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Abstract. We investigate the reverse mathematical strength of Turing determinacy
up to Σ0

5, which is itself not provable in second order arithmetic.

1. Introduction. Reverse mathematics endeavors to calibrate the com-
plexity of mathematical theorems by determining precisely which system P
of axioms is needed to prove a given theorem Θ. This is done in one direction
in the usual way showing that P ` Θ. The other direction is a “reversal”
that shows that relative to some weak base theory, Θ ` P . Here one works
in the setting of second order arithmetic, i.e. the usual first order language
and structure 〈M,+,×, <, 0, 1〉 supplemented by distinct variables X,Y, Z
that range over a collection S of subsets of the domain M of the first or-
der part and the membership relation ∈ between elements of M and S.
Most of countable or even separable classical mathematics can be developed
in this setting based on very elementary axioms about the first order part
of the model M, an induction principle for sets and various set existence
axioms. At the bottom one has the weak system of axioms called RCA0

that correspond to recursive constructions. One typically then adds addi-
tional comprehension (i.e. existence) axioms to get other systems P . Many
of these systems are given by Γ comprehension (Γ-CA0) which is gotten from
RCA0 by adding on the axiom that all sets defined by formulas in some class
Γ exist. So one gets ACA0 for Γ the class of arithmetic formulas and Π1

n-CA0

for Γ the class of all Π1
n formulas. (In each case the formulas may contain

set parameters.) Full second order arithmetic, Z2, is the union of all the
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Π1
n-CA0. The standard text here is Simpson [2009] to which we refer the

reader for general background.
The present paper is concerned with the analysis of various principles

connected with axioms of determinacy. This subject has played an impor-
tant role historically as an inspiration for increasingly strong axioms (as
measured by consistency strength) both in reverse mathematics and set
theory. We have given a brief overview of this history in §1 of Montalbán
and Shore [2012] (henceforth denoted by MS [2012]) and refer the reader to
that paper for more historical details and other background for both reverse
mathematics and determinacy. Here we give some basic definitions and cite
a few results.

Definition 1.1 (Games and determinacy). Our games are played by
two players I and II on {0, 1} [or ω]. They alternate playing an element of
{0, 1} [or ω], with I playing first, to produce a play of the game, which is a
sequence f ∈ 2ω [ωω]. A game GA is specified by a subset A of 2ω [ωω]. We
say that I wins a play f of the game GA specified by A if f ∈ A. Otherwise
II wins that play.

Definition 1.2. A strategy for I [II] is a function s from strings σ in
2<ω [ω<ω] of even [odd] length into {0, 1} [ω]. It is a winning strategy if
any play f following it (i.e. f(n) = s(f�n) for every even [odd] n) is a win
for I [II]. We say that the game GA is determined if there is a winning
strategy for I or II in this game. If Γ is a class of sets A, then we say that Γ
is determined if GA is determined for every A ∈ Γ. We denote the assertion
that Γ is determined by Γ determinacy or Γ-DET.

The classical reverse mathematical results are (essentially Steel [1976],
see also Simpson [2009, V.8]) that Σ0

1-DET is equivalent to ATR0, a system
asserting the existence of transfinite iterations of arithmetic comprehension
that lies strictly between ACA0 and Π1

1-CA0; and (Tanaka [1990]) that Π1
1-

CA0 is equivalent to determinacy for conjunctions of Π0
1 and Σ0

1 sets. Results
on Π0

2, ∆0
3 and Π0

3 determinacy (Tanaka [1991], MedSalem and Tanaka [2007]
and Welch [2011]) are significantly stronger, with the last provable in Π1

3-
CA0 but not ∆1

3-CA0. Friedman [1971], in what was really the first foray
into reverse mathematics, proved that Σ0

5-DET is not provable in full second
order arithmetic, and Martin [1974a], [n.d.] improved this to Σ0

4-DET.
In MS [2012] we delineated the limits of determinacy provable in Z2 as

encompassing each level of the finite difference hierarchy on Π0
3 sets. Indeed

each level n of the this hierarchy is provable from Π1
n+2-CA0 but not at

any lower level of the comprehension axiom hierarchy. (So the union of the
hierarchy (which is far below ∆0

4) is not provable in Z2.) Then, in Montalbán
and Shore [2014] (hereafter MS [2014]) we analyzed the consistency strength
of all these statements, getting a much clearer picture. In the present paper
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we analyze, to the extent we can, the reverse mathematical strength of
a variation on determinacy where one is thinking of the underlying space as
the Turing degrees in place of 2ω or ωω.

Definition 1.3. An A ⊆ 2ω [ωω] is Turing invariant or degree closed
if (∀f ∈ 2ω [ωω])(∀g ∈ 2ω [ωω])(f ≡T g → (f ∈ A ↔ g ∈ A)). We denote
by Γ Turing determinacy or Γ-TD the assertion that every degree closed
A ∈ Γ is determined.

Remark 1.4. For any reasonable Γ including each of the Σ0
n classes, it is

clear that Γ-DET is equivalent (in RCA0) to Γ̆-DET where Γ̆ = {Ā | A ∈ Γ}.
So we can use these two assertions interchangeably, and similarly for Γ-TD.
We also note that while it is easy to code sets as functions recursively (and so
determinacy or Turing determinacy for classes in ωω imply the corresponding
result for 2ω) the converse is not obvious at the very lowest level. However,
for any of the arithmetic classes at or above ∆0

3, it does not matter for
determinacy or Turing determinacy if we work in 2ω or ωω, as we can code
functions in ωω by sets in 2ω as long as we include the Π0

2 condition that the
sets are infinite. So once we are at that level, we work in whichever setting
is more convenient.

It is a classical theorem of Martin that a degree closed set A is determined
if and only if it contains a cone, i.e. a set of Turing degrees of the form
{x | x ≥ z} for some degree z called the base of the cone, or is disjoint from
a cone. (In the first case, I has a winning strategy; in the second, II.) In
the realm of set theory, this induces a 0-1 valued measure on sets of degrees
(with measure 1 corresponding to containing a cone). This result is the
basis for many interesting set-theoretic investigations. The question of the
relationship between determinacy axioms and Turing determinacy axioms
is an interesting one in the set-theoretic setting. Perhaps the most striking
early result is that for Γ = Σ1

1 the two notions coincide and are equivalent
with the axiom asserting the existence of x# for every x ∈ ωω (Martin
[1970] and Harrington [1978]). At the level of determinacy for all sets, later
work by Woodin showed that full determinacy and Turing determinacy are
not only equiconsistent but are equivalent (over DC) in L(R). (See Koellner
and Woodin [2010], and other articles in the same handbook, for this and
much more on the role of TD in set theory.) The main results for Turing
determinacy at lower levels of the arithmetic hierarchy show some differences
from full determinacy at the same levels. There are a few classical ones given
in Harrington and Kechris [1975] primarily from the recursion-theoretic or
ZFC points of view, and Martin [1974, n.d.] from the viewpoint of working
in ZFC without the power set axiom and replacement only for Σ1 formulas.

Their results either directly give, or can be refined to give, ones in reverse
mathematics. In this paper we present them from the viewpoint of reverse
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mathematics and fill in some of the gaps. We begin with determining how
much Turing determinacy is provable in weak systems. The base theory
RCA0 proves Π0

2-TD (Corollary 2.5). The next step is, of course, ∆0
3-TD.

The standard tool in analyzing the ∆0
n+1 levels is the finite level version of

a classical theorem appearing in Kuratowski [1966]. It gives a representation
of ∆0

n+1 subsets of 2ω in terms of the transfinite difference hierarchy on Π0
n or

Σ0
n sets. One can then use determinacy at the lower level to bootstrap up to

∆0
n+1. There are various formulations and we state a couple of variants. That

this theorem can be proven for n ∈ ω in ACA0 with some extra recursion-
theoretic conclusions is due to MedSalem and Tanaka [2007]. Our notation
is slightly different from theirs. It follows more closely that used by Martin
[1974, 1974a, 1974b, n.d.]. We also incorporate a few normalizations of the
sequences that appear in different presentations.

Theorem 1.5 (Kuratowski; Martin; MedSalem and Tanaka for ACA0).
For any Z ∈ 2ω, a set A ⊆ 2ω is ∆Z

n+1 if and only if there is an ordinal

α recursive in Z and a sequence of uniformly ΠZ
n sets Aξ for ξ ≤ α which

are decreasing (Aη ⊇ Aξ for η < ξ), continuous (for limit ordinals λ, Aλ =⋂
{Aη | η < λ}) with A0 = 2ω and Aα = ∅ such that (∀X)(X ∈ A ⇔

µβ(X /∈ Aβ) is odd). Dually (by taking complements) A ∈ ∆Z
n+1 if and only

if there is an ordinal α recursive in Z and a sequence of uniformly ΣZ
n sets

Aξ for ξ ≤ α which are increasing (Aη ⊆ Aξ for η < ξ), continuous (for
limit ordinals λ, Aλ =

⋃
{Aη | η < λ}) with A0 = ∅ and Aα = 2ω such that

(∀X)(X ∈ A⇔ µβ(X ∈ Aβ) is even).

Remark 1.6. If a ∆0
n set A is degree invariant and n ≥ 3 then, in the

above Σ0
n representation, we may take the Aξ to be degree invariant as well.

The first point here is that ≤T is a Σ0
3 relation, and so if A is Σ0

n then so

is its Turing closure Â = {f | (∃e)(Φf
e ∈ A & (∃i)(ΦΦf

e
i = f))}. The second

point is that Â still gives a representation of A: If ξ is the first with X in
the degree closed version Âξ of Aξ, then some Y ≡T X is in Aξ and not in

any Aη ⊆ Âη, and so in A.

Theorem 1.5 allows us to prove ∆0
3-TD at the expense of moving from

RCA0 to ACA0 (Corollary 2.7). We point out that there can be no rever-
sals from any Turing determinacy assumption to any system stronger than
RCA0. The key fact here is that the standard model of RCA0 with just the
recursive sets (or the sets recursive in any X) is obviously a model of Γ-TD
for any Γ. Thus we can hope for implications from any Γ-TD only over
stronger systems. In this case we can, however, prove that ∆0

3-TD is not
provable in RCA0 (Proposition 2.8). This supplies a natural principle that
lies strictly between RCA0 and ACA0 but does not imply the existence of a
nonrecursive set.
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We next move on to Σ0
3-TD. Combining the implication from ATR0 to

Σ0
1-DET (Steel [1976] in RCA0) and from Σ0

1-DET to Σ0
3-TD (Harrington and

Kechris [1975]) we see that ATR0 ` Σ0
3-TD. In this case, we prove a reversal

over ACA0 (Theorem 3.7). This supplies an example of a natural theory
strictly weaker than ATR0 (and indeed does not even imply the existence of
a nonrecursive set) but which joins ACA0 up to it. In particular, Σ0

1-DET is
equivalent to Σ0

3-TD over ACA0.

Using the representation of Theorem 1.5, we can now hope to prove
∆0

4-TD in ATR0. We do so in Theorem 3.3 but we need an additional induc-
tion axiom.

Definition 1.7. For S a class of formulas, S transfinite induction, S-TI,
is the scheme of axioms stating that for every well-ordering α (formally coded
as a set X of ordered pairs 〈β, γ〉 prescribing its ordering relation <X on its
domain which is also a subset of ω) and every formula ϕ ∈ S,

(∀γ)[((∀β <X γ)ϕ(β))→ ϕ(γ)]→ (∀β <X α)ϕ(β).

The version that we need to prove ∆0
4-TD over ACA0 in Theorem 3.3 is

Π1
1-TI0. Over ACA0 this axiom scheme is equivalent to the dependent choice

axiom for Σ1
1 formulas (Simpson [2009, VIII.5.12]) and so provable in Π1

1-CA0

but not in ATR0.

As our last stop inside Z2, we analyze Σ0
4-TD and ∆0

5-TD based on re-
sults of Harrington and Kechris [1975], Martin [1974] and Welch [2011] to
show that Π1

3-CA0 proves both. We can have no meaningful reversal even
over relatively strong systems. Even full Borel determinacy can prove nei-
ther ∆1

2-CA0 (even with TI for all formulas) nor Π1
3-CA0 even over ∆1

3-CA0

and TI for all formulas (MS [2012, Corollaries 6.2 and 6.6]). Still, using
methods and results of MS [2012], [2014] working, however, with Σ0

4-TD
in place of Σ0

3-DET, we prove that not much less than Π1
3-CA0 will suffice.

Indeed, Π1
1-CA0 + Σ0

4-TD proves the existence of a Σ2 admissible ordinal
(Lemma 4.7), and so in terms of consistency strength, Π1

1-CA0 + Σ0
4-TD is

much stronger than ∆1
3-CA0 (Corollary 4.8).

Finally, we use these methods to derive Martin’s result that Σ0
5-TD im-

plies the existence of β0 (the least ordinal α such that Lα � Z2) in Π1
1-CA0

(Lemma 4.4). Thus Π1
1-CA0 + Σ0

5-TD implies the consistency of Z2 (and
more), and so takes us well beyond the reach of full second order arithmetic
(Corollary 4.6).

We close this section with some notational conventions.

Notation 1.8. We use ω to denote the set of natural numbers. Members
of 2ω are generally called sets, and symbols such as X,Y, Z are used to
denote them. Members of ωω are often called reals, and we use symbols such
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as f, g, h to denote them. (Of course a real may be a set when its range is
contained in {0, 1}.) The (Turing) degrees of these sets and functions are,
as usual, denoted by the corresponding small boldface roman letter. So for
example f ∈ f and X ∈ x. The eth partial recursive function and r.e. set
relative to f are denoted by Φf

e and W f
e , respectively.

Notation 1.9. Subsets of both 2ω and ωω are generally denoted by
symbols such as A,B,C. We use symbols such as σ, τ to denote strings in
either 2<ω or ω<ω and rely on the context to determine which is intended.
The length of σ is denoted by |σ| and its initial segment of length n ≤ |σ|
is denoted by σ�n. We use standard concatenation and pairing functions,
conventions and notations such as σˆτ , σˆf , 〈σ, τ〉, 〈σ, f〉, 〈σ,X〉, 〈f, g〉,
〈u, v, w〉 = 〈u, 〈v, w〉〉 in the usual way. The precise formulations do not
matter as long as they are done recursively.

We assume a basic familiarity with recursive ordinals and the hyper-
arithmetic hierarchy and at times their formal development in ATR0 as in
Simpson [2009, VII]. Note also that we generally prove theorems in their
lightface version and leave relativization to the reader, unless some desired
uniformity is brought out by carrying along the set parameter.

2. The trivial levels. In this section we prove Π0
2 and ∆0

3 Turing deter-
minacy. Only the first proof is carried out in RCA0. It is helpful to introduce
a weaker but more easily definable notion of closure than under ≡T .

Definition 2.1. Given k ∈ ω and f ∈ ωω we define k × f ∈ ωω by
(k × f)(kn) = f(n) and (k×f)(m) = 0 for m not a multiple of k. We say an A
contained inωω or 2ω is sufficiently closed if (∀f ∈A)(∀σ)(∀k)(σ (̂k×f)∈A).
Here and elsewhere, σ is in ω<ω or 2<ω as appropriate. The smallest suffi-
ciently closed set containing f is the sufficient closure of f . Let E be the set
of even strings, i.e. those whose nonzero values occur only at even numbers
such as all initial segments of 2× f for any f .

Remark 2.2. Note that, for all m,n, f , we have m× (n× f) = mn× f .
It is then easy to see that, for every f in ωω or 2ω, {σˆ(k × f) | k ∈ ω and
σ a string} is the sufficient closure of {f}.

Also, for any A ⊆ 2ω, the set Â = {X | (∀σ, k)(σˆ(k × X) ∈ A)}
is sufficiently closed. The advantage of using sufficient closure instead of
Turing closure is that if A is Π0

2, then so is Â.

Lemma 2.3. (RCA0) For every Z ∈ ωω, every ΠZ
2 set A ⊆ ωω [2ω] which

is sufficiently closed is either empty or contains an element of every Turing
degree above Z.
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Proof. Let A 6= ∅ be such a set. There is then an r.e. operator W (given
by some We) such that f ∈ A⇔ f ∈WZ⊕f is infinite. Let

X = {σ |WZ⊕σ −WZ⊕σ− 6= ∅}
(where WZ⊕σ only runs for |σ| many steps and σ− = σ�|σ| − 1). So, we see
that f ∈ A if and only if f�n ∈ X for infinitely many n. Note that X ≤T Z.
Say f ∈ A; then for every σ, we have σˆ(2× f) ∈ A. Thus for every σ there
is a τ ∈ E (e.g. some initial segment of 2× f) such that σˆτ ∈ X.

Now, given any infinite Y ∈ 2ω with Z ≤T Y , we build an h ∈ A with
h ≡T Y . We construct h as the union of finite initial segments ∅ = σ0 ⊆
σ1 ⊆ · · · , all of even length. We just need to make sure that h meets X
infinitely often and is of the same Turing degree as Y . Suppose we have σs.
Let τs be the first τ ∈ E found in a standard search recursive in Z such that
σsˆτ ∈ X. Let ks be least such that |σsˆτsˆ0ks | = 2〈x, ys〉+ 1 for ys the sth
element of Y and some x. Now set σs+1 = σsˆτsˆ0ksˆ1. Clearly h ≤T Y (by
construction as Z ≤T Y ), h ∈ A and Y ≤T h (its members can be read off
in order from the list of odd numbers m such that h(m) = 1) as required.

As degree invariant sets are obviously sufficiently closed, we have the
following corollaries.

Corollary 2.4. For every Z ∈ 2ω, every nonempty degree invariant
ΠZ

2 set A ⊆ ωω [2ω] contains all f ≥T Z.

Corollary 2.5. RCA0 ` Π0
2-TD.

Lemma 2.6. (ACA0) For every Z ∈ 2ω, every nonempty, degree invariant
∆Z

3 subset A of 2ω contains all X ≥T Z.

Proof. Let A be a ∆Z
3 degree invariant subset of 2ω. By Theorem 1.5,

there is a decreasing, continuous sequence {Aξ | ξ ≤ α} of uniformly ΠZ
2

subsets of 2ω with Aα = ∅ such that

X ∈ A ⇔ µξ(X 6∈ Aξ) is odd.

Now, let Âξ = {X : (∀σ, k)(σˆ(k ×X) ∈ Aξ)}. The Âξ are clearly ΠZ
2 and,

by Remark 2.2, sufficiently closed and so dense. By Lemma 2.3, each Âξ
is either ∅ or contains a member Y of every degree above that of Z. As
Aα = ∅ = Âα, there is, by ACA0, a least ξ such that Âξ = ∅. (By Lemma

2.3, Âξ being empty is equivalent to ¬(∃X)(X ≡T Z & X ∈ A).) Note that

as the Aξ are continuous, so are the Âξ: Consider any limit ordinal λ. If

X ∈ Âλ, then its sufficient closure is contained in Aλ and so in every Aξ for

ξ < λ and thus in
⋂
{Âξ | ξ < λ}. On the other hand, if X ∈ Âξ for every

ξ < λ, then its sufficient closure is contained in each Âξ ⊆ Aξ and so in Aλ
and in Âλ. Thus ξ cannot be a limit ordinal by the Baire category theorem.



256 A. Montalbán and R. A. Shore

(The Âξ are dense ΠZ
2 and so themselves intersections of open, and hence

dense open, sets.)
We now claim that A is either ∅ or contains every Y ≥T Z depending on

the parity of ξ (or if it is α). To see this, consider any degree y ≥ z. By the
leastness of ξ and Lemma 2.3, there is a Y ∈ Âξ−1 of degree y. Of course,

Y /∈ Âξ = ∅ and so, by definition, there are σ and k such that σˆ(k×Y ) /∈ Aξ.
On the other hand, since Âξ−1 is sufficiently closed, σˆ(k×Y ) ∈ Âξ−1. Thus
the membership of σˆ(k×Y ) (and so of Y ≡T σˆ(k×Y )) in A is determined
by the parity of ξ as required.

Corollary 2.7. ACA0 `∆0
3-TD.

Note that by Remark 1.4 the corollary holds in ωω as well as 2ω. From
now on we will be concerned with Turing determinacy at levels above ∆0

3

and so work in whichever setting is more convenient.
We conclude this section by showing that ∆0

3-TD is not provable in
RCA0. If we are looking for a standard model of RCA0 in which ∆0

3-TD fails,
we have serious restrictions on the method of attack. Suppose the formulas
(with parameter Z) defining a ∆0

3 set A of reals determining a game in a
standard modelM actually define a ∆0

3 set of reals in the universe, or even
in any extension of the sets ofM to a model of ACA0. In this case, Theorem
1.5 provides a representation of A in the extension and Lemma 2.6 applies.
Its conclusions, however, are clearly absolute downwards to M and so the
given game is determined in M. Thus the only hope of finding a standard
model counterexample is to consider formulas which define a ∆0

3 set in M
but not in any extension to a model of ACA0.

Proposition 2.8. RCA0 0 ∆0
3-TD.

Proof. Consider an initial segment of the degrees below 0′ of order type
ω given by representatives Xn which are uniformly ∆0

2 (Lerman [1983,
XII.5.1], Epstein [1981]). Our model M of RCA0 consists of all sets re-
cursive in some Xn. Our ∆0

3 degree invariant class is given by two Σ0
3 for-

mulas ϕ and ψ. The first says that there is an n such that X ≡T X2n,
and the second that there is an n such that X ≡T X2n+1. These sets are
clearly complementary in M. To see that they are Σ0

3, write out the def-
initions, for example, ϕ(X) ⇔ (∃n){(∃e)(ΦX

e is total & (∀m)(ΦX
e (m) =

X2n(m)) & (∃i)(ΦΦX
e

i = X)}, and remember that the Xn are uniformly ∆0
2.

Thus ϕ and ψ define a ∆0
3 set of reals in M while both sets are clearly

unbounded in the Turing degrees of M. Thus M 2 ∆0
3-TD as required.

3. Σ0
3 and ∆0

4 sets. In this section we show that Σ0
3-TD is equivalent

to ATR0 over ACA0, and that ∆0
4-TD is provable from ATR0 + Π1

1-TI0. As
mentioned in §1, Π1

1-TI0 is equivalent to Σ1
1-DC0 over ACA0, and ATR0 +
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Π1
1-TI0 lies strictly between ATR0 and Π1

1-CA0. On the other hand, we show
that ∆0

4-TD is not provable from ATR0. The situation here is similar to, but
much more subtle than, that for ∆0

3-TD in Proposition 2.8.

Theorem 3.1 (essentiallyHarringtonandKechris [1975]). ATR0`Σ0
3-TD.

Proof. We follow the proof of Harrington and Kechris [1975, §2] but make
explicit a property of their construction that we will need in the proof of The-
orem 3.3. Let a given game be specified by a Σ0

3 degree invariant subset of ωω,
B = {f | (∃i)(∀j)(∃k)R(i, j, f̄(k))} where R is a recursive predicate and f̄(k)
is the sequence 〈f(0), . . . , f(k − 1)〉. We define a Π0

1 set A which has mem-
bers of the same degrees as B: A = {〈i, f, g〉 | (∀j)(g(j) = µkR(i, j, f̄(k)))}.
Clearly, if 〈i, f, g〉 ∈ A then g ≤T f and so 〈i, f, g〉 ≡T f ∈B. Conversely, if
f ∈ B then there is an i such that (∀j)(∃k)R(i, j, f̄(k)) and so a g ≤T f such
that 〈i, f, g〉 ∈ A. Thus A, B have elements of exactly the same degrees.

We next consider another Π0
1 set C = {〈〈i, f, g〉, h〉 | g ∈ A & (∀n)(Φg

i (n)
converges in exactly f(n) many steps) & h is II’s play when he follows the
strategy given by Φg

i against I playing 〈i, f, g〉}. Note that if 〈〈i, f, g〉, h〉 ∈ C
then 〈〈i, f, g〉, h〉 ≡T g and g ∈ A.

Now apply Π0
1 determinacy (which follows from ATR0 as in Simpson

[2009, V.8.2]) to the game specified by C. If I has a strategy s then we claim
that every degree t ≥ s has a representative in A: As usual, let I play s
against any real t ∈ t. The resulting play 〈s(t), t〉 has degree t and is in C
and so of the form 〈〈i, f, g〉, h〉 with g ∈ A and 〈〈i, f, g〉, h〉 ≡T g as required.
Thus, in this case, as B is degree invariant, it contains a cone with base the
strategy for I in the game specified by C. On the other hand, if II has a
strategy s for this game, we claim that B is disjoint from the cone above s.
If not then there is a ĝ ∈ B and hence one g ∈ A which computes s. Suppose
Φg
i = s. Let f(n) ≤T g be the number of steps it takes Φg

i (n) to converge,
and h be II’s play following his supposedly winning strategy given by Φg

i = s
against I playing 〈i, f, g〉. It is clear from the definitions that the play of this
game is 〈〈i, f, g〉, h〉, and it is in C for the desired contradiction.

We now calculate the complexity of the property of a Σ0
3 degree invariant

subset of ωω containing a cone. We use this calculation in the proof of
Theorem 3.3.

Proposition 3.2. (ATR0) The predicate that (the formula defining)
a Σ0

3 degree invariant set of reals contains a cone of degrees is Σ1
1.

Proof. Let B be a degree invariant Σ0
3 set of reals. Define Π0

1 sets A and
C as in the proof of Theorem 3.1. It is easy to see that the existence of a
strategy s for the closed game given by C is a Σ1

1 property: for every σ the
result of playing s against σ satisfies the Σ0

1 predicate of not being in C. If
this condition holds then the proof of Theorem 3.1 shows that A intersects
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every degree above that of a strategy and hence B contains a cone. On the
other hand, if there is no such strategy, then by ATR0 there is one for II in
this game and so again as in the proof of Theorem 3.1, B is disjoint from
the cone above II’s strategy.

We now give a proof of ∆0
4-TD in ATR0 + Π1

1-TI0, which, as pointed out
after Definition 1.7, lies strictly between ATR0 and Π1

1-CA0. Thus ∆0
4-TD is

strictly weaker than Π1
1-CA0 even over ATR0.

Theorem 3.3. ATR0 + Π1
1-TI0 `∆0

4-TD.

Proof. Represent a given ∆0
4 degree invariant set B ⊆ 2ω using the

difference hierarchy on Σ0
3 sets as in Theorem 1.5. By Remark 1.6, we may

assume that each Bξ, ξ ≤ α, is itself Turing invariant and so (by Theorem
3.1) either is disjoint from a cone or contains one. As Bα = 2ω and the Bξ
are increasing, there is, by Proposition 3.2 and Π1

1-TI0, a least γ such that
Bγ contains a cone. If γ is a successor ordinal, then we have a cone disjoint
from Bγ−1 and contained in Bγ . Depending on the parity of γ, this cone is
either disjoint from, or contained in, B as required.

To finish the proof we show that γ cannot be a limit. For each ξ < γ,
let Aξ be a Π0

1 set of reals with members of the same Turing degrees as
Bξ and Cξ, the associated Π0

1 set as defined in Theorem 3.1. Consider the

Π0
1 game specified by C = {〈〈〈ξ, i〉, f, g〉, h〉 | 〈〈i, f, g〉, h〉 ∈ Cξ}, i.e. I first

chooses a ξ and then plays the game determined by Cξ. If I has a winning
strategy in this game, say his first move is to play 〈ξ, i〉. The rest of his
strategy then gives him a winning strategy in Cξ which (by the proof of
Theorem 3.1) would be the base of a cone in Bξ contrary to the assumption
that it is disjoint from a cone. Thus (by Π0

1-DET), II has a strategy s for the
game specified by C. Restricting I to play a given ξ < γ as the first part of
his first move gives a strategy sξ for II in Cξ uniformly recursive in s. As,
by the proof of Theorem 3.1, each sξ is the base of a cone disjoint from Bξ,
s is the base of a cone disjoint from all the Bξ for ξ < γ and so disjoint from
Bγ =

⋃
ξ<γ Bξ for the desired contradiction.

We now prove that one cannot get ∆0
4-TD from ATR0 alone. A cru-

cial ingredient is H. Friedman’s [1967, II] ω-incompleteness theorem (see
Simpson [2009, VIII.5.6]). Note that a countable coded ω-model specified by
a set M is a structure for second order arithmetic in which the numbers
are the numbers (in the ambient universe) and the sets are the columns
(M)n = {x | 〈n, x〉 ∈ M}.

Theorem 3.4 (H. Friedman). Let S be a recursive set of sentences of
second order arithmetic which includes ACA0. If there exists a countable
coded ω-model of S, then there exists a countable coded ω-model of S ∪
{¬∃countable coded ω-model of S}.
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Theorem 3.5. ATR0 0 ∆0
4-TD.

Proof. For convenience we work in the real world, although certainly Π1
1-

CA0 suffices. All models M or Mn in our proof, beginning with M0 � T0,
will be countable coded ω-models of T0 = ATR0. By Theorem 3.4, there is an
M1 � S1 where S1 = T0 & ¬∃M � T0. AsM1 is a coded ω-model, there is an
M̂1 containing it such that M̂1 � T1 where T1 = T0 & ∃M � S1. Applying
Theorem 3.4 again, we get anM2 � S2 where S2 = T1 & ¬∃M � T1. We now
set T2 = T0 & ∃M � S2 and continue similarly to get M̂2 � T2 andM3 � S3

with S3 = T2 & ¬∃M � T2 and M̂3 � T0 & ∃M � S3. Then we proceed
similarly by induction to get Mn+1 � Sn+1 with Sn+1 = Tn & ¬∃M � Tn
and M̂n+1 � Tn+1 with Tn+1 = T0 & ∃M � Sn+1.

We now let T be the theory containing T0 with new constants Mn and
assertions saying that for all n, theMn are countable coded ω-models of Sn
and Mn is a member of Mn+1 (in the sense that as a set it is coded in
Mn+1 by being one of the columns of Mn+1). Any finite subset of T is
satisfied by one of the Mn just constructed. (Unravelling the definitions
of Tn and Sn shows that any model Mn+1 of Sn+1 contains an Mn � Sn
and so by induction a sequence ofMi for i < n as required in T .) Thus there
is a model N̂ of T . (Note that this model is only given by a compactness
argument, so it is expected to be nonstandard.)

We now consider the ω-submodelN of N̂ specified by taking as its second
order part all sets coded in any of theMn in N̂ . First note that N �ATR0:
If there is a well-ordering α in N then it is a member of some Mn ⊂ N
and so also well-ordered in Mn. If we have any arithmetic predicate S for
which we want a hierarchy to witness ATR0 in N , consider the same formula
interpreted in Mn (which we may assume contains the set parameters in S
as well as α). As Mn � ATR0, the desired hierarchy of sets exists in Mn.
Since the properties required of it are arithmetic, they hold in N as well.

We now define, in N , degree invariant classes A,B ⊂ N : A = {X | the
least n such that X fails to compute both an M � Sn and its satisfaction
predicate, is even} and B = {X | the least n such that X fails to compute
both an M � Sn and its satisfaction predicate, is odd}. Clearly A and B
are disjoint.

We claim that A∪B = N . Consider any X ∈ N , so X ∈Mi for some i.
We see, by the definition of the Mn, that no member of Mi can be an
M � Si and so no such is computable fromX. (IfM∈Mi andM � Si then,
by the definition of Si, M � Ti−1 but, again by the definition of Si, Mi �
¬∃M � Ti−1 for the desired contradiction.) Thus there is some n ∈ ω and so
a least one such that noM computable from X can be a model of Sn. (Notice
that if X ∈ Mi computes a model M then, as Mi is a model of ATR0, the
satisfaction predicate for M is also in Mi.) Thus X ∈ A ∪B as required.
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Next, we claim that both A and B are unbounded in the Turing degrees
ofN . The point here is thatMn � Sn, but it and every modelM computable
from it together with its satisfaction predicate is inMn+1 and soM 2 Sn+1.
Thus Mn ⊕ Sat(Mn) ∈ A for n odd and Mn ⊕ Sat(Mn) ∈ B for n even
where Sat(M) is the full satisfaction predicate (elementary diagram) forM.
Of course, the degrees of theMn are cofinal in those of N for both the even
and the odd n.

All that remains to see that A is a counterexample to ∆4-TD in N is to
show that it (and analogously B) is Σ0

4. To this end we write out the defini-
tion of A: X ∈ A⇔ (∃n)((∃m)(n = 2m) & (∀Y,W ≤T X)(Y is not a count-
able coded ω-model of Sn with W its satisfaction predicate) & (∃Z, V ≤T X)
(Z is a countable coded ω-model of Sn−1 with satisfaction predicate V ). As
usual, we represent a set Z ≤T X by an index of a characteristic function ΦX

e

computable from X. Thus to say (∃Z, V ≤T X)Θ(Z, V ) is to say (∃e, i)(ΦX
e

and ΦX
i are total characteristic functions & Θ(ΦX

e ,Φ
X
i )). Now being total is

a ΠX
2 property. Once we have guaranteed totality for ΦX

e and ΦX
i , the sub-

stitution of ΦX
e and ΦX

i for Z and V can be done at no additional quantifier
costs since quantifier free formulas in Z, V and X now have ∆X

1 equiva-

lents. Thus if Θ is ΣX,Z,V
3 , then (∃Z, V ≤T X)Θ(Z, V ) is equivalent to a ΣX

3

formula. Similarly, (∀Y,W ≤T X)Ψ(Y,W ) is equivalent to a ΠX
3 formula if

Ψ is ΠX,Z,V
3 . Thus we are left with analyzing the rest of the relations in the

formula.

Any set Z can be effectively viewed as a sequence of its columns 〈(Z)n〉
and the associated structure for second order arithmetic is given by speci-
fying the (Z)n = {m | 〈n,m〉 ∈ X} as its second order part. The first order
part remains the same as in the ambient universe. So each Z is, in this way,
recursively interpreted as an ω-model. That V is the satisfaction predicate
for the model coded in this way by Z is then a Π0

2 relation. (See Simpson
[2009, V.2] for these definitions.) Once we have the satisfaction set V for Z,
to say that a formula is true in Z is then, of course, a ∆0

1 relation. Thus the
whole formula is of the form ∃(∃ & Π3 & Σ3) and so Σ0

4 as required.

Next we prove a reversal of Theorem 3.1 over ACA0. We begin by pointing
out that a standard fact on iterations of the Turing jump holds in ACA0.

Lemma 3.6. (ACA0) Let α be a well-ordering. If 0η ≤T X for every
η < α, i.e. there is an e such that ΦX

e is a total characteristic function for
a set satisfying the Π0

2 formula determining 0η, then 0α exists and indeed
0α ≤T X ′′.

Proof. If α is a successor ordinal, the result follows immediately from
ACA0. Otherwise, say α is a limit ordinal. The function f taking η < α to
the least e satisfying the conditions of the lemma is total by hypothesis and
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exists by ACA0. Indeed, f ≤T X ′′. The set {〈n, η〉 | ΦX
f(e)(n) = 1} then also

exists, satisfies the definition of 0α and is recursive in X ′′.

Theorem 3.7. ACA0 + Σ0
3-TD ` ATR0.

Proof. Let α be a well-ordering. We want to prove that 0α exists. Let W
be a low nonrecursive REA operator, i.e. (∀X)(X <T W

X & X ′ ≡T (WX)′)
and the indices for the required Turing reductions are the same for all X.
(The standard construction for such an operator clearly works in ACA0.)

Consider the set

P = {X | (∃β < α)(0β ⊕X ≡T WX)}.
To see that this set is Σ0

3 rewrite its defining condition by saying that there

is a β < α and an e such that ΦWX

e is a total characteristic function for a

set that satisfies the Π0
2 defining condition for 0β and WX ≡T ΦWX

e ⊕ X.

As (WX)′ is uniformly recursive in X ′, totality of ΦWX

e is ΠX
2 , as is every

ΠWX

2 predicate (uniformly). Thus the condition defining P is Σ0
3. Let P̂ be

the Turing closure of P , i.e. P̂ = {X | (∃Y )(Y ∈ P & X ≡T Y ). Similarly,
P̂ ∈ Σ0

3.

By Σ0
3-TD there is a cone of degrees in P̂ or its complement. Let X̂ be

a set in the base of such a cone. If X̂ ∈ P̂ let X ≡T X̂ be in P . If not, let
X = X̂. By Lemma 3.6, it suffices to prove that 0η ≤T X for every η < α
to conclude that 0α exists. If not, then, by ACA0, there is a least γ < α
such that 0γ �T X. Note that, again by Lemma 3.6, 0γ exists. We now work
toward a contradiction.

If X ∈ P , let β < α be as required in the definition of P and so by the
leastness of γ, γ ≤ β (and 0γ ≤T 0β) as 0β ⊕ X ≡T WX >T X. Now we
have X <T X ⊕ 0γ ≤T X ⊕ 0β ≡T WX <T (WX)′ ≡T X ′. By Posner and
Robinson [1981, Theorem 3 relativized to X], which can easily be proven
in ACA0, there is a Ŷ such that X <T Ŷ and X ′ ≡T Ŷ ′ ≡T Ŷ ⊕ X ⊕ 0γ .

By our choice of W , we have Ŷ <T W Ŷ <T Ŷ ′. On the other hand, our
assumptions guarantee that Ŷ ∈ P̂ and so there is a Y ∈ P with Y ≡T Ŷ .
Let δ be the witness for Y being in P , i.e. Y ⊕ 0δ ≡T W Y . If δ < γ, then
0δ ≤T X ≤T Y , which contradicts Y <T W

Y . On the other hand, if δ ≥ γ,
then 0γ ≤T 0δ and so 0δ ⊕ Y ≥T Y ′ >T W Y for another contradiction.

Finally, suppose X /∈ P . As 0γ �T X, we have, again by Posner and
Robinson [1981], a Y >T X with Y ′ ≡T Y ⊕ 0γ ≡T Y ⊕ 0γ ⊕ X ′. By
pseudojump inversion for REA operators (Jockusch and Shore [1983]), which
can also easily be proven in ACA0, there is a Z with Z >T Y such that
WZ ≡T Y ′. Now, as Z ⊕ 0γ ≡T Y ⊕ 0γ ≡T Y ′ ≡T WZ , γ is a witness that
Z ∈ P ⊆ P̂ . This is the desired final contradiction to X̂ being the base of a
cone outside of P̂ and so to the existence of γ as required.
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4. Σ0
4, ∆0

5 and Σ0
5 sets. We now prove generalizations to all levels of

the arithmetic hierarchy of weaker versions of Theorems 3.1 and 3.3 due to
Harrington and Kechris [1975] and Martin [1974], respectively. We prove the
first in RCA0 and the second in Π1

1-CA0.

Lemma 4.1 (essentially Harrington and Kechris). RCA0 ` Σ0
n determi-

nacy → Σ0
n+1-TD.

Proof. We follow the proof of Theorem 3.1. Given a Σ0
n+1 degree invari-

ant set B = {f | (∃n)Q(n, f)} with Q ∈ Π0
n, set A = {〈n, f〉 | Q(n, f)}.

Clearly, A is Π0
n and has elements of exactly the same degrees as B. Now

as in Theorem 3.1 let C = {〈〈i, f, g〉, h〉 | g ∈ A & (∀n)(Φg
i (n) converges in

exactly f(n) many steps) & h is II’s play when he follows the strategy given
by Φg

i against I playing 〈i, f, g〉}. Note that C ∈ Π0
n, and if 〈〈i, f, g〉, h〉 ∈ C

then 〈〈i, f, g〉, h〉 ≡T g and g ∈ A. By Σ0
n determinacy, C is determined. The

analysis to show that B contains or is disjoint from a cone is now exactly
as in Theorem 3.1.

Lemma 4.2 (essentially Martin). Π1
1-CA0 ` Σ0

n-TD ↔∆0
n+1-TD.

Proof. As ∆0
n+1-TD is a Π1

3 sentence, we can use ∆1
2-CA0 and its equiv-

alent Σ1
2-AC0 to prove it as ∆1

2-CA is Π1
3-conservative over Π1

1-CA0. (See
Simpson [2009, VII.6.9.1 and IX.4.9].) Let a game be specified by a degree
invariant ∆0

n+1 set A ⊆ 2ω. Apply the Kuratowski analysis (Theorem 1.5
and Remark 1.6) to represent A by a sequence Aξ of degree invariant uni-
formly Σ0

n sets. By Σ0
n-TD each of these sets either contains or is disjoint

from a cone. By ∆1
2-CA0 we have the sequence telling us which is the case.

We may then take the least γ such that Aγ contains a cone (Aα = 2ω if no
other). Now by Σ1

2-AC0 we have a sequence sη of bases of cones disjoint from
Aη for η < γ. The degree of this sequence is then the base of a cone disjoint
from all the Aη for η < γ. Its join with the base of a cone contained in Aγ
is then the base of a cone contained in or disjoint from A depending on the
parity of γ.

As Π1
3-CA0 proves Σ0

3 determinacy (Welch [2011]), we now have a bound
on what is needed to prove Σ0

4 and so ∆0
5 Turing determinacy.

Corollary 4.3. Π1
3-CA0 ` Σ0

4-TD & ∆0
5-TD.

4.1. A lower bound for Σ0
5-TD. As mentioned in §1, there can be

no reversals here. While we have seen that ∆0
5-TD is provable already in

Π1
3-CA0 (Corollary 4.3), this is the end of provable Turing determinacy in

full second order arithmetic, Z2. Martin ([1974] and [1974a]; see also [n.d.])
has shown that Σ0

5-TD implies the existence of β0, the least ordinal γ such
that Lγ is a model of Z2. None of these results have been published, so we



Turing determinacy in second order arithmetic 263

indicate how to modify arguments of Martin’s and ours from MS [2014] to
give a slightly different proof of this result in Π1

1-CA0.

Lemma 4.4 (Martin). Π1
1-CA0 + Σ0

5-TD ` β0 exists.

Proof. Here we work in Π1
1-CA0 + Σ0

5-TD but assume β0 does not exist
and consider the same theory as in MS [2014]:

T = KP + “V = L” + (∀γ)(Lγ is countable inside Lγ+1),

which implies that β0 does not exist.
We first note that as in MS [2014, Lemma 2.1] the set

A = {α | Lα � T and every member of Lα is definable in Lα}
is unbounded in the ordinals: If not, let δ = supA, and let α be the least ad-
missible ordinal greater than δ. (Note that Π1

1-CA0 implies that for every X
the least ordinal admissible in X exists.) LetM be the elementary submodel
of Lα consisting of all its definable elements. Then δ ∈M. Since β0 does not
exist, every ordinal is countable, and hence there is a bijection between ω
and δ, and the <L-least such bijection belongs to M. Thus δ ⊆M, indeed
δ + 1 ⊆ M. Since the Mostowski collapse of M is admissible and contains
δ + 1, it must be Lα. It follows that every member of Lα is definable in Lα
and hence that α ∈ A for the desired contradiction.

We now define a Σ0
5 set and so a game Q using the same r.e. operator

W as in the proof of Theorem 3.7, as well as some notions from MS [2014].
As there, we consider complete extensions of T defined from the play of the
game whose term models are ω-models (albeit in ways more complicated
than simply being the plays of the two players). (The term model of such
an extension is the structure whose members are (equivalence classes) of
formulas ϕ(x) which, in the appropriate theory, define unique elements. It
is an ω-model if its natural numbers are the terms x = 1 + · · ·+ 1.)

The idea of the following definition is that Q is the set of all X such
that there is a completion of T with degree WX which is “better” than all
completions of degree X. Here, the “better” of two completions is the one
whose term model is either well-founded or has a larger well-founded part
than the other. Let

Q = {X | (∃T̂ )[T̂ ≡T WX & T̂ is a complete extension of T

whose term model MI is an ω-model

& (∀T̃ )(T̃ ≡T X & T̃ is a complete extension of T

whose term model MII is an ω-model

→ OnMI \OnAI is either empty or has a least element)]}.
We need some terminology from MS [2014] to explain the notation in

this definition. Here AI is the image inside MI of the “intersection” of MI

andMII, i.e. the union of all the Lβ inMI which can be coded by reals that
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belong to both MI and MII. (Recall that since every set in these models
is countable, every such Lβ can be coded by a real in MI.) Note that by
MS [2014, Claim 2.6], AI is Σ0

2. We use OnMI to denote the set of ordinals
in MI.

To see that Q is Σ0
5, we rewrite the definition in terms of indices of reduc-

tions (from WX and X) as in Theorem 3.7 and use the quantifier counting
from MS [2014]. To say that some Z is a complete (consistent) extension of T
is Π0

1, and that its term model is an ω-model is Π0
2 (MS [2014, Claim 2.4]).

The term model of such a theory is obviously recursive in the theory, as is its
satisfaction relation. Since AI is Σ0

2, saying that OnMI \OnAI is empty is Π0
3,

and that it has no least element is Π0
4. By these calculations the definition

of Q has the form ∃[Σ3 & Π1 & Π2 & ∀(Σ3 & Π1 & Π2 → Π3 ∨ Π4)]. The
set Q is thus Σ0

5, and so is its closure Q̂ under Turing degree.

By Σ0
5-TD, Q̂ contains, or is disjoint from, a cone. By Shoenfield’s abso-

luteness theorem (which is provable in Π1
1-CA0 by Simpson [2009, VII.4.14]),

the base z of the cone can be taken to be in L. Let α be an admissible or-
dinal such that Lα |= T and every element of Lα is definable in Lα and
such that Z ∈ Lα. (Such an ordinal exists by the unboundedness result at
the beginning of this proof.) Let Thα be the theory of Lα. So, in particular
Z,Z ′ ≤T Thα.

We first claim that Thα 6∈ Q̂. Take Y ≡T Thα; we will show that Y 6∈ Q.
To see this, consider any T̂ ≡T W Y with term model MI as in the defi-
nition of Q. Let T̃ = Thα with term model MII = Lα. So, we see that
MI 6= Lα because their theories have different Turing degrees, and also that
(Th(MI))

′ ≡T (Thα)′ because W Y is low over Y .

Claim 4.5. If MI 6= Lα, MI |= T and (Th(MI))
′ ≡T (Thα)′, then MI

is ill-founded and its well-founded part is at most Lα.

Indeed, let Lβ be the well-founded part of MI. We cannot have β > α
because then (Thα)′ ≤T (Th(MI))

′. If β = α, then MI must be ill-founded
because MI 6= Lα. If β < α, then MI must be ill-founded because oth-
erwise (Th(MI))

′ = (Th(Lβ))′ ≤T Thα contradicting our assumption that
(Th(MI))

′ ≡T (Thα)′. This proves the claim.
It follows that AI = Lβ and that OnMI \OnAI is nonempty and has no

least element, showing that Y 6∈ Q.
Second, we find another degree X ≥T Z which is in Q and hence in Q̂.

As Z ′ ≤T Thα, there is (by pseudojump inversion) an X >T Z such that
WX ≡T Thα. Let T̂ = Thα and its term model MI = Lα. Since MI is
well-founded, whatever AI is, OnMI \OnAI is always either empty or has a
least element.

Thus, we have Thα /∈ Q̂ and X ∈ Q̂, both above z, the supposed base of
a cone inside or disjoint from Q̂, for the final contradiction.
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Corollary 4.6 (Martin). Z2 does not prove Σ0
5-TD. Indeed, Π1

1-CA0 +
Σ0

5-TD proves that for every set Y there is a β-model of Z2 containing Y
and hence much more than the consistency of Z2.

Proof. Recall that Lβ0 ∩R is a model of Z2 and indeed a β-model. Thus
Π1

1-CA0 + Σ0
5-TD proves the consistency of Z2. As Lemma 4.4 relativizes to

any Y , Π1
1-CA0 + Σ0

5-TD proves that, for every set Y , there is a β-model
of Z2 containing Y .

4.2. A lower bound for Σ0
4-TD. As mentioned before, we cannot find

reversals from Σ0
4-TD. Relying on several notions and results of MS [2012]

and [2014], we do, however, show that we cannot get by with much less than
Corollary 4.3. The following proof is somewhat complicated and builds on
the proof of Lemma 4.4. Recall that α2 is the least 2-admissible ordinal, and
equivalently, the least ordinal such that Lα2 ∩ R |= ∆1

3-CA0.

Lemma 4.7. Π1
1-CA0 + Σ0

4-TD ` α2 exists.

Proof. We assume, for the sake of a contradiction, that α2 does not exist.
We extend the theory T of MS [2014, §2] by setting

T = KP + “V = L” + (∀γ)(Lγ is countable inside Lγ+1)

+ no ordinal is Σ2-admissible.

By the same proof as in the second paragraph of the proof of Lemma 2.1 of
MS [2014] (or at the beginning of the proof of Lemma 4.4 above), if α2 does
not exist then

A = {α | Lα � T and every member of Lα is definable in Lα}
is unbounded in the ordinals.

We now define a set P which plays the role of Q in the previous proof.
Again, P is the set of all X such that there is a model of T of degree WX

which is better than any of degree X, but this time we need P to be Σ0
4. Let

P = {X | (∃T̂ )[T̂ ≡T WX & T̂ is a complete extension of T

whose term model MI is an ω-model

& (∀T̃ )(T̃ ≡T X & T̃ is a complete extension of T

whose term model MII is an ω-model

→ conditions RInew or RI3 hold)]}.
The conditions RInew and RI3 are defined in Section 2 of MS [2014].

Instead of repeating the whole background developed there, we just use a
few lemmas from that section to prove below the few properties we need.
Before doing that, let us notice that since every element of MI and MII

is definable by a real (because T says that every set is countable), we can
compare their elements by looking at the reals coding them. Thus, when
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we say MI ⊆ MII, we mean that every element of MI is coded by a real
in MI which also belongs to MII. (As both models are standard, we can
confidently talk about reals, i.e. subsets of ω, being in one or both of them.)
The main properties about RInew , RI3, and RII3 are the following:

1. If one of MI and MII is well-founded, then RInew holds if and only
if MI is isomorphic to the well-founded part of MII.

2. If MI and MII are incomparable, then either RI3 or RII3 holds.
3. If RI3 holds, then MII is ill-founded, and if RII3 holds then MI is

ill-founded.
4. The conditions RInew and RI3 are Π0

3.

The first property is proved in Lemma 2.9 of MS [2014] with the fact
that the definition of RInew implies that MI ⊆ MII. For the second, we
observe, by MS [2014, Lemma 2.17], that if neither of RI3 and RII3 hold,
then there are ordinals β1 and β2 such that ?1(β1, β2) holds, which by MS
[2014, Lemma 2.18(b)] implies that α is 2-admissible, where α is such that
A = Lα. But since α2 does not exist, there are no 2-admissible ordinals, and
hence this is a contradiction. The third property follows from the definition
of RI3 in MS [2014, Definition 2.16], which asserts that a subset of the
ordinals in MII has no least element. Finally, the fourth property follows
from MS [2014, Claim 2.7] for RInew and from MS [2014, Definition 2.16
and Claim 2.11] for RI3.

The rest of the proof is similar to that of the previous lemma. To see
that P is Σ0

4, we again rewrite the definition in terms of indices of reductions
(from WX and X). The conditions RInew and RI3 are Π0

3. As remarked

above, ΠWX

2 relations are uniformly ΠX
2 and, of course, the relation Z ≤T Y

is Σ0
3. It is then routine to calculate that P is Σ0

4.

The closure P̂ of P under ≡T is then also a Σ0
4 set. By Σ0

4-TD, P̂ contains,
or is disjoint from, a cone. By Shoenfield’s absoluteness theorem, the base z
of the cone can be taken to be in L. Let α be an admissible ordinal such that
Lα |= T and every element of Lα is definable in Lα and such that Z ∈ Lα.
(Such an ordinal exists by the unboundedness result at the beginning of this
proof.) Let Thα be the theory of Lα. So in particular Z,Z ′ ≤T Thα.

We first claim that Thα 6∈ P̂ . Take Y ≡T Thα; we will show that Y 6∈ P .
To see this, consider any T̂ ≡T W Y with term modelMI as in the definition
of P . Let T̃ = Thα with term model MII= Lα. So MI 6= Lα because their
theories have different Turing degrees. Thus,MI cannot be the well-founded
part ofMII, and hence RInew cannot hold. SinceMII is well-founded, RI3
cannot hold either. So Y 6∈ P .

Second, we find a degree X ≥T Z which is in P , and hence in P̂ . As
Z ′ ≤T Thα, there is (by pseudojump inversion) an X >T Z with WX ≡T
Thα. We claim that X ∈ P . Let T̂ = Thα with term model MI = Lα.
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Consider any T̃ ≡T X with term model MII as in the definition of P . So,
we haveMII 6= Lα because their theories have different Turing degrees, and
we have (Th(MII))

′ ≡T (Thα)′ because WX is low over X. By Claim 4.5,
MII is ill-founded and its well-founded part is at most Lα. If AII = Lα,
then MI is isomorphic to the well-founded part of MII, and hence RInew
holds. Otherwise, MI and MII are incomparable. Since RII3 does not hold
(because MII is well-founded), RI3 must hold, proving that X ∈ P .

As Thα, X ≥T Z, we see that z is not the base of a cone for P̂ for the
final contradiction, and so α2 exists as required.

Corollary 4.8. ∆1
3-CA0 does not prove Σ0

4-TD. Indeed, Π1
1-CA0

+ Σ0
4-TD proves that for every set Z there is a β-model of ∆1

3-CA0 con-
taining Z and hence much more than the consistency of ∆1

3-CA0.

Proof. By Simpson [2009, VII.5.17 and the notes thereafter], Lα2∩R is a
model of ∆1

3-CA0 and indeed a β-model. Thus Π1
1-CA0 + Σ0

4-TD proves the
consistency of ∆1

3-CA0. As Lemma 4.7 relativizes to any Z, Π1
1-CA0 + Σ0

4-TD
proves that, for every set Z, there is a β-model of ∆1

3-CA0 containing Z.

5. Questions. There are several natural questions left open here. For
the first two we expect that answers should require some new interesting
models of fragments of Z2.

Question 5.1. Does WKL0 or some other known principle strictly be-
tween RCA0 and ACA0 prove ∆0

3-TD?

Question 5.2. Does ∆0
3-TD (or some stronger version) prove ACA0 over

WKL0?

Question 5.3. Clarify the status of ∆0
4-TD over ACA0. In particular

does ATR0 + Σ1
1-TI0 (or equivalently Σ1

1-IND) or ATR0 with full induction
prove ∆0

4-TD? If not, does ACA0 + ∆0
4-TD prove Π1

1-TI0?

Question 5.4. Does ∆0
4-TD (or some stronger version) prove Π1

1-CA0

over ATR0?
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