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Actions of the group of homeomorphisms of
the circle on surfaces

by

Emmanuel Militon (Nice)

Abstract. We describe all the group morphisms from the group of orientation-
preserving homeomorphisms of the circle to the group of homeomorphisms of the annulus
or of the torus.

1. Introduction. For a compact manifold M , we denote by Homeo(M)
the group of homeomorphisms of M and by Homeo0(M) the connected com-
ponent of the identity of this group (for the compact-open topology). By a
theorem by Fischer (see [6] and [3]), the group Homeo0(M) is simple: the
study of this group cannot be reduced to the study of other groups. One nat-
ural way to have a better understanding of this group is to look at its auto-
morphism group. In this direction, Whittaker proved the following theorem.

Theorem (Whittaker [16]). Given two compact manifolds M and N
and any group isomorphism ϕ : Homeo0(M) → Homeo0(N), there exists a
homeomorphism h : M → N such that ϕ is the map f 7→ h ◦ f ◦ h−1.

This theorem was generalized by Filipkiewicz [5] to groups of diffeo-
morphisms by using a powerful theorem by Montgomery and Zippin which
characterizes Lie groups among locally compact groups. The idea of the
proof of Whittaker’s theorem is the following: We see the manifold M al-
gebraically by considering the subgroup Gx ⊂ Homeo(M) consisting of the
homeomorphisms which fix the point x in M . One proves that, for any x
in M , there exists a unique yx in N such that ϕ(Gx) is the group of home-
omorphisms of N which fix the point yx. Define h by h(x) = yx. Then we
check that h is a homeomorphism and that it satisfies the conclusion of the
theorem. However, Whittaker’s proof crucially uses the fact that we have a
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group isomorphism and a priori cannot be easily generalized to the cases of
group morphisms. Here is a conjecture in this case.

Conjecture 1.1. For a compact manifold M , every group morphism
Homeo0(M) → Homeo0(M) is either trivial or induced by conjugacy by a
homeomorphism.

This conjecture is confirmed in [12] in the case of the circle. It is also
proved in [9] in the case of groups of diffeomorphisms of the circle. We
may also be interested in morphisms from Homeo0(M) to Homeo0(N), for
another manifold N . This kind of questions are addressed in [9] for diffeo-
morphisms in the case where N is a circle or the real line. The following
conjecture looks attainable.

Conjecture 1.2. Let S be a closed surface different from the sphere.
Denote by S −D the closed surface S with one open disc removed. Denote
by Homeo0(S−D) the identity component of the group of homeomorphisms
of S−D with support contained in the interior of this surface. Every group
morphism from Homeo0(S −D) to Homeo0(S) is induced by an embedding
of S −D in S.

This conjecture is a consequence of a remarkable result by Hurtado [8]
in the case of diffeomorphism groups, but remains open in the case of home-
omorphism groups.

In this article, we investigate the case of group morphisms from the group
Homeo0(S1), which is also the group of orientation-preserving homeomor-
phisms of the circle, to the group Homeo(S) of homeomorphisms of a com-
pact orientable surface S. By simplicity of Homeo0(S1), such a morphism ϕ
is either one-to-one or trivial. Moreover, as Homeo(S)/Homeo0(S) is count-
able, any morphism Homeo0(S1)→ Homeo(S)/Homeo0(S) is trivial. Hence,
the image of ϕ is contained in Homeo0(S). By a theorem by Rosendal and
Solecki, any group morphism from the group of orientation-preserving home-
omorphisms of the circle to a separable group is continuous (see [15, Theorem
4 and Proposition 2]): the group morphisms under consideration are contin-
uous. If the surface S is different from the sphere, the torus, the closed disc
or the closed annulus, then any compact subgroup of Homeo0(S) is trivial by
a theorem by Kerékjártó (see [2]). Therefore, Homeo0(S) does not contain a
subgroup isomorphic to SO(2) whereas Homeo0(S1) does and the morphism
ϕ is necessarily trivial. In what follows, we study the remaining cases.

In the second section, we state our classification theorem for actions of
Homeo0(S1) on the torus and on the annulus. Any action will be obtained
by gluing actions which preserve a lamination by circles and actions which
are transitive on open annuli. In the third section, we describe the contin-
uous actions of the group of compactly-supported homeomorphisms of the
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real line on the real line or on the circle; this description is useful for the
classification theorem and interesting in its own right. The fourth and fifth
sections are devoted respectively to the proof of the classification theorem
in the case of the closed annulus and in the case of the torus. Finally, in the
last section we discuss the case of the sphere and of the closed disc.

2. Description of the actions. All the actions of Homeo0(S1) will be
obtained by gluing elementary actions of this group on the closed annulus. In
this section, we will first describe these elementary actions before describing
some model actions to which any continuous action will be conjugate.

The easiest action of Homeo0(S1) on the closed annulus A = [0, 1] × S1
preserves the foliation by circles of this annulus:

p : Homeo0(S1)→ Homeo(A), f 7→
(
(r, θ) 7→ (r, f(θ))

)
.

The second elementary action we want to describe is a little more com-
plex. Let π : R → R/Z = S1 be the projection. For θ ∈ S1 = R/Z, we
denote by θ̃ a lift of θ, i.e. a point of R which projects on θ. For a homeo-
morphism f of the circle, we denote by f̃ a lift of f , i.e. an element of the
group HomeoZ(R) of homeomorphisms of R which commute with integral
translations so that π ◦ f̃ = f ◦ π. The second elementary action is given by

a− : Homeo0(S1)→ Homeo(A), f 7→
(
(r, θ) 7→ (f̃(θ̃)− f̃(θ̃ − r), f(θ))

)
.

Notice that the number f̃(θ̃)− f̃(θ̃ − r) does not depend on the lifts θ̃ and
f̃ chosen and belongs to [0, 1]. Notice also that the map

[0, 1]→ [0, 1], r 7→ f̃(θ̃)− f̃(θ̃ − r),
is a homeomorphism.

An analogous action is given by

a+ : Homeo0(S1)→ Homeo(A), f 7→
(
(r, θ) 7→ (f̃(θ̃ + r)− f̃(θ̃), f(θ))

)
.

Notice that a+ and a− are conjugate via the homeomorphism of A given by
(r, θ) 7→ (1 − r, θ), which is orientation-reversing, and via the orientation-
preserving homeomorphism of A given by (r, θ) 7→ (r, θ+r). We now describe
another way to see the action a− (and a+). We see the torus T2 as the
product S1 × S1. Let

aT2 : Homeo0(S1)→ Homeo(T2), f 7→
(
(x, y) 7→ (f(x), f(y))

)
.

It is easily checked that this defines a morphism. This action leaves the
diagonal {(x, x) | x ∈ S1} invariant. The action obtained by cutting along
the diagonal is conjugate to a−. More precisely, define

h : A→ T2, (r, θ) 7→ (θ, θ − r).
Then, for any f in Homeo0(S1),

h ◦ a−(f) = aT2(f) ◦ h.
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Let Gθ0 be the group of homeomorphisms of the circle which fix a neigh-
bourhood of the point θ0. For a point θ0 of the circle, the image by a− of
Gθ0 leaves the sets {(r, θ0) | r ∈ [0, 1]} and {(r, θ0 + r) | r ∈ [0, 1]} globally
invariant. On each connected component of the complement of the union
of these two sets with the boundary of the annulus, the action of Gθ0 is
transitive. This is most easily seen by using the action aT2 and the fact
that, on S1 − {θ0}, the group Gθ0 is transitive on pairs of points (x, y)
such that x < y (where the order is induced by the orientation of the
circle).

Let us now describe the model actions on the closed annulus which are
obtained by gluing the above actions. Take a non-empty compact subset
K ⊂ [0, 1] which contains 0 and 1, and a map λ : [0, 1]−K → {−1, 1} which
is constant on each connected component of [0, 1]−K. Let us now define an
action ϕK,λ of Homeo0(S1) on the closed annulus A. To f in Homeo0(S1),
we associate a homeomorphism ϕK,λ(f) of A defined as follows. If r ∈ K,
we associate to (r, θ) ∈ A the point (r, f(θ)). If r belongs to a connected
component (r1, r2) of the complement of K and if λ((r1, r2)) = {−1}, we
associate to (r, θ) ∈ A the point(

(r2 − r1)
(
f̃(θ)− f̃

(
θ − r − r1

r2 − r1

))
+ r1, f(θ)

)
.

This last map is obtained by conjugating the homeomorphism a−(f) with
the map (r, θ) 7→ (ζ(r), θ) where ζ is the unique linear orientation-preserving
homeomorphism [0, 1] → [r1, r2]. If r belongs to a connected component
(r1, r2) of the complement of K and if λ((r1, r2)) = {1}, we associate to
(r, θ) ∈ A the point(

(r2 − r1)
(
f̃

(
θ +

r − r1
r2 − r1

)
− f̃(θ)

)
+ r1, f(θ)

)
.

This last map is also obtained after renormalizing a+(f) on the inter-
val (r1, r2). This defines a continuous morphism ϕK,λ : Homeo0(S1) →
Homeo(A). To construct an action on the torus, it suffices to identify the

point (0, θ) of A with (1, θ). We denote by ϕT2

K,λ the continuous action on
the torus obtained this way. By shrinking one of the boundary components
(respectively both boundary components) of the annulus to a point (respec-
tively to points), one obtains an action on the closed disc (respectively on

the sphere) that we denote by ϕD2

K,λ (respectively ϕS2
K,λ).

The main theorem of this article is the following:

Theorem 2.1. Any non-trivial action of the group Homeo0(S1) on the
closed annulus is conjugate to one of the actions ϕK,λ. Any non-trivial action

of Homeo0(S1) on the torus is conjugate to one of the actions ϕT2

K,λ.
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In particular, any action of Homeo0(S1) on the torus admits an invari-
ant circle. By analogy with this theorem, one is tempted to formulate the
following conjecture:

Conjecture 2.2. Any non-trivial action of the group Homeo0(S1) on
the sphere (respectively on the closed disc) is conjugate to one of the actions

ϕS2
K,λ (respectively ϕD2

K,λ).

Notice that this theorem does not directly describe the conjugacy classes
of such actions, as two actions ϕK,λ and ϕK′,λ′ may be conjugate even though
K 6= K ′ or λ 6= λ′. Now, let K ⊂ [0, 1] and K ′ ⊂ [0, 1] be two compact sets
which contain {0, 1}. Let λ : [0, 1] − K → {−1, 1} and λ′ : [0, 1] − K ′

→ {−1, 1} be constant on each connected component of their domains of
definition. The following theorem characterizes when the actions ϕK,λ and
ϕK′,λ′ are conjugate.

Proposition 2.3. The following statements are equivalent:

• the actions ϕK,λ and ϕK′,λ′ are conjugate;
• either there exists an orientation-preserving homeomorphism h : [0, 1]
→ [0, 1] such that h(K) = K ′ and λ′ ◦h = λ except on a finite number
of connected components of [0, 1] − K, or there exists a decreasing
homeomorphism h : [0, 1]→ [0, 1] such that h(K) = K ′ and λ′◦h = −λ
except on a finite number of connected components of [0, 1]−K.

Proof. We begin by proving that the second statement implies the first.

If there exists an orientation-preserving homeomorphism h which maps
K onto K ′, then the actions ϕK,λ and ϕK′,λ◦h−1 are conjugate. Indeed, de-
note by ĥ the homeomorphism [0, 1] → [0, 1] which coincides with h on
K and which, on each connected component (r1, r2) of the complement
of K, is the unique orientation-preserving linear homeomorphism (r1, r2)→
h((r1, r2)). Then the actions ϕK,λ and ϕK′,λ◦h−1 are conjugate via the home-
omorphism

A→ A, (r, θ) 7→ (ĥ(r), θ).

Similarly, suppose that h is an orientation-reversing homeomorphism of [0, 1]

which maps K onto K ′. As above, we denote by ĥ the homeomorphism ob-
tained from h by mapping linearly each connected component of the com-
plement of K onto a connected component of the complement of K ′. Then
the actions ϕK,λ and ϕK′,−λ◦h−1 are conjugate via the homeomorphism

A→ A, (r, θ) 7→ (ĥ(r), θ).

It then suffices to use the following lemma to complete the proof of the
converse in the proposition.
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Lemma 2.4. Let K ⊂ [0, 1] be a compact subset which contains 0 and 1.
If λ : [0, 1] − K → {−1, 1} and λ′ : [0, 1] − K → {−1, 1} are continuous
maps which are equal except on one connected component (r1, r2) of the
complement of K, then the actions ϕK,λ and ϕK,λ′ are conjugate.

Proof. This comes from the fact that the actions a+ and a− are conjugate
via the homeomorphism of the annulus (r, θ) 7→ (r, θ + r). More precisely,
suppose that λ((r1, r2)) = {1}. Then ϕK,λ and ϕK,λ′ are conjugate via the
homeomorphism h equal to the identity on the Cartesian product of the
complement of (r1, r2) with the circle, and equal to (r, θ) 7→

(
r, θ + r−r1

r2−r1

)
on (r1, r2)× S1.

Let us now establish the other implication. Suppose that there exists a
homeomorphism g which conjugates the actions ϕK,λ and ϕK′,λ′ . Now, for
any angle α, if we denote by Rα the rotation of angle α, then

g ◦ ϕK,λ(Rα) = ϕK′,λ′(Rα) ◦ g.
The homeomorphism ϕK,λ(Rα) is the rotation of angle α of A. This means
that, for any point (r, θ) ∈ A and any α ∈ S1,

g((r, θ + α)) = g((r, θ)) + (0, α).

In particular, g permutes the leaves of the foliation of A by circles {r}× S1.
Fix now θ0 ∈ S1. Then g maps the set K×{θ0} of fixed points of ϕK,λ(Gθ0)
(that is, fixed under every element of this group) to the set K ′×{θ0} of fixed
points of ϕK′,λ′(Gθ0). From this and the above, we deduce that for any r ∈ K
and any angle θ, we have g(r, θ) = (h(r), θ), where h : K → K ′ is a homeo-
morphism. Moreover, if g is orientation-preserving, then so is h, and if g is
orientation-reversing, then so is h. We can extend h to a homeomorphism of
[0, 1] which maps K onto K ′. Notice that, for a connected component (r1, r2)
of the complement of K in [0, 1], the homeomorphism g maps (r1, r2) × S1
onto (r′1, r

′
2) × S1, where (r′1, r

′
2) = h((r1, r2)) is a connected component of

the complement of K ′ in [0, 1].
It suffices now to establish that the condition on the maps λ and λ′ is sat-

isfied for the homeomorphism h. Suppose, to simplify the proof, that g, and
hence h, is orientation-preserving; the case where g is orientation-reversing
can be treated similarly. Suppose for contradiction that there exists a se-
quence ((r1,n, r2,n))n∈N of connected components of [0, 1]−K such that:

• λ((r1,n, r2,n)) = 1;
• λ′((r′1,n, r′2,n)) = −1, where (r′1,n, r

′
2,n) = h((r1,n, r2,n));

• the sequence (r1,n)n∈N is monotone and converges to a real number r∞.

We will prove that either the curve {(r, θ0) | r > r∞} (if the sequence
(r1,n)n∈N is decreasing) or {(r, θ0) | r < r∞} (if (r1,n)n∈N is increasing)
is mapped by g onto a curve which accumulates on {r∞} × S1, which is
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impossible. The hypotheses λ((r1,n, r2,n)) = −1 and λ((r′1,n, r
′
2,n)) = 1 for

any n would lead to the same contradiction.

To achieve this, it suffices to prove that, for any positive integer n, the

homeomorphism g maps {(r, θ0) | r1,n < r < r2,n} onto
{(
r, θ0 +

r−r′1,n
r′2,n−r′1,n

) ∣∣
r′1,n < r < r′2,n

}
. Observe that the restriction of the group ϕK,λ(Gθ0) of

homeomorphisms to (r1,n, r2,n)×S1 has two invariant simple curves, {(r, θ0) |
r1,n < r < r2,n} and

{(
r, θ0 − r−r1,n

r2,n−r1,n

) ∣∣ r1,n < r < r2,n
}

, on which the

action is transitive. The action of this group is also transitive on the two
connected components of the complement of these two curves, which are
open sets. Likewise, the restriction of the group ϕK′,λ′(Gθ0) to (r′1,n, r

′
2,n)

has two invariant simple curves,

{(r, θ0) | r′1,n < r < r′2,n} and

{(
r, θ0 +

r − r′1,n
r′2,n − r′1,n

) ∣∣∣∣ r′1,n < r < r′2,n

}
,

on which the action is transitive, and the action of this group is transitive
on the two connected components of the complement of these two curves,
which are open sets. Therefore, g maps {(r, θ0) | r1,n < r < r2,n} onto one
of the displayed curves; let us find now onto which one.

We fix the orientation of the circle induced by the orientation of R and
the covering map R → S1 = R/Z. This orientation gives rise to an order
on S1 − {θ0}. Take f in Gθ0 different from the identity such that, for any
x 6= θ0, we have f(x) ≥ x. Then, for any r ∈ (r1,n, r2,n),

p1 ◦ ϕK,λ(f)(r, θ0) ≥ r,
where p1 : A = [0, 1] × S1 → [0, 1] is the projection, and the restriction of
ϕK,λ(f) to {(r, θ0) | r1,n < r < r2,n} is different from the identity. Likewise,
for any r ∈ (r′1,n, r

′
2,n),

p1 ◦ ϕK′,λ′(f)(r, θ0) ≤ r, p1 ◦ ϕK′,λ′(f)

(
r, θ0 +

r − r′1,n
r′2,n − r′1,n

)
≥ r

and the restrictions of ϕK′,λ′(f) to {(r, θ0) | r′1,n < r < r′2,n} and to
{(
r, θ0+

r−r′1,n
r′2,n−r′1,n

) ∣∣ r′1,n < r < r′2,n
}

are different from the identity. Moreover, the

map

(r1,n, r2,n)→ (r′1,n, r
′
2,n), r 7→ p1 ◦ g(r, θ0),

is strictly increasing, as g was supposed to be orientation-preserving. This
implies what we wanted to prove.

3. Continuous actions of Homeoc(R) on the line. Let Homeoc(R)
denote the group of compactly supported homeomorphisms of R. In this
section, we prove the following theorem.
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Theorem 3.1. Let ψ : Homeoc(R) → Homeo(R) be a continuous group
morphism whose image has no fixed point. Then there exists a homeomor-
phism h of R such that, for any f ∈ Homeoc(R),

ψ(f) = h ◦ f ◦ h−1.

Remark 3.2. This theorem is true without the continuity hypothesis.
However, we just need the above statement in this article.

Remark 3.3. This theorem also holds in the case of groups of diffeomor-
phisms, i.e. any continuous action of the group of compactly supported Cr

diffeomorphisms on the real line is topologically conjugate to the inclusion.
The proof in this case is the same.

This theorem enables us to describe any continuous action of the group
Homeoc(R) on the real line, as it suffices to consider the action on each
connected component of the complement of the fixed point set of the action.

Proof of Theorem 3.1. During this proof, for a subset A ⊂ R, we will
denote by GA the group of compactly supported homeomorphisms which
pointwise fix a neighbourhood of A, and by FA ⊂ R the closed set of fixed
points of ψ(GA) (that is, fixed under every element of this group). Let us
begin by sketching the proof. We will first prove that, for every non-trivial
compact interval I (that is, one with non-empty interior), the set FI is
compact and non-empty. As a consequence, for any real x, the closed set Fx
is non-empty. Then we will prove that each Fx is a single point. Once this is
proved, we define h : R → R by {h(x)} = Fx. Then h is a homeomorphism
as required. Let us give the details.

Notice that, as the group Homeoc(R) is simple (see [6]), the image of ψ
is contained in the group of orientation-preserving homeomorphisms of R
(otherwise there would exist a non-trivial group morphism Homeoc(R) →
Z/2Z) and ψ is one-to-one.

Lemma 3.4. For every non-trivial compact interval I ⊂ R, the closed
set FI is non-empty.

Proof. Take a non-zero vector field X : R→ R supported in I. The flow
of X defines a morphism

R→ Homeoc(R), t 7→ ϕt.

Assume for the moment that the set F of fixed points of the subgroup
{ψ(ϕt) | t ∈ R} of Homeo(R) is non-empty. Notice that this set is not R
as ψ is one-to-one. Since each ϕt commutes with any element in GI , for
any g in ψ(GI) we obtain g(F ) = F . Moreover, as any element of GI can
be joined to the identity by a continuous path in GI , and ψ is continuous,
any connected component of F is invariant under ψ(GI). The upper and
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lower extremities of these intervals which lie in R are then fixed points of
the group ψ(GI). This proves the lemma.

It remains to prove that the set F is non-empty. Suppose otherwise.
Then, for any real x, the map

R→ R, t 7→ ψ(ϕt)(x),

is a homeomorphism. Indeed, if it were not onto, the supremum or the
infimum of the image would provide a fixed point for (ψ(ϕt))t∈R. If it were
not one-to-one, there would exist t0 6= 0 such that ψ(ϕt0)(x) = x. Then, for
any positive integer n, ψ(ϕt0/2

n
)(x) = x, and by continuity of ψ, for any

real t, ψ(ϕt)(x) = x and x would be fixed under (ψ(ϕt))t∈R.
Fix a real number x0. Let Tx0 : GI → R be defined by

ψ(f)(x0) = ψ(ϕTx0 (f))(x0).

The map Tx0 is a group morphism as, for any f and g in GI ,

ψ(ϕTx0 (fg))(x0) = ψ(fg)(x0) = ψ(f)ψ(ϕTx0 (g))(x0)

= ψ(ϕTx0 (g))ψ(f)(x0) = ψ(ϕTx0 (g)+Tx0 (f))(x0).

However, GI , which is isomorphic to Homeoc(R)×Homeoc(R), is a perfect
group: any element of it can be written as a product of commutators. There-
fore, the morphism Tx0 is trivial. As x0 is any point in R, we deduce that
the restriction of ψ to GI is trivial, which is impossible as ψ is one-to-one.

Remark 3.5. If ψ(Homeoc(R)) ⊂ Homeoc(R), this lemma can be proved
without the continuity hypothesis. Indeed, let f in Homeoc(R) be supported
in I. One of the connected components of the set of fixed points of ψ(f) is
of the form (−∞, a] for some a in R. This interval is necessarily invariant
under the group ψ(GI) which commutes with f . Hence, a is a fixed point
for the group ψ(GI).

In the proof, we will often use the following elementary result:

Lemma 3.6. Let I and J be disjoint compact non-empty intervals. For
any g in Homeoc(R), there exist g1 ∈ GI , g2 ∈ GJ and g3 ∈ GI such that

g = g1g2g3.

Proof. Let g ∈ Homeoc(R). Let h1 ∈ GI map the interval g(I) onto an
interval in the same connected component of R − J as I. Let h2 ∈ GJ be
equal to g−1 ◦ h−11 on a neighbourhood of h1 ◦ g(I). Then h2 ◦ h1 ◦ g ∈ GI .
It then suffices to take g1 = h−11 , g2 = h−12 and g3 = h2 ◦ h1 ◦ g.

Before stating the next lemma, observe that, for non-trivial compact
intervals I, the sets FI are pairwise homeomorphic by an orientation-preserv-
ing homeomorphism. Indeed, let I and J be two such intervals. Then there
exists λ in Homeoc(R) such that λ(I) = J . Then λGIλ

−1 = GJ . Taking
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the image under ψ, we obtain ψ(λ)ψ(GI)ψ(λ)−1 = ψ(GJ) and therefore
ψ(λ)(FI) = FJ .

Lemma 3.7. For every non-trivial compact interval I ⊂ R, the closed
set FI is compact.

Proof. Suppose for contradiction that there exists a sequence (ak)k∈N
in FI which tends to ∞ (if we suppose that it tends to −∞, we obtain an
analogous contradiction). Choose a compact interval J disjoint from I. By
the remark before the lemma, there exists a sequence (bk)k∈N in FJ which
tends to ∞. Take positive integers n1, n2 and n3 such that an1 < bn2 < an3 .
Fix x0 < an1 . Then for any g1 ∈ GI , g2 ∈ GJ and g3 ∈ GI ,

ψ(g1)ψ(g2)ψ(g3)(x0) < an3 .

Lemma 3.6 implies that

{ψ(g)(x0) | g ∈ Homeoc(R)} ⊂ (−∞, an3 ].

The greatest element of the left-hand set is a fixed point of the image of ψ;
but this is impossible as this image was supposed to have no fixed point.

Lemma 3.8. The closed sets Fx, where x ∈ R, are non-empty, compact,
pairwise disjoint and have empty interior.

Proof. Notice that if an interval J is contained in an interval I, then
GI ⊂ GJ and so ψ(GI) ⊂ ψ(GJ). Therefore FJ ⊂ FI . Now, for any finite
family (In)n of intervals whose intersection has non-empty interior, the in-
tersection of the closed sets FIn contains the non-empty closed set F⋂

n In
.

Fix now x in R. Notice that

Fx =
⋂
I

FI ,

where the intersection is taken over all compact intervals I whose interior
contains x. By compactness, this set is not empty and it is compact.

Take x 6= y in R. If Fx and Fy were not disjoint, the group generated by
ψ(Gx) and ψ(Gy) would have a fixed point p. However, by Lemma 3.6, the
groups Gx and Gy generate Homeoc(R). Hence, p would be a fixed point of
the group ψ(Homeoc(R)), a contradiction.

Now, let us prove that each Fx has empty interior. Of course, given
x, y ∈ R, if h in Homeoc(R) sends x to y, then ψ(h)(Fx) = Fy. Therefore,
the sets Fx are pairwise homeomorphic. If they had non-empty interiors,
there would exist uncountably many pairwise disjoint open intervals of the
real line, which is not the case.

Lemma 3.9. For any x0 ∈ R and any connected component C of the
complement of Fx0, there exists y 6= x0 such that Fy ∩ C 6= ∅.



Actions of the group of homeomorphisms of the circle on surfaces 153

Proof. Let (a1, a2) be a connected component of the complement of Fx0 .
It can happen that either a1 = −∞ or a2 =∞.

Let us prove that there exists y0 6= x0 such that Fy0 ∩ (a1, a2) 6= ∅.
Suppose for contradiction that, for any y 6= x0, Fy ∩ (a1, a2) = ∅. For any
real z1 and z2, choose hz1,z2 in Homeoc(R) such that hz1,z2(z1) = z2. We
claim that the non-empty open sets ψ(hx0,y)((a1, a2)), for y ∈ R, are pair-
wise disjoint, which is impossible. Indeed, suppose that ψ(hx0,y1)((a1, a2))∩
ψ(hx0,y2)((a1, a2)) 6= ∅ for some y1 6= y2. As the union of the closed sets Fy is
invariant under ψ, for i = 1, 2, when ai is finite, ψ(hx0,y1)−1 ◦ψ(hx0,y2)(ai) /∈
(a1, a2), and ψ(hx0,y2)−1 ◦ ψ(hx0,y1)(ai) /∈ (a1, a2) so that ψ(hx0,y1)(ai) =
ψ(hx0,y2)(ai). But this last equality cannot hold as the left-hand side be-
longs to Fy1 and the right-hand side to Fy2 , and we observed that these two
closed sets are disjoint.

Lemma 3.10. Each Fx contains only one point.

Proof. Suppose that Fx contains two points p1 < p2. By Lemma 3.9,
there exists y 6= x such that Fy has a point in the interval (p1, p2). Take a
point r < p1. Then, for any g1 in Gx, g2 in Gy and g3 in Gx, we have

ψ(g1) ◦ ψ(g2) ◦ ψ(g3)(r) < p2.

By Lemma 3.6, this implies that

{ψ(g)(r) | g ∈ Homeoc(R)} ⊂ (−∞, p2].

The supremum of the left-hand set provides a fixed point for the action ψ,
a contradiction.

Take f ∈ Homeoc(R) and x ∈ R. Then the homeomorphism ψ(f) sends
the only point h(x) in Fx to the only point h(f(x)) in Ff(x). This implies
that ψ(f)◦h = h◦f . Thus, it suffices to use Lemma 3.11 below to complete
the proof of Theorem 3.1.

Lemma 3.11. Define h(x) as the only point in the set Fx. Then the map
h is a homeomorphism.

Proof. By Lemma 3.8, h is one-to-one.

Fix x0 ∈ R and let us prove that h is continuous at x0. Take a compactly
supported C1 vector field R→ R which does not vanish on a neighbourhood
of x0, and denote by (ϕt)t∈R the flow of this vector field. Then, for any time t,
h(ϕt(x0)) = ψ(ϕt)(h(x0)), which proves that h is continuous at x0.

Finally, let us prove that h is onto. Notice that the interval h(R) is invari-
ant under the action ψ. Hence, if sup(h(R)) <∞ (respectively inf(h(R)) >
−∞), then the point sup(h(R)) (respectively inf(h(R))) would be a fixed
point of the action ψ, a contradiction.
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Proposition 3.12. Any action of the group Homeoc(R) on the circle
has a fixed point.

Hence, the description of the actions of Homeoc(R) on the circle is given
by an action of Homeoc(R) on the real line which is homeomorphic to the
circle minus one point.

Proof. As H2
b (Homeoc(R),Z) = {0} (see [11]), the bounded Euler class

of this action necessarily vanishes so that this action admits a fixed point
(see [7] for the bounded Euler class of an action on the circle and its prop-
erties).

Finally, let us recall a result of [12] which also uses the bounded Euler
class.

Proposition 3.13. Any non-trivial action of the group Homeo0(S1) on
the circle is a conjugacy by a homeomorphism of the circle.

4. Actions on the annulus. This section is devoted to the proof of
Theorem 2.1 in the case of morphisms with values in the group of homeo-
morphisms of the annulus. Fix a morphism ϕ : Homeo0(S1) → Homeo(A).
Recall that, by [15, Theorem 4 and Proposition 2], ϕ is necessarily contin-
uous.

First, as the group Homeo0(S1) is simple (see [6]), ϕ is either trivial or
one-to-one. We assume in the rest of this section that it is one-to-one. Recall
that the induced group morphism Homeo0(S1)→ Homeo(A)/Homeo0(A) is
not one-to-one as the source is uncountable and the target is countable.
Therefore, it is trivial and the image of ϕ is contained in Homeo0(A).

Now, recall that the subgroup of rotations of the circle is continuously
isomorphic to the topological group S1. The image of this subgroup under
ϕ is a compact subgroup of the group of homeomorphisms of the closed
annulus which is continuously isomorphic to S1. It is known that such a
subgroup is conjugate to the rotation subgroup {(r, θ) 7→ (r, θ+α) | α ∈ S1}
of the group of homeomorphisms of the annulus (see [2]). This is the only
place in this proof where we really need the continuity hypothesis. After
possibly conjugating ϕ, we may suppose from now on that, for any angle α,
the morphism ϕ sends the α-rotation of the circle to the α-rotation of the
annulus.

4.1. An invariant lamination. Our goal in this section is to construct
the set K as in Theorem 2.1.

Fix θ0 ∈ S1. Recall that Gθ0 is the group of homeomorphisms of S1 which
fix a neighbourhood of θ0. Denote by Fθ0 ⊂ A the closed set of fixed points
of ϕ(Gθ0) (i.e. fixed under every homeomorphism in this group). The action
ϕ induces actions on the two boundary circles of the annulus. The action
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of ϕ(Gθ0) on each of these circles has a fixed point by Proposition 3.13.
Therefore, the set Fθ0 is non-empty. For any angle θ, let α = θ − θ0. Then
Gθ = RαGθ0R

−1
α , where Rα denotes the α-rotation of the circle. Therefore,

ϕ(Gθ) = Rαϕ(Gθ0)R−1α , where by abuse of notation, Rα denotes the α-
rotation of the annulus, and Fθ = Rα(Fθ0). Let

B =
⋃
θ∈S1

Fθ =
⋃
α∈S1

Rα(Fθ0).

This set is of the form K × S1, where K is the image of Fθ0 under the
projection A = [0, 1] × S1 → [0, 1]. The set K is compact and contains 0
and 1. Let F be the lamination of B by the circles {r} × S1, where r ∈ K.

Lemma 4.1. Each leaf of the lamination F is preserved by the action ϕ.

Proof. Fix an angle θ. Let us prove that the orbit of any x ∈ Fθ under ϕ
is contained in {Rα(x) | α ∈ S1} ⊂ A. First, for any orientation-preserving
homeomorphism f of the circle which fixes θ, the homeomorphism ϕ(f)
pointwise fixes the set Fθ. Indeed, the homeomorphism f is the uniform limit
of homeomorphisms which pointwise fix a neighbourhood of θ, and the claim
results from the continuity of ϕ. Any orientation-preserving homeomorphism
g of the circle can be written g = Rβf , where f is a homeomorphism which
fixes θ. Now, any point x in Fθ is fixed under ϕ(f) and sent to a point in
{Rα(x) | α ∈ S1} ⊂ A under the rotation Rβ = ϕ(Rβ), which proves the
lemma.

Lemma 4.2. Each closed set Fθ intersects each leaf of the lamination F
in exactly one point. Moreover, the map h which to any (r, θ) ∈ K×S1 ⊂ A
associates the only point of Fθ on the leaf {r} × S1 is a homeomorphism
of K × S1. This homeomorphism conjugates the restriction of the action
ϕK,λ to K × S1 with the restriction of ϕ to K × S1 for any continuous map
λ : [0, 1] − K → {−1, 1}. Moreover, this homeomorphism is of the form
(r, θ) 7→ (r, η(r) + θ) where η : K → S1 is a continuous function.

Proof. By Lemma 4.1, the action ϕ preserves each set {r} × S1 and
induces an action on it. By Proposition 3.13, the restriction of this action
to a subgroup of the form Gθ has exactly one fixed point (this action is
non-trivial as the rotation subgroup acts non-trivially). This implies the
first statement of the lemma.

Take a sequence (rn)n∈N in K which converges to r ∈ K. Then, as
h(rn, θ0) ∈ ({rn}×S1)∩Fθ0 , the accumulation points of (h(rn, θ0))n belong to
({r}×S1)∩Fθ0 ; hence there is only one accumulation point, h(r, θ0). For any
angle θ, we have h(r, θ) = Rθ−θ0 ◦h(r, θ0). This implies that h is continuous.
This map is one-to-one: if h(r, θ) = h(r′, θ′), then this point belongs to
{r} × S1 = {r′} × S1 so that r = r′, and Rθ−θ0 ◦ h(r, θ0) = Rθ′−θ0 ◦ h(r, θ0)
so that θ = θ′. The map h is onto by definition of the set B = K × S1
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which is the union of the Fθ. As this map is defined on a compact set, it is
a homeomorphism.

Take any orientation-preserving homeomorphism f of the circle with
f(θ) = θ′. Notice that Gθ′ = fGθf

−1. Therefore ϕ(Gθ′) = ϕ(f)ϕ(Gθ)ϕ(f)−1

and ϕ(f)(Fθ) = Fθ′ . So, for any (r, θ) ∈ K × S1, as the action ϕ preserves
each leaf of the lamination F , the homeomorphism ϕ(f) sends h(r, θ), which
is the unique point in Fθ∩ ({r}×S1), to the unique point in Fθ′ ∩ ({r}×S1),
which is h(r, θ′). This implies that

ϕ(f) ◦ h(r, θ) = h ◦ ϕK,λ(f)(r, θ).

Now, denote by η(r) the second projection of h(r, 0). As Fθ is the image
of F0 under the θ-rotation, we have h(r, θ) = h(r, 0) + (0, θ) and h(r, θ) =
(r, η(r) + θ).

4.2. Action outside the lamination. In this section, we study the
action ϕ on each connected component of A−K × S1. Let A = [r1, r2]× S1
be the closure of such a component. By the last subsection, A is invariant
under ϕ. This subsection is dedicated to the proof of the following proposi-
tion.

Proposition 4.3. The restriction ϕA of the action ϕ to A is conjugate
to a+ (or equivalently to a−) via an orientation-preserving homeomorphism.

Proof. Notice that, for any θ ∈ S1, the action ϕA|Gθ admits no fixed point

in the interior of A by definition of K × S1; we will often use this fact.

Let us begin by sketching the proof. We show that, for any θ ∈ S1,
the morphism ϕA|Gθ can be lifted to a morphism ϕ̃Aθ from Gθ to the group

HomeoZ([r1, r2]×R) of homeomorphisms of the closed band which commute
with all translations (r, x) 7→ (r, x+n), where n is an integer. Moreover, this
group morphism can be chosen to have a bounded orbit. We will then find a
continuum L̃θ with empty interior which touches both boundary components
of the band and is invariant under ϕ̃Aθ . Then we prove that the sets Lθ =
π(L̃θ), where π : [r1, r2]×R→ A is the projection, are pairwise disjoint and
are simple paths which join the two boundary components of the annulus A.
We see that the group ϕ(Gθ∩Gθ′), for θ 6= θ′, has a unique fixed point a(θ, θ′)
on Lθ. This last map a turns out to be continuous and allows us to build a
conjugacy between ϕA and a+.

The following lemma is necessary to build the invariant sets Lθ.

For g in Homeo0(A), we denote by g̃ the lift of g to HomeoZ([r1, r2]×R)
(this means that π ◦ g̃ = g ◦π) with g̃((r1, 0)) ∈ [r1, r2]× [−1/2, 1/2). Denote
by D ⊂ R2 the fundamental domain [r1, r2] × [−1/2, 1/2] for the action of
Z on [r1, r2]× R.
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Lemma 4.4. The map Homeo0(S1) → R+ which associates to any f in

Homeo0(S1) the diameter of the image under ϕ̃(f) (or equivalently under
any lift of ϕ(f)) of the fundamental domain D, is bounded.

Remark 4.5. The continuity of ϕ is not used in the proof of this lemma.

Proof. For a group G generated by a finite set S and for any g in G,
we denote by lS(g) the word length of g with respect to S, which is the
minimal number of factors necessary to write g as a product of elements of
S ∪S−1, where S−1 is the set of inverses of elements in S. In order to prove
the lemma, we need the following result which can be easily deduced from
[14, Lemma 4.4], inspired from [1].

Lemma 4.6. There exist constants C > 0 and C ′ ∈ R such that, for any
sequence (fn)n∈N in Homeo0(S1), there exists a finite set S ⊂ Homeo0(S1)
such that:

• each fn belongs to the group generated by S;
• lS(fn) ≤ C log(n) + C ′ for all n ∈ N.

Let us now prove Lemma 4.4. Suppose for contradiction that there exists
a sequence (fn)n∈N in Homeo0(S1) such that, for any integer n,

diam(ϕ̃(fn)(D)) ≥ n.

We then apply Lemma 4.6 to this sequence to obtain a finite subset S
of Homeo0(S1) such that the conclusion of the lemma holds. Let fn =
s1,n . . . swn,n, where wn ≤ C log(n) + C ′ and the si,j ’s are in S ∪ S−1. We

now prove that this implies that the diameter of ˜ϕ(fn)(D) grows at most at
a logarithmic speed, which contradicts the hypothesis on (fn)n.

Denote by M the maximum of ‖ϕ̃(s)(x)−x‖, where s varies over S∪S−1
and x varies over R2 (or equivalently over the compact set D) and where ‖·‖
denotes the euclidean norm. Then for any x and y in D and any integer n,∥∥ϕ̃(s1,n) . . . ˜ϕ(swn,n)(x)− ϕ̃(s1,n) . . . ˜ϕ(swn,n)(y)

∥∥
≤
∥∥ϕ̃(s1,n) . . . ˜ϕ(swn,n)(x)− x‖+ ‖ϕ̃(s1,n) . . . ˜ϕ(swn,n)(y)− y

∥∥
+ ‖x− y‖.

But for any z in D, we have∥∥ϕ̃(s1,n) . . . ˜ϕ(swn,n)(z)− z
∥∥

≤
wn−1∑
k=1

∥∥ϕ̃(sk,n) . . . ˜ϕ(swn,n)(z)− ˜ϕ(sk+1,n) . . . ˜ϕ(swn,n)(z)
∥∥ ≤ (wn − 1)M.



158 E. Militon

Hence

diam
(
ϕ̃(s1,n) . . . ˜ϕ(swn,n)(D)

)
= diam(ϕ̃(fn)(D))

≤ 2(wn − 1)M + diam(D),

contrary to the hypothesis on (fn)n.

Let θ0 be a point of the circle.

Lemma 4.7. There exists a group morphism ϕ̃Aθ0 : Gθ0 → HomeoZ([r1, r2]
× R) such that:

• for any homeomorphism f in Gθ0, Π ◦ ϕ̃Aθ0(f) = ϕA(f), where Π :
HomeoZ([r1, r2]× R)→ Homeo0(A) is the projection;
• the subset {ϕ̃Aθ0(f)((r1, 0)) | f ∈ Gθ0} of the band [r1, r2]×R is bounded.

Moreover, the morphism ϕ̃Aθ0 is continuous.

Remark 4.8. The continuity of ϕ is not necessary for the first part of
this lemma. However, we will use it to simplify the proof.

Proof of Lemma 4.7. As Gθ0 is contractible and Π : HomeoZ([r1, r2]×R)
→ Homeo0(A) is a covering, there exists a (unique) continuous map η :
Gθ0 → HomeoZ([r1, r2]× R) which lifts ϕA|Gθ0

and sends the identity to the

identity. Then the map

Gθ0 ×Gθ0 → HomeoZ([r1, r2]× R), (f, g) 7→ η(fg)−1η(f)η(g),

is continuous and its image is contained in the discrete space of integral
translations; hence it is constant and η is a group morphism. Two group
morphisms which lift ϕA|Gθ0

differ by a morphism Gθ0 → Z. However, as Gθ0
is simple (hence perfect), the latter morphism is trivial and η = ϕ̃Aθ0 . The

action ϕA|Gθ0
has fixed points on the boundary of the annulus A. Hence, as

Gθ0 is path-connected and η(Id) = Id, the action η has fixed points on the
boundary of [r1, r2]×R and any orbit on one of these boundary components
is bounded.

Let

F =
⋃

f∈Gθ0

ϕ̃Aθ0(f)([r1, r2]× (−∞, 0]).

By the above two lemmas, there exists M > 0 such that F ⊂ [r1, r2] ×
(−∞,M ]. Moreover, the closed set F is invariant under the action ϕ̃Aθ0 .
Denote by U the connected component of the complement of F ∪{r1, r2}×R
which contains the open subset (r1, r2)× (M,∞). By construction, the open
set U is invariant under ϕ̃Aθ0 (the interior of a fundamental domain far on the

right must be sent into U by any homeomorphism in the image of ϕ̃Aθ0 , by the
above two lemmas). Consider the topological space B which is the disjoint
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union of [r1, r2]×R with a point {∞} and for which a neighbourhood basis
of ∞ is given by the sets of the form [r1, r2]× (A,∞)∪ {∞}. Now, consider
the prime end compactification of U ⊂ B (see [11]). The space of prime ends
of the simply connected open set U , on which there is a natural action ψ of
the group Gθ0 induced by ϕ̃Aθ0 , is homeomorphic to a circle. By the following
lemma, the action ψ is continuous.

Lemma 4.9. Let W be a simply connected relatively compact open subset
of the plane. Denote by B(W ) the space of prime ends of W . The map

t : Homeo(W )→ Homeo(B(W ))

which, to a homeomorphism f of W , associates the induced homeomorphism
on the space of prime ends of W , is continuous.

Proof. As t is a group morphism and B(W ) is homeomorphic to the
circle, it suffices to prove that, for any prime end ξ in B(W ), the map

Homeo(W )→ B(W ), f 7→ t(f)(ξ),

is continuous at the identity. Fix such a prime end ξ. Denote by V1 ⊃
V2 ⊃ · · · a prime chain which defines the prime end ξ. If we denote by
Ṽn the space of prime points of W which divide Vn, then the Ṽn’s are a
neighbourhood basis of ξ (see [11, Section 3]). Fix n and p > n. If the
uniform distance between f ∈ Homeo(W ) and the identity is smaller than
the distance between the frontier FrW (Vn) of Vn in W and the frontier
FrW (Vp) of Vp in W , then f(FrW (Vn)) does not meet FrW (Vp). By [11,
Lemma 4], if f is sufficiently close to the identity, then f(Vp) ⊂ Vn and

t(f)(Ṽp) ⊂ Ṽn. This implies that, for f in such a neighbourhood, the point

t(f)(ξ) belongs to Ṽn, which is what we wanted to prove.

Take a prime end ξ of U . The principal set of ξ is the set of points
p in B, called principal points of ξ, such that there exists a prime chain
V1 ⊃ V2 ⊃ · · · defining ξ such that the sequence of frontiers of Vn in U
converges for the Hausdorff topology to the single-point set {p}. This set
is compact and connected. Consider the subset of prime ends of U whose
principal set contains a point of {r1, r2} × R ∪ {∞}. This set is invariant
under ψ. Denote by I a connected component of the complement of this set
(the complement is non-empty by [11] because there exists an arc [0,∞)→ U
which converges as t→∞ to a point which belongs to the frontier of U but
not to {r1, r2} × R ∪ {∞}). By path-connectedness of Gθ0 and continuity
of ψ, the interval I is invariant under ψ. Let ψ′ be the restriction of ψ to I.

Lemma 4.10. The action ψ′ has no fixed point. Therefore, the interval
I is open.

Proof. Suppose for contradiction that the action ψ′ has a fixed point ξ.
Then the principal set of the prime end ξ would provide a compact subset
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of (r1, r2)×R which is invariant under the action ϕ̃Aθ0 , contradicting Lemma
4.11 below.

Lemma 4.11. The action ϕ̃Aθ0 has no non-empty compact connected in-
variant set contained in (r1, r2)× R.

Proof. Suppose for contradiction that the action ϕ̃Aθ0 admits such an
invariant set. Consider the unbounded component of the complement of
this set. The action ϕ̃Aθ0 induces an action η on the space P of prime ends
of this set, which is homeomorphic to a circle. By Proposition 3.12, η has a
fixed point.

If the set of fixed points of η has non-empty interior, then since accessible
prime ends are dense in this set (see [11]), there exists an accessible prime
end which is fixed under η. Therefore, the only point in the principal set
of this prime end, which is contained in the interior of [r1, r2] × R, is fixed
under the action ϕ̃Aθ0 .

Suppose now that the set of fixed points of η has empty interior. Take a
connected component of the complement of this set and an endpoint e of this
interval. Take a closed interval J of the circle whose interior contains θ0. De-
note by GJ the subgroup of Homeo0(S1) consisting of the homeomorphisms
which pointwise fix a neighbourhood of J . Then, according to Section 3 in
which we describe the continuous actions of Homeoc(R) on R, the set of fixed
points of ψ(GJ) contains a non-trivial closed interval J which contains e
(not necessarily in its interior). As accessible prime ends are dense in P , this
closed interval contains an accessible prime end. Then, as the principal set
of this prime end reduces to a point p, this point is fixed under the group
ϕ̃Aθ0(GJ). As a result, the group ϕ̃Aθ0(GJ) of homeomorphisms of [r1, r2]× R
admits a non-empty set HJ of fixed points which is contained in the closure
CJ of the union of the principal sets of prime ends in J , which is compact.
Moreover, HJ is contained in the interior of [r1, r2]×R. For any closed inter-
val J ′ whose interior contains θ0 and which is contained in J , the set HJ ′ of
fixed points of ϕ̃Aθ0(GJ ′) which are contained in CJ is non-empty. Moreover,
if an interval J ′′ is contained in J ′, then HJ ′′ ⊂ HJ ′ . By compactness, the
intersection of those sets, which is contained in the set of fixed points of ϕ̃Aθ0 ,
is non-empty, a contradiction.

Our next goal is to prove that the interval I corresponds to an embedded
open interval Lθ0 in (r1, r2)× R.

By the description of continuous actions of Homeoc(R) on R with no
global fixed points (see Section 3), the action ψ is transitive on the open
interval I. Hence, all the prime ends in I are accessible, by density of acces-
sible prime ends. Moreover, by this same description, for any θ 6= θ0 on the
circle, there is a unique prime end eθ ∈ I which is fixed under ψ|Gθ0∩Gθ , and

I is the union of these prime ends. For any θ 6= θ0 on the circle, denote by x̃θ
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the unique point in the principal set of the prime end eθ. For any f in Gθ0
which sends θ 6= θ0 to θ′, we have ϕ̃Aθ0(f)(x̃θ) = x̃θ′ , as Gθ′ = fGθf

−1. Let

L̃θ0 = {x̃θ | θ ∈ S1 − {θ0}} and Lθ0 = π(L̃θ0).

Denote by limθ→θ+0
x̃θ (respectively limθ→θ−0

x̃θ) the set of points which

are limits of sequences (x̃θn)n≥1, where (θn)n≥1 is a sequence in S1 − {θ0}
such that limn→∞ θn = θ0 and, for n sufficiently large, θn > θ0 (respectively
θn < θ0).

Lemma 4.12. The map

S1 − {θ0} → (r1, r2)× R, θ 7→ x̃θ,

is one-to-one and continuous. Moreover, the sets limθ→θ+0
x̃θ and limθ→θ−0

x̃θ
each contain exactly one point of the boundary {r1, r2} × R.

Proof. Take θ′ 6= θ and suppose for contradiction that x̃θ = x̃θ′ . Take
θ′′ 6= θ in the same connected component of S1 − {θ0, θ} as θ′ such that
x̃θ′′ 6= x̃θ. Consider a homeomorphism f of the circle in Gθ0 ∩ Gθ which
sends θ′ to θ′′. Then the homeomorphism ϕ̃Aθ0(f) of the band fixes x̃θ and
sends x̃θ′ to x̃θ′′ , which is impossible. Thus the map considered is one-to-one.

Now, let us prove that it is continuous. Take a smooth vector field on the
circle which vanishes only on a small connected neighbourhood N of θ0. De-
note by (ht)t∈R the one-parameter group generated by this vector field. Fix
θ1 ∈ S1−N . For any θ ∈ S1−N , denote by t(θ) the unique time t such that
ht(θ1) = θ. The map θ 7→ t(θ) is then a homeomorphism S1−N → R. Now,
the relation x̃θ = ϕ(ht(θ))(x̃θ1) and the continuity of ϕ imply that the map
θ 7→ x̃θ is continuous, as the neighbourhoodN can be taken arbitrarily small.

Lemma 4.11 implies that the intersection of each of the sets limθ→θ+0
x̃θ

and limθ→θ−0
x̃θ with {r1, r2} × R is non-empty. Indeed, otherwise, these

limit sets would provide a non-empty compact connected invariant set for
the action ϕ̃Aθ0 .

It remains to prove that the intersections limθ→θ+0
x̃θ ∩ ({r1, r2} × R)

and limθ→θ−0
x̃θ ∩ ({r1, r2} ×R) are single points. Suppose for instance that

limθ→θ+0
x̃θ ∩ ({r1}×R) contains at least two points. Recall that, by Propo-

sition 3.13, the restriction of the action ϕ to {r1} × S1 is a conjugacy by a
homeomorphism S1 → {r1}× S1. Therefore, the action ϕA|Gθ0

fixes a point p

and is transitive on {r1}×S1−{p}. Moreover, as any orbit of ϕ̃Aθ0 is bounded

by Lemmas 4.4 and 4.7, this last action pointwise fixes the set π−1({p}) and
is transitive on each connected component of {r1} × R − π−1({p}). There-
fore, the intersection limθ→θ+0

x̃θ ∩ ({r1} ×R), which is closed and invariant

under ϕ̃Aθ0 , contains two distinct lifts p̃ and p̃′ of p. Take a sequence (x̃θn)n∈N

in L̃θ0 , where θn → θ+0 , which converges to p̃, and a sequence (x̃θ′n)n∈N in L̃θ0 ,
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where θ′n → θ+0 , which converges to p̃′. Taking a subsequence if necessary,
we may suppose that the sequences (θn)n and (θ′n)n are monotone and that,
for any n, the angle θ′n lies between θn and θn+1. Take f in Gθ0 which, for
any n, sends θn to θ′n. Then, for any n, ϕ̃Aθ0(f) sends x̃θn to x̃θ′n . By conti-
nuity, this homeomorphism sends p̃ to p̃′. This is impossible as these points
are fixed under the action ϕ̃Aθ0 .

Note that we do not know for the moment that the points limθ→θ+0
x̃θ

and limθ→θ−0
x̃θ lie on different boundary components of A.

For any θ 6= θ0, we define Lθ = Rθ−θ0(Lθ0). Notice that, for any θ, the set
Lθ is invariant under the action ϕA|Gθ . Indeed, Gθ = Rθ−θ0Gθ0R

−1
θ−θ0 , which

implies that ϕA(Gθ) = Rθ−θ0ϕ
A(Gθ0)R−1θ−θ0 and, as Lθ0 is invariant under

the action ϕA|Gθ0
, the claim follows. Moreover, for an orientation-preserving

homeomorphism f of the circle which sends an angle θ to another angle θ′,
the homeomorphism ϕ(f) maps the set Lθ onto Lθ′ . To prove this, use the
fact that f can be written as the composition of a homeomorphism which
fixes θ with a rotation.

Lemma 4.13. The sets Lθ are pairwise disjoint. Moreover, there ex-
ists a homeomorphism from [0, 1] onto the closure of Lθ0 which maps (0, 1)
onto Lθ0.

Proof. By using rotations, it suffices to prove that Lθ0 ∩ Lθ = ∅ for
any θ 6= θ0. Remember that the restriction of the action ψ′ to Gθ ∩ Gθ0
has one fixed point eθ and is transitive on each connected component of
I−{eθ}. Denote by Eθ the subset of I consisting of the prime ends whose only
point in the principal set belongs to π−1(Lθ). As this set is invariant under
ψ|Gθ∩Gθ0 , it is either empty, or the one-point set {eθ}, or one of the connected

components of I −{eθ}, or the closure of such a component or I. In the last

case, we would have L̃θ0 ⊂ π−1(Lθ) and Lθ0 ⊂ Lθ. Using homeomorphisms
of the circle which fix θ0 and send θ to another angle θ′, we see that Lθ0 ⊂ Lθ′
for any θ′. This is impossible as the intersection of the closure of Lθ0 with
the boundary of A is a two-point set which should be invariant under any
rotation. The case where Eθ is a half-line (open or closed) leads to a similar
contradiction by looking at one of the limit sets of Lθ0 . Hence, for any θ 6= θ0,
the intersection Lθ0 ∩Lθ = Lθ0 ∩Rθ−θ0(Lθ0) contains at most one point, the
point xθ = π(x̃θ).

This implies that any leaf of the form {r} × S1 ⊂ A contains at most
two points of Lθ0 . We claim that if one of these leaves contains two points
of Lθ0 , then no leaf contains exactly one point of this set.

Take a point xθ1 in Lθ0 which belongs to the leaf {r}×S1. Suppose that
there exists another point of Lθ0 on this leaf. This implies that xθ1 ∈ Lθ1 .
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Using homeomorphisms in Gθ0 which send θ1 to another point θ 6= θ0 of the
circle, we see that xθ ∈ Lθ for any θ 6= θ0. Hence, each circular leaf which
meets Lθ0 contains exactly two points of this set.

If x is another point of Lθ0 on the leaf {r} × S1, then there exists α
in S1 − {0} such that Rα(x) = xθ1 ∈ Lα+θ0 . Therefore, α + θ0 = θ1 and
necessarily x = Rθ0−θ1(xθ1) = x2θ0−θ1 . Hence, the map θ 7→ p1(xθ), where
p1 : [r1, r2] × R 7→ [r1, r2] is the projection, is strictly monotone (as it is
one-to-one) on (θ0, θ0 + 1/2] and on [θ0 + 1/2, θ0 + 1). Moreover, if this
map were not globally one-to-one, the circular leaf which contains xθ0+1/2

would contain only one point, which is impossible. Hence, this map is strictly
monotone. This also implies that the sets Lθ for θ 6= θ0 are disjoint from Lθ0 .
The monotonicity of the map θ 7→ p1(xθ) combined with Lemma 4.12 implies
the second part of the lemma.

Now, we can complete the proof of the proposition. By Theorem 3.1, for
any θ ∈ S1 and r ∈ (0, 1) the action ϕA|Gθ∩Gθ+r admits a unique fixed point

a(r, θ) in Lθ. Moreover, for any θ ∈ S1, the map

(0, 1)→ A, r 7→ a(r, θ),

is one-to-one, continuous and extends to a continuous map [0, 1] → A
which allows us to define a(0, θ), which is the fixed point of ϕA|Gθ on one

boundary component of A, and a(1, θ), which is the fixed point of ϕA|Gθ
on the other boundary component of A. By Lemma 4.13, a is one-to-one.
Moreover, for every α ∈ S1 and every (r, θ) ∈ A = [0, 1] × S1, we have
a(r, θ + α) = Rα(a(r, θ)). Indeed, Rα(a(r, θ)) is the only fixed point of
ϕA|Gθ+α∩Gθ+α+r = Rαϕ

A
|Gθ∩Gθ+rR

−1
α in Lθ+α = Rα(Lθ). This implies that

a is continuous, so it is a homeomorphism A → A. It remains to prove
that it defines a conjugacy with a+. Take a homeomorphism f and a point
(r, θ) ∈ A. Notice that

fGθ ∩Gθ+rf−1 = Gf(θ) ∩Gf(θ+r) = Gf(θ) ∩Gf(θ)+(f̃(θ+r)−f̃(θ))

and ϕA(f)(Lθ) = Lf(θ). Therefore, ϕA(f)(a(r, θ)) = a(a+(f)(r, θ)). The

action ϕA is conjugate to a+. As a+ and a− are conjugate both by an
orientation-preserving homeomorphism and by an orientation-reversing one,
the proposition is proved.

4.3. Global conjugacy. In this section we end the proof of Theorem
2.1 in the case of actions on an annulus.

By Lemma 4.2, our action ϕ, restricted to the union K × S1 of the Fθ
where θ varies over the circle, is conjugate to the restriction of ϕK,λ to K×S1
by a homeomorphism of the form (r, θ) 7→ (r, η(r)+θ) for any λ. Conjugating
ϕ by a homeomorphism of the annulus of the form (r, θ) 7→ (r, η̂(r) + θ),
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where η̂ is a continuous function equal to η on K, we may assume from now
on that ϕ = ϕK,λ on K × S1 for any λ.

Moreover, for each connected component (ri1, r
i
2)×S1 of the complement

of K×S1, the restriction of this action to [ri1, r
i
2]×S1 is conjugate to a+ via

an orientation-preserving homeomorphism gi : [0, 1]× S1 → [ri1, r
i
2]× S1, by

Proposition 4.3.

We now define a particular continuous function λ0 : [0, 1]−K→{−1, 1}
such that ϕ is conjugate to ϕK,λ0 . For any index i, denote by d+i the diameter
of gi({(r, 0) | 0 ≤ r ≤ 1}) and by d−i the diameter of gi({(r,−r) | 0 ≤
r ≤ 1}). If d+i ≤ d−i , we define λ0 to be identically 1 on (ri1, r

i
2). Otherwise,

i.e. if d+i > d−i , we define the map λ0 to be identically −1 on (ri1, r
i
2).

Now, let us define a conjugacy between ϕ and ϕK,λ0 . Notice that, by
the above, for any connected component (ri1, r

i
2) × S1 of the complement

of K × S1, there exists an orientation-preserving homeomorphism hi of
[ri1, r

i
2] × S1 such that, for any orientation-preserving homeomorphism f of

the circle,

hi ◦ ϕK,λ0(f)|[ri1,ri2]×S1
= ϕ(f)|[ri1,ri2]×S1

◦ hi.

Then, for any (r, θ) ∈ [ri1, r
i
2] × S1 and any α ∈ S1, we have hi(r, θ + α) =

hi(r, θ) + (0, α). (Recall that we have supposed at the beginning of this sec-
tion that the morphism ϕ sends the α-rotation of the circle to the α-rotation
of the annulus.)

Now, denote by h : A→ A the map which is the identity on K×S1, and
hi on the connected component (ri1, r

i
2)× S1 of the complement of K × S1.

It is clear that h is a bijection and h ◦ ϕK,λ0(f) = ϕ(f) ◦ h for all f in
Homeo0(S1). Moreover, h commutes with rotations.

It remains to prove that h is continuous. As h commutes with rotations,
it suffices to prove that the map

η : [0, 1]→ A, r 7→ h(r, 0),

is continuous. Notice first that, for a connected component (ri1, r
i
2) of the

complement of K, we have limr→ri+1
η(r) = hi(r1, 0). This last point is the

only point of F0 on {r1} × S1 and is therefore equal to η(r1) = (r1, 0). The
map η is also left continuous at ri2. It now suffices to establish that, for
any sequence ((rn1 , r

n
2 ))n∈N of connected components of the complement of

K such that (rn1 )n∈N is monotone and converges to a point r∞ ∈ K, for
any sequence (rn)n∈N of real numbers such that rn ∈ (rn1 , r

n
2 ) for any n, the

sequence (η(rn))n∈N converges to η(r∞) = (r∞, 0).

Lemma 4.14. For n sufficiently large, one of the curves h([rn1 , r
n
2 ]×{0})

and h
({(

r, θ − r−rn1
rn2−rn1

) ∣∣ rn1 ≤ r ≤ rn2
})

is homotopic to [rn1 , r
n
2 ] × {0} with

fixed extremities in [rn1 , r
n
2 ]× S1. We denote this curve by cn.
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Proof. Suppose for contradiction that there exists a strictly increasing

map σ : N→ N such that, for any n ∈ N, neither h([r
σ(n)
1 , r

σ(n)
2 ]× {0}) nor

h
({

(r, θ − r−rσ(n)1

r
σ(n)
2 −rσ(n)1

)
∣∣ rσ(n)1 ≤ r ≤ r

σ(n)
2

})
is homotopic to [rn1 , r

n
2 ] × {0}.

Then one of these two curves, which we denote by γn, admits a lift γ̃n such

that γ̃n ∩ {rσ(n)1 } × R = {(rσ(n)1 , 0)} and γ̃n ∩ {rσ(n)2 } × R = {(rσ(n)2 , kn)},
where kn is an integer with |kn| ≥ 2. Taking a subsequence if necessary, we
can suppose that either kn ≥ 2 for any n, or kn ≤ −2 for any n. To simplify
notation, suppose that kn ≥ 2 for any n.

We now need an intermediate result. Let (x̃n)n∈N and (ỹn)n∈N be se-
quences in [0, 1] × R converging respectively to x̃∞ and ỹ∞ such that, for
any n, x̃n and ỹn belong to the curve γ̃n and are not endpoints of this
curve. We suppose that x̃∞ 6= ỹ∞ and that the points x̃∞ and ỹ∞ are not
limit points of the endpoints of γ̃n. For any integer n, there exist unique
real rn, r′n ∈ (0, 1) such that xn = π(x̃n) (respectively yn = π(ỹn)) is the
unique fixed point of the group ϕ(G0 ∩Grn) (respectively ϕ(G0 ∩Gr′n)) on
the curve γn. We claim that, for any strictly increasing map s : N → N, if
(rs(n))n∈N and (r′s(n))n∈N converge respectively to R and R′, then R 6= R′.

Moreover, R and R′ are different from 0 and 1.
To prove this claim, suppose for contradiction that there exists a map

s such that R = R′. We may suppose (by extracting a subsequence and by
changing the roles of xn and yn if necessary) that rs(n) < r′s(n) for any n.

Then the set of points x in γs(n) for which there exists rs(n) ≤ r ≤ r′s(n) such

that x is fixed under the action ϕ|G0∩Gr (this is also the projection of the
set of points on γ̃s(n) between x̃s(n) and ỹs(n)) defines a sequence of paths

which converge to an interval contained in {r∞} × S1. This interval is the
projection of the interval whose endpoints are x̃∞ and ỹ∞; it has non-empty
interior and is necessarily pointwise fixed by ϕ|G0∩GR . Indeed, each f in
G0∩GR fixes the points between rs(n) and r′s(n) for n sufficiently large, since

it pointwise fixes a neighbourhood of R by definition of GR. Therefore ϕ(f)
fixes the projection of the set of points on γ̃s(n) between x̃s(n) and ỹs(n), for n
sufficiently large. Hence, it also pointwise fixes the projection of the interval
between x̃∞ and ỹ∞ on {r∞}×R. However, there exists no such non-trivial
interval, as the group ϕ(G0 ∩GR) fixes pointwise no non-trivial interval of
{r∞} × S1, a contradiction.

Let us now establish for instance that R 6= 1. The set of points in γs(n)
which are fixed under ϕ|G0∩Gr with rs(n) ≤ r ≤ 1 is a path which admits

a lift which joins x̃s(n) to either (r
σ(s(n))
2 , k) or (r

σ(s(n))
1 , k). Taking a subse-

quence if necessary, this sequence of sets converges to a non-trivial interval
in {r∞}× S1. This interval is necessarily pointwise fixed by ϕ|G0∩GR , a con-
tradiction.
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Let us come back to our proof. There exists a sequence (x̃n)n∈N in
[0, 1] × R converging to (r∞, 1) such that, for any n, x̃n belongs to the
curve γ̃n and is not an endpoint of this curve. Let xn = π(x̃n). For any n,
there exists a unique rn ∈ (0, 1) such that xn is the unique fixed point of the
group ϕ(G0 ∩Grn) on γn. For any n, take a point ỹn on γ̃n such that (ỹn)n
converges to a point p̃ not of the form (r∞, k), where k is an integer. Then p̃
is not a limit point of a sequence of endpoints of γ̃n. As above, let r′n ∈ (0, 1)
be associated to yn = π(ỹn). Consider a strictly increasing map s : N → N
such that (rs(n))n∈N and (r′s(n))n∈N converge respectively to R and R′. Take

f in G0 which sends R to R′. Let zn = ϕ(f)(xn). Then, for any n, the real
number associated to zs(n) is necessarily f(rs(n)), and (f(rs(n)))n converges
to R′. By the claim above, (zs(n))n has the same limit as (ys(n))n. By conti-
nuity, this homeomorphism of the annulus sends (r∞, 0) to p = π(p̃). This
is impossible as (r∞, 0) is fixed under the group ϕ(G0).

Lemma 4.15. The diameter of the curve cn tends to 0 as n→∞.

Proof. This proof is similar to the previous one. Suppose that diam cn X→0.

Denote by c̃n the lift of cn with origin at (r
σ(n)
1 , 0). There exists a subsequence

c̃s(n) which converges (in the Hausdorff topology) to a non-trivial interval.
As the projection of this interval on the annulus is invariant under ϕ|G0

,

this compact set projects onto the whole circle {r∞} × S1. Therefore, there
exists a sequence (x̃n)n∈N, where x̃n ∈ c̃s(n), which converges to a point
of the form (r∞, k) with k 6= 0 (which is not the limit of a sequence of
endpoints of c̃s(n)). There also exists a sequence (ỹn)n∈N, where ỹn ∈ c̃s(n),
which converges to a point p̃ not of the form (r∞, k), where k is an integer.
As in the proof of the above lemma, let rn ∈ (0, 1) (respectively r′n) be
associated to xn = π(x̃n) (respectively yn = π(ỹn)). Taking subsequences
if necessary, we may suppose that (rn)n and (r′n)n converge respectively
to R and R′. As in the above proof, R 6= R′ and both are different from
0 and 1. Take f in G0 which sends R to R′. Then ϕ(f) sends (r∞, 0) to
p = π(p̃) 6= (r∞, 0), which is impossible as (r∞, 0) is fixed under the group
ϕ(G0).

Now, let us prove that cn = h([rn1 , r
n
2 ] × {0}) for n sufficiently large,

which proves the continuity of the map η by the above lemma (because the
endpoints of these curves converge to η(r∞)). Denote by c′n the curve among

h([rn1 , r
n
2 ] × {0}) and h

({(
r, θ − r−rn1

rn2−rn1

) ∣∣ rn1 ≤ r ≤ rn2
})

which is not equal

to cn. As the homotopy class of c′n is not the homotopy class of [rn1 , r
n
2 ]×{0},

the diameter of c′n is bounded from below by 1/2. Hence, for n sufficiently
large (say for n ≥ N), diam cn < diam c′n.

Fix now n ≥ N . The orientation of the circle defines an order on S1−{0}.
Take f 6= Id in G0 such that f(θ) ≥ θ for any θ 6= 0. Then the restriction
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of ϕ(f) to h([rn1 , r
n
2 ] × {0}) and to h

({(
r, θ − r−rn1

rn2−rn1

) ∣∣ rn1 ≤ r ≤ rn2
})

defines orientations on both curves (such that an arc from a point x to its
image under ϕ(f) is positively oriented). If d+n ≤ d−n , the interior of cn is
gn((0, 1) × {0}). Indeed, this is the only simple curve in (rn1 , r

n
2 ) × S1 with

the following properties:

• It is invariant under ϕ|G0
.

• It is oriented from the point (rn1 , 0) to (rn2 , 0).

Moreover, (rn1 , r
n
2 ) × {0} is the only simple curve in (rn1 , r

n
2 ) × S1 with the

following properties:

• It is invariant under the action ϕK,λ0 restricted to G0.
• It is oriented from (rn1 , 0) to (rn2 , 0).

Finally, as h is continuous on [rn1 , r
n
2 ] × S1 and h ◦ ϕK,λ0 = ϕ ◦ h, we have

h([rn1 , r
n
2 ] × {0}) = cn. If d−n < d+n , the interior of cn is gn({(r,−r) | 0 <

r < 1}). Indeed, this is the only simple curve in (rn1 , r
n
2 ) × S1 with the

following properties:

• It is invariant under ϕ|G0
.

• It is oriented from (rn2 , 0) to (rn1 , 0).

Moreover, (rn1 , r
n
2 ) × {0} is the only simple curve in (rn1 , r

n
2 ) × S1 with the

following properties:

• It is invariant under ϕK,λ0 restricted to G0.
• It is oriented from (rn2 , 0) to (rn1 , 0).

Moreover, as h is continuous on [rn1 , r
n
2 ]× S1 and h ◦ϕK,λ0 = ϕ ◦ h, we have

h([rn1 , r
n
2 ]× {0}) = cn.

5. Case of the torus. Let ϕ : Homeo0(S1) → Homeo0(T2) be a one-
to-one group morphism (if such a group morphism is not one-to-one, it
is trivial). Recall that such a morphism is continuous by [15, Theorem 4
and Proposition 2]. In this section, we prove the following theorem and its
corollary:

Theorem 5.1. For any point x of the circle, the image under ϕ of the
group Gx admits a global fixed point.

Corollary 5.2. The action ϕ admits an invariant essential circle, so
the study of this action reduces to the study of an action on an annulus.

Here, essential means non-separating, so that the surface obtained by
cutting along this curve is an annulus. Using the first part of Theorem 2.1
which was proved in the previous section, the corollary implies directly the
second part of the theorem. Let us first see why this theorem implies the
corollary.
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Proof of Corollary 5.2. First, the image under ϕ of the group S1 of
rotations of the circle is conjugate to the subgroup of rotations of the torus
of the form

T2 = S1 × S1 → T2, (θ1, θ2) 7→ (θ1, θ2 + α),

where α ∈ S1. Therefore, after possibly conjugating, we may suppose that
ϕ sends the α-rotation of the circle to the rotation (θ1, θ2) 7→ (θ1, θ2 + α).

Fix a point x0 on the circle. If p is a fixed point for the group ϕ(Gx0),
then the essential circle {ϕ(Rα)(p) | α ∈ S1} is invariant under the action ϕ.
The proof of this last claim is similar to the proof of Lemma 4.1.

Proof of Theorem 5.1. Let us begin by sketching the proof. First, we
prove that the diameters of the images of the fundamental domain [0, 1]2

under lifts of homeomorphisms in the image of ϕ are uniformly bounded.
Then we prove that the restriction of ϕ to a subgroup of the form Gx lifts to a
group morphism ϕ̃x of Gx into HomeoZ2(R2), the group of homeomorphisms
of R2 which commute with integral translations. We prove that ϕ̃x can be
chosen to have a bounded orbit. Using these facts, we find a connected
subset of R2 with empty interior which is invariant under the action ϕ̃x.
Using prime ends, we can prove that the action ϕ|Gx has a fixed point on
the projection of this connected set.

For g in Homeo0(T2), we denote by g̃ the lift of g to HomeoZ2(R2) (this
means that π ◦ g̃ = g ◦ π where π : R2 → T2 = R2/Z2 is the projection)
with g̃(0) ∈ [−1/2, 1/2) × [−1/2, 1/2). Denote by D ⊂ R2 the fundamental
domain [0, 1]2 for the action of Z2 on R2.

Lemma 5.3. The map Homeo0(S1) → R+ which associates to any f in

Homeo0(S1) the diameter of the image under ϕ̃(f) (or equivalently under
any lift of ϕ(f)) of the fundamental domain D is bounded.

Proof. The proof is almost identical to that of Lemma 4.4.

Let x0 be a point of the circle.

Lemma 5.4. There exists a group morphism ϕ̃x0 : Gx0 → HomeoZ2(R2)
such that:

• for any homeomorphism f in Gx0, we have Π ◦ ϕ̃x0(f) = ϕ(f),
where Π : HomeoZ2(R2)→ Homeo0(T2) is the projection;
• the subset {ϕ̃x0(f)(0) | f ∈ Gx0} is bounded.

Moreover, ϕ̃x0 is continuous.

Proof. Let G = ϕ(Gx0). Observe that the map

G×G→ Z2, (f, g) 7→ f̃g
−1

(f̃(g̃(0))),

defines a 2-cocycle on the group G (see [4] or [7] for more about cohomology
of groups). Moreover, by Lemma 5.3, this cocycle is bounded. However, as
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G is isomorphic to Homeoc(R), the cohomology group H2
b (G,Z2) is trivial

(see [10] and [13]). This implies that there exists a bounded map b : G→ Z2

such that

∀f, g ∈ G, (f̃g)−1(f̃(g̃(0))) = b(f) + b(g)− b(fg).

It then suffices to take for ϕ̃x0 the composition of ϕ|Gx0 with

G→ HomeoZ2(R2), f 7→ f̃ + b(f).

For this action, the orbit of 0 is bounded by construction. It now suf-
fices to prove that this action is continuous. As Gx0 is contractible and
Π : HomeoZ2(R2) → Homeo0(T2) is a covering, there exists a (unique)
continuous map η : Gx0 → HomeoZ2(R2) which lifts ϕ|Gx0 and sends the
identity to the identity. Then the map

Gx0 ×Gx0 → HomeoZ2(R2), (f, g)→ η(fg)−1η(f)η(g),

is continuous and its image is contained in the discrete space of integral
translations; hence it is constant and η is a group morphism. Two group
morphisms which lift ϕ|Gx0 differ by a group morphism Gx0 → Z2. However,

as the group Gx0 is simple (hence perfect), such a group morphism is trivial
and η = ϕ̃x0 .

Note that this proof can be adapted to prove Lemma 4.7. However, the
proof of Lemma 4.7 is specific to the annulus: it uses the action on the
boundary components of the annulus.

We can now complete the proof of Theorem 5.1. Denote by F the closure
of ⋃

f∈Gx0

ϕ̃x0(f)((−∞, 0]× R).

By the above two lemmas, there exists M > 0 such that F ⊂ (−∞,M ]×R.
Denote by U the connected component of the complement of F which con-
tains the open subset (M,∞)× R. Denote by U ′ the image of U under the
projection p2 : R × R → R × R/Z and by ψx0 the action on the annulus
R× R/Z defined by

∀f ∈ Homeo0(S1), ψx0(f) ◦ p2 = p2 ◦ ϕ̃x0(f).

Notice that p1 ◦ ψx0 = ϕ|Gx0 ◦ p1, where p1 : R× R/Z→ R/Z× R/Z = T2.

By construction, the open set U ′ is invariant under the action ψx0 (a fun-
damental domain far on the right must be sent into U ′ by any homeomor-
phism in the image of ψx0 , by the above two lemmas). Now, this action can
be extended to the set of prime ends of U ′, giving a continuous action ψ of
the group Gx0 (isomorphic to Homeoc(R)) on the topological space of prime
ends of U ′, which is homeomorphic to S1.
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By Proposition 3.12, this last action has a fixed point. Moreover, for
any closed interval I whose interior contains x0, the set of fixed points of
the action of GI contains an open interval and hence an accessible prime
end. Therefore, the intersection of the set FI of fixed points of the action
ψx0|GI with [0,M ] × R/Z is non-empty. Hence, the set of fixed points of
ψx0 , which is the intersection of the FI ’s, is non-empty. Thus Theorem 5.1
is proved.

6. Case of the sphere and of the closed disc. In this section, we
discuss Conjecture 2.2. The following first step toward this conjecture was
communicated to me by Kathryn Mann.

Proposition 6.1 (Mann). Fix a morphism ϕ : Homeo0(S1) →
Homeo0(S2) (respectively ϕ : Homeo0(S1) → Homeo0(D2)). Then the ac-
tion ϕ has exactly two global fixed points on the sphere (respectively one
global fixed point on the closed disc).

Proof. The case of the disc is almost identical to the case of the sphere
and is left to the reader.

Identify the sphere with {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}. By a
theorem by Kerékjártó (see [2]), the restriction of ψ to the group of ro-
tations of S1 ⊂ Homeo0(S1) is topologically conjugate to the action of an S1
Lie subgroup of SO(3). In other words, it is conjugate to an action of the
form

S1 → Homeo0(S2),
θ 7→ (x, y, z) 7→

(
cos(θ)x− sin(θ)y, sin(θ)x+ cos(θ)y, z

)
.

Hence the action of the circle induced by ϕ has exactly two fixed points,
which we denote by N and S. We now prove that the set {N,S} is pre-
served by any element of the ϕ-image of Homeo0(S1). Consider the subset
A ⊂ Homeo0(S1) consisting of the homeomorphisms which commute with
a non-trivial finite order rotation of the circle. Then any element of ϕ(A)
preserves the set of fixed points of the ϕ-image of a non-trivial finite or-
der rotation. This last set is equal to {N,S}. By the following lemma, each
element of ϕ(Homeo0(S1)) preserves {N,S}.

Lemma 6.2. The set A generates the group Homeo0(S1), i.e. any hom-
eomorphism in Homeo0(S1) can be written as a product of elements of A.

Now, ψ restricted to {N,S} induces a morphism Homeo0(S1) → Z/2.
As the group Homeo0(S1) is simple, this morphism is trivial, so Proposition
6.1 is proved.

Proof of Lemma 6.2. By the fragmentation lemma (see [3, Theorem
1.2.3]), any homeomorphism in Homeo0(S1) can be written as a product
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of homeomorphisms each supported in an interval of length smaller than
1/6 (where the length of the circle is 1). Moreover, any homeomorphism
supported in the interior of an interval I ( S1 can be written as a commu-
tator

f = f1f2f
−1
1 f−12 ,

where f1 and f2 are homeomorphisms of the circle supported in I (see [14,
Lemma 4.6]). Thus it suffices to prove that any commutator of homeomor-
phisms supported in the same interval I of length smaller than 1/6 can be
written as a product of elements of A.

Let f1 and f2 be two homeomorphisms supported in I. Let Rθ be the
θ-rotation of the circle. For i = 1, 2, define gi|I = fi, gi|R1/2(I) = R1/2fiR

−1
1/2,

and gi(x) = x elsewhere. Notice that the homeomorphisms g1 and g2 com-
mute with R1/2 and hence belong to A. Take a homeomorphism h in A which
commutes with all order 3 rotations such that h(R1/2(I)) ∩ R1/2(I) = ∅
and h|I = IdI (such a homeomorphism h exists as I is short enough).

Then the homeomorphism [g1, hg2h
−1] is equal to [g1, g2] = [f1, f2] on I,

to [Id, hg2h
−1] = Id on h(R1/2(I)), to [g1, Id] = Id on R1/2(I), and to the

identity elsewhere. Hence

[f1, f2] = [g1, hg2h
−1]

and Lemma 6.2 is proved.

It is now natural to try to adapt the proof of Section 4 to prove Conjec-
ture 2.2. As in the case of the annulus, we can find an invariant lamination
by circles but there is a problem when this lamination does not accumulate
on one of the global fixed points of this action: one has to study the actions
of the group of orientation-preserving homeomorphisms of the circle on the
open annulus or on the half-open annulus such that the groups of the form
Gθ have no fixed point in the interior of these surfaces. If we try to adapt
the proof of Subsection 4.2, we are confronted with a problem: Lemma 4.4 is
false in this case (it is easy to find counter-examples) and it seems difficult
to adapt it to the new situation. However, this lemma seems to be the only
problematic step for the proof of this conjecture.
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Mathématiques Laurent Schwartz (UMR 7640) in the École Polytechnique
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