say that the model is faithful if it refines to points.

Any KR decomposition Q gives rise to a certain collection of partitions
of the lattice. Indeed, for each x ∈ X we define a partition T (x) of Zd into
sets A such that for each A the set {Tnx : n ∈ A} is a traverse of a tower
of Q. The function T (x) has the following properties:

P1. If x ∈ X and n ∈ Zd then T (Tnx) is the partition T (x) shifted
by −n.

P2. The atoms of the partitions T (x) are finite sets of uniformly bounded
diameter; the bound is uniform also in x ∈ X.
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P3. The map x 7→ T (x) is ‘uniformly continuous’: for every r > 0 there
is δ > 0 such that if dX(x, y) < δ then the partitions T (x) and T (y)
are the same when restricted to K̄r.

Denote by A(x) the atom of T (x) which contains 0.

Lemma 4 ([4]). A map T with properties P1–P3 canonically defines
a KR decomposition. The boundary of this decomposition is the set
{x ∈ X : 0 ∈ ∂A(x)}.

Given a Vershik model we automatically have a sequence of partition-
valued maps Tn with the property

P4. For each x ∈ X and n ≥ 1, Tn(x) refines Tn+1(x).

If F is a subset of X and ξ is a partition of X then we denote by F ∩ ξ
the partition of F given by the formula

F ∩ ξ = {F ∩ E : E ∈ ξ}.
Lemma 5. Let Q and Q′ be two KR decompositions, which determine

partition-valued functions T : X → Zd and T ′ : X → Zd, respectively. If
T (x) refines T ′(x) for each x ∈ X then there exists a KR decomposition Q′′
such that:

(1) the partition-valued function associated to Q′′ is T ′(x),
(2) |Q′′| refines |Q| and |Q′|.

In particular, the KR decomposition Q′′ refines Q and Q′.
Proof. LetQ = {W1, . . . ,Wr} andQ′ = {W ′1, . . . ,W ′s}, whereWi andW ′j

are towers of the form Wi = {TnFi : n ∈ Ai} and W ′j = {TnF ′j : n ∈ A′j}.
We fix the clopen subsets Fi, i = 1, . . . , r, and F ′j , j = 1, . . . , s, of X,
and the associated regions Ai, A′j ⊂ Zd (we demand that each of these
regions contains 0). For j = 1, . . . , s let Ij be the set of all i such that
there is n ∈ A′j for which TnF ′j ∩ Fi is nonempty. Denote by Nj,i the set
of all such n ∈ A′j . Let ξi = {Fi, F ci }. We introduce a partition of F ′j by
ζj = F ′j ∩

∨
i∈Ij

∨
n∈Nj,i

T−nξi. For E ∈ ζj we let

Vj,E = {TnE : n ∈ A′j},
and then we define

Q′′ = {Vj,E : j = 1, . . . , r, E ∈ ζj}.
Clearly, each element of Q′′ is a tower whose levels are contained in levels
ofW ′j and whose traverses are the same as inW ′j . Since

⋃
E∈ζj

⋃
n∈A′j

TnE is
exactly the union of all levels of W ′j , the elements of Q′′ cover the whole X.
Moreover, if j 6= k then levels of Vj,E are disjoint from levels of Vk,D, where
E ∈ ζj , D ∈ ζk. For E1, E2 ∈ ζj we have TmE1 ∩TnE2 ⊂ TmFj ∩TnFj = ∅
if m 6= n and m,n∈A′j . If m = n then TmE1 ∩ TnE2 =Tn(E1 ∩ E2) = ∅,
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because E1 and E2 are disjoint elements of the partition ζj . Hence, Q′′ is a
KR partition that yields the partition-valued function T ′. It is obvious that
|Q′′| refines |Q′|. But also for each Fi we have

Fi =
s⋃
j=1

⋃
n∈Nj,i

TnF ′j ∩ Fi.

The set F ′j ∩ T−nFi is a union of elements of ζj , so
⋃

n∈Nj,i
TnF ′j ∩ Fi is a

union of some elements of {TnE : E ∈ ζj , n ∈ A′j}, and consequently Fi is a
union of elements of |Q′′|. For m ∈ Ai we have

TmFi =
s⋃
j=1

⋃
n∈Nj,i

Tn+mF ′j ∩ TmFi.

Take any x ∈ TnF ′j ∩ Fi. Since T (x) refines T ′(x), we have n + m ∈ A′j ,
so elements of Tn+mζj are levels of some towers Vj,E ∈ Q′′. Because
Tn+m(F ′j ∩ T−nFi) is a union of some elements of Tn+mζj , we conclude
again that TmFi is a union of elements of |Q′′|. Finally, |Q′′| refines |Q|.

Proposition 6. Suppose that the sequence (Tn)n∈N obeys P4 and each
of Tn satisfies P1, P2, and P3. Then there is a Vershik model (Qn) for
(X,Zd) such that each Qn has Tn as its partition-valued function.

Proof. By Lemma 4 the function T1 induces a KR decomposition Q1.
Having defined decompositions Q1, . . . ,Qn so that Qi+1 refines Qi for each
i = 1, . . . , n−1, we again use Lemma 4 to produce Q′n+1 associated to Tn+1,
and then by Lemma 5 we obtain Qn+1 inducing the same Tn+1, but refining
Qn and Q′n+1.

Denote by Pt(x) the partition of Zd into t-blocks induced by x ∈ X (as
defined in the previous section).

Lemma 7. Every partition Pt(x), x ∈ X, t ≥ 1, has properties P1–P3.
The sequence (Pt)t≥1 of partition-valued maps satisfies P4.

Proof. Condition P1 is obvious, since the partition depends only on the
distribution of markers which is appropriately shifted according to the action
of Tn. To verify P2 note that every atom of the partition Pt(x) is contained
in a cube having edge length Qt, regardless of x and of the position in Zd. If x
and y are sufficiently close then Tn(x) and Tn(y) fall into the same markers
for any fixed finite set of n, which yields P3. P4 is exactly Lemma 2(1).

The path from the sequence of partition-valued maps to a Bratteli dia-
gram is completed by the following theorem:

Theorem 8 ([4]). Suppose that (X,Zd) is a Cantor system with a faithful
Vershik model (Qn). Let Yn be the boundary of the decomposition Qn, i.e. the
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union of the boundaries of its towers. Denote by Y # the intersection of the
(decreasing) sequence (Yn) and let Y =

⋃
n∈Zd TnY #.Then there is a Bratteli

diagram B and a homeomorphism φ : P (B)→ X for which:

(1) if p, q ∈ P (B) are cofinal then φ(p) and φ(q) are coorbital,
(2) x ∈ X \ Y implies φ−1(x) is cofinal with φ−1(Tnx) for all n ∈ Zd,
(3) for a free action, if φ−1(x) is cofinal with φ−1(Tnx) for all n ∈ Zd

then x ∈ X \ Y .

The proof reveals the following relationship. In the Bratteli diagram ev-
ery vertex at the level t represents a unique tower in Qt. If (Qt) comes from
the sequence (Pt) of partition-valued maps, which partition into t-blocks,
to every such tower there corresponds a set of t-blocks which differ only in
the second coordinate (meaning that the arrangement of markers is iden-
tical). For the sake of convenience we will keep using the same symbol vt
for a vertex of the Bratteli diagram and a tower in Qt, while we will de-
note by v0t (x) a corresponding t-configuration whose maximal vertex (in the
sense of Lemma 2(3)) lies at the origin and bears the symbol (t, x). A t-con-
figuration having the same pattern, but with maximal vertex at −n, will be
written vnt (x). If there is an edge originating at a vertex vt ∈ Vt and termi-
nating at vt+1 ∈ Vt+1 then some t-configuration vnt (T−nx) is an element of
the concatenation building up v0t+1(x). Note that vnt (T−nx) may belong to
v0t+1(x) only if 0 ≤∗ n ≤∗ Qt, where Qt = (Qt, . . . , Qt). The number of edges
connecting vt to vt+1 is equal to the number of occurrences of the towers vt
in vt+1.

We are interested in defining a dynamics on the set of paths of the di-
agram. Before we do it we need to learn more about the boundaries of the
partitions Pt.

4. Boundaries of the partitions Pt. Denote by Bn,j
t the set of all

elements x ∈ X such that n and n + ej belong to distinct atoms of Pt(x).
Clearly, the sequence (Bn,j

t )t∈N of sets is descending.

Lemma 9. Each Bn,j
t is a clopen subset of X.

Proof. Note that Bn,j
t = T−nB0,j

t . Since Tn is a homeomorphism, it is
enough to consider B0,j

t . By uniform continuity of x 7→ Pt(x) (see Lemma 7)
both B0,j

t and its complement are open, because for sufficiently close x and y
the partitions Pt(x) and Pt(y) agree on K̄1.

Definition. A sequence (Pt(x))t∈N of partitions of Zd has an eternal
boundary between n and n + ej if n and n + ej belong to distinct atoms
of Pt(x) for all t ∈ N. In this case we will also say that x has an eternal
boundary.
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Note that either n and n + ej belong to distinct atoms of Pt(x) for all
t ∈ N, or there is t0 ∈ N such that n and n+ej are separated only for t ≤ t0.

Proposition 10. If X is minimal then the set of all points x ∈ X with
no eternal boundaries is residual.

Proof. Note first that this set is equal to⋂
n∈Zd

d⋂
j=1

⋃
t∈N

(Bn,j
t )c,

thus it is a Gδ.
The property of having no eternal boundaries is Tn-invariant for every n,

because [Tnx] = σn[x]. Moreover, there exists at least one point x ∈ X which
has no eternal boundaries; indeed, the set of such points has full measure by
the arguments of [5] (compare with Lemma 5(2) there; note that we replace
the first estimate there by the statement of the current Lemma 1(3)). Thus
the orbit of such a point is contained in the set of points with no eternal
boundaries and, by minimality of T , it is dense.

Remark 11. The set of all points which admit eternal boundaries is
exactly the set Y =

⋃
n∈Zd TnY # mentioned in Theorem 8, where Y # =⋂

t∈N Yt and each Yt is the boundary of the decomposition Qt. Indeed, Tnx
belongs to the boundary of a tower in Qt if and only if Tnx and Tn±ejx
belong to distinct towers of Qt for certain 1 ≤ j ≤ d, that is, Yt =

⋃d
j=1B

0,j
t .

SinceQt refinesQt−1, for this j the points Tnx and Tn±ejx belong to distinct
towers of Qs for all s ≤ t. If Tnx ∈ Y # then some j is used infinitely many
times, thus we can find j such that Tnx and Tn±ejx belong to distinct towers
for all partitions Qt, and consequently

Y # =
⋂
t

d⋃
j=1

B0,j
t =

d⋃
j=1

⋂
t

B0,j
t .

5. Construction of the mapping. It was shown in [4] that any Ver-
shik model of a Cantor system (X,Zd) can be made into a faithful model by
refining with a sequence of clopen partitions which refine to points. This pro-
cedure preserves both the boundary of the model and the shapes of towers.
Thus, in view of the earlier statements the sequence of partitions of Zd into
t-blocks gives rise to a faithful Vershik model and a Bratteli diagram B. The
set P (B) of all infinite paths of the diagram is homeomorphic to X. The ver-
tices that belong to the tth level Vt may be represented by t-blocks occurring
in Pt. Denote OT (x) = {Tnx : n ∈ Zd}.

Theorem 12. For every free minimal Zd-action T on a Cantor set X
and every x0 ∈ X there is a continuous injection F : X \ {x0} → X such
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that
OT (x) =

⋃
n∈Z

Fn{x}

for every x from a residual subset X ′, namely the set of points having no
eternal boundaries. (We assume that the image Fn{x}, n < 0, is empty if
Fn is not defined at x.) Moreover, if x is not in X ′ then

OT (x) =
J⋃
j=1

⋃
n∈Z

Fn{xj}

for a finite set {x1, . . . , xJ}.
Proof. Fix x0 and a sequence of markers descending to x0 as in Lemma 1.

Let B = (V,E), V = V0 ∪ V1 ∪ · · · , be a Bratteli diagram induced by the
sequence of partitions into t-blocks. We introduce an order on the set E of
edges of B in the following way. Consider the set E(vt+1) of edges with range
vt+1 ∈ Vt+1. The source of each of these edges represents a tower such that for
some n ∈ Zd and x ∈ X belonging to this tower the t-configuration vnt (T−nx)
is contained in the (t + 1)-configuration v0t+1(x). Each edge e ∈ E(vt+1)
corresponds to one occurrence of the tower vt in vt+1, so each edge may be
given a label n coming from the appropriate vnt (T−nx). Since these labels
are well-ordered by the maximolexicographic order with 0 as the vertex of
the cone, we obtain a linear order on the set E(vt+1).

We define a map on B mimicking the Vershik map. We cannot use the
Vershik map itself, as the order may have more than one maximal path. Let
e(x) = (e1(x), e2(x), . . . ) be an infinite path in P (B) representing x ∈ X.
For an edge en = en(x) let s(en) denote the source of the edge, and let
r(en) be the range of en. We define G(e(x)) as the path f = (f1, f2, . . . )
satisfying the following condition: if N is the smallest number such that
eN (x) is not maximal, then let fN be the edge succeeding eN (x) in the
order on the edges with range r(eN (x)), let (f1, . . . , fN−1) be the minimal
path connecting the root to s(fN ), and let fk = ek for k > N . The map
G remains undefined if e(x) is a maximal path. Simultaneously we define
F (e(x)) as f = (f1, f2, . . . ) such that: if N is the smallest number such
that eN (x) is not minimal, then let fN be the edge preceding eN (x) in the
order on the edges with range r(eN (x)), let (f1, . . . , fN−1) be the maximal
path connecting the root to s(fN ), and let fk = ek for k > N . Again, F is
undefined if e(x) is a minimal path. However, if e(x) is minimal then all
neighbors ei of 0 belong to t-configurations different from v0t (x), so x has
an eternal boundary. Moreover, x lies in the intersection of all markers, so
x = x0. Clearly, F{e(x) : x ∈ X \ {x0}} is contained in the domain of G
and G(F (e(x))) = e(x). Similarly, F (G(e(x))) = e(x) whenever G is defined
at e(x), thus F is injective.
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We will now prove continuity of F . Let [f1, . . . , fn] denote a cylinder set
with fixed n starting edges. If there is k ≤ n such that fk is not maximal,
while f1, . . . , fk−1 are maximal, then

F−1[f1, . . . , fn] = [e1, . . . , ek−1, ek, fk+1, . . . , fn],

where e1, . . . , ek−1, ek, fk+1, . . . , fn is a path such that e1, . . . , ek−1 are min-
imal and ek is a successor of fk. If all fi’s are maximal then

F−1[f1, . . . , fn] =
⋃

e1∈s−1(r(fn))

F−1[f1, . . . , fn, e1]

with every F−1[f1, . . . , fn, e1] being a cylinder if e1 is not maximal. If however
e1 is a maximal edge with source r(fn) then

F−1[f1, . . . , fn, e1] =
⋃

e2∈s−1(r(e1))

F−1[f1, . . . , fn, e1, e2],

where again the union consists of cylinders for e2 not maximal and some other
counterimages F−1[f1, . . . , fn, e1, e2]. Continuing in this way and denoting
by Emax the set of all maximal edges we obtain

F−1[f1, . . . , fn] = a sum of cylinders

∪ F−1{(f1, . . . , fn, e1, e2, . . . ) : e1, e2, · · · ∈ Emax}︸ ︷︷ ︸
=∅

,

which is an open set.
Since F was defined on the set of all infinite paths of the diagram B

excluding the unique minimal path, and B is homeomorphic to X, the map
F naturally gives a continuous injective map on X \ {x0}, where x0 was
represented by the minimal path of B. This map will be denoted by the
same letter F .

The compatibility of the orbits follows from the fact that for every x ∈ X
with no eternal boundaries and n ∈ Zd, the points x and Tnx are cofinal
in the Bratteli diagram, so they belong to the same F -orbit. If x has an
eternal boundary then by Lemma 3 the array [x] splits into finitely many
(unbounded) pieces. Each of these pieces is tiled by a nested structure of
t-blocks, which implies that the elements of one piece are cofinal in B.

Note that the map F may not be surjective. Even for points with no
eternal boundaries it may happen that the orbit contains a point represented
by the maximal path, thus having empty preimage. However, in the case of
Z2 diagonal odometers (products of one-dimensional odometers), t-blocks are
rectangles. The only points with eternal boundaries are those with marker∞
and those with one horizontal line or one vertical line as eternal boundary.
Any other orbit can be linearized according to our construction, giving a
doubly infinite sequence. If S and T denote the horizontal and vertical shift
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on Z2 then one can additionally define the image of [x], corresponding to
the minimal path, to be ST [x], which is represented by a maximal path. In
this way one obtains a continuous invertible one-dimensional map defined
on the whole X, maintaining multidimensional orbits on a residual subset
of X. Moreover, one can show that in the case of one-dimensional systems
it is possible to distribute markers quite regularly, so that the return time
to the tth marker is either pt or pt + 1. This leaves hope that if one could
obtain a specific distribution of markers for an arbitrary system (possibly not
so regular in order to obtain a proper representation also in the presence of
eternal boundaries) one would be able to prove orbit equivalence of d-dimen-
sional and one-dimensional systems directly.
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