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C0-semigroups generated by second order
differential operators

Gabriela Raluca Mocanu (Cluj-Napoca)

Abstract. Let W (u)(x) = 1
2
xa(1 − x)bu′′(x) with a, b ≥ 2. We consider the C0-

semigroups generated by this operator on the spaces of continuous functions, respectively
square integrable functions. The connection between these semigroups together with suit-
able approximation processes is studied. Also, some qualitative and quantitative properties
are derived.

1. Introduction. Viewing differential operators as generators of C0-
semigroups is not only elegant, but has innumerable applications in exact
sciences. This paper is devoted to the operator

(1.1) W (u)(x) = 1
2x

a(1− x)bu′′(x), x ∈ [0, 1], a, b ≥ 2,

acting on C ([0, 1],R), C ([0, 1],C), L2([0, 1],R) and L2([0, 1],C).

The operatorW (u)(x) = 1
2x

a(1−x)bu′′(x) in the Banach space C ([0, 1],R)
has been intensively investigated. It has been shown that the closure of W
generates a positive C0-semigroup of contractions. This semigroup can be
approximated by iterates of a positive approximation process, and under
certain conditions both t→ 0 and t→∞ limits can be found.

We shall denote by C n([0, 1],R) (resp. C n([0, 1],C)) the space of all real-
valued (resp. complex-valued) continuous functions, defined on [0, 1], that
are n-times continuously differentiable in [0, 1]. The spaces C ([0, 1],C) and
C ([0, 1],R) will be endowed with the supremum norm, denoted by ‖ · ‖; we
shall also consider the Hilbert spaces L2([0, 1],C) and L2([0, 1],R), with the
norm denoted by ‖ · ‖2 and the inner product 〈 , 〉. In this article it is shown
that, under suitable assumptions, the operator W generates C0-semigroups
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on all the four spaces considered, and appropriate approximation processes
are proposed.

I will stand for the identity operator on the corresponding space.

Lk denotes the iterate of order k ≥ 1 of the operator L.

If L is a linear operator defined on a subspace E of C ([0, 1],R) or of
L2([0, 1],R), we shall denote by L̃ the complexified operator defined on E+

iE by L̃(f + ig) = L(f) + iL(g) for f, g ∈ E.

Lemma 1.1. Let L : C ([0, 1],R)→ C ([0, 1],R) be linear and positive. Let
L̃ : C ([0, 1],C)→ C ([0, 1],C) be the complexified operator. Then ‖L̃‖ = ‖L‖.

Proof. Obviously ‖L̃‖ ≥ ‖L‖. To prove the reverse inequality, let u =
f + ig ∈ C ([0, 1],C), x ∈ [0, 1] and a+ ib := L̃(u)(x) = L(f)(x) + iL(g)(x).

Let θ := arg(a+ ib) and

α := (sgn a)(sgn cos θ) cos θ, β := (sgn b)(sgn sin θ) sin θ.

Then a sin θ = b cos θ and |a+ ib| =
√
a2 + b2 = |a cos θ+ b sin θ| = αa+ βb.

Therefore |L̃(u)(x)| = |a+ ib| = αa+ βb = L(αf + βg)(x).

Since L is positive, we have

|L̃(u)(x)| ≤ L
(
|αf + βg|

)
(x) ≤ L

(√
f2 + g2

)
(x) = L(|u|)(x).

It follows that

‖L̃(u)‖ ≤ ‖L(|u|)‖ ≤ ‖L‖ ‖u‖, u ∈ C ([0, 1],C).

This entails ‖L̃‖ ≤ ‖L‖, and the proof is finished.

A Markov operator is a positive linear operator T defined on C ([0, 1],R)
which satisfies T (1) = 1, where 1 is the constant function 1.

2. The associated semigroups. Define an operator A with domain

(2.1) DV (A) :=
{
u ∈ C ([0, 1],R) ∩ C 2((0, 1),R) : lim

x→0,1
W (u)(x) = 0

}
,

as

(2.2) A(u)(x) =

{
W (u)(x) when x ∈ (0, 1),

0 when x ∈ {0, 1}.
Then the following theorem holds [CM].

Theorem 2.1.

(i) The operator (A,DV (A)) is the infinitesimal generator of a C0-
semigroup (T (t))t≥0 of positive contractions on C ([0, 1],R).

(ii) C 2([0, 1],R) is a core of A.
(iii) limt→∞ T (t)(f) = T (f) for f ∈ C ([0, 1],R), where

T (f)(x) := (1− x)f(0) + xf(1), x ∈ [0, 1].
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We shall consider the closures of W̃ on C ([0, 1],C) and L2([0, 1],C) as
possible generators of strongly continuous semigroups on these spaces.

As a consequence of Theorem 2.1 we obtain

Proposition 2.2. The closure of W in C ([0, 1],R) is (A,DV (A)). More-

over, the closure of W̃ in C ([0, 1],C) is (Ã,DV (Ã)), and it generates a con-
tractive semigroup (T̃ (t))t≥0 on C ([0, 1], C) such that

(2.3) lim
t→∞

T̃ (t)(f) = T̃ (f), f ∈ C ([0, 1],C).

Proposition 2.3. Let M(a, b) := 1
4 maxx∈[0,1](x

a(1− x)b)′′. Then W̃ −
M(a, b)I is dissipative in L2([0, 1],C).

Proof. Apply [MR, Proposition 2.1] with u(x) = 1
2x

a(1 − x)b and v(x)
= 0 for x ∈ [0, 1].

In order to obtain estimates for M(a, b), write

(2.4) M(a, b) = 1
4 max

[0,1]
xa−2(1− x)b−2Q,

where

Q = a(a− 1)(1− x)2 − 2abx(1− x) + b(b− 1)x2 ≤ max{a(a− 1), b(b− 1)}.
• a = 2 or b = 2 implies xa−2(1− x)b−2 ≤ 1 for x ∈ [0, 1], so that

M(a, b) ≤ 1
4 max{a(a− 1), b(b− 1)}.

• a > 2 and b > 2 implies xa−2(1− x)b−2 ≤ (a−2)a−2(b−2)b−2

(a+b−4)a+b−4 , so that

M(a, b) ≤ 1

4

(a− 2)a−2(b− 2)b−2

(a+ b− 4)a+b−4
max{a(a− 1), b(b− 1)}.

Numerical evaluation of M(a, b) shows that it has a maximum value of
0.5 reached for a = b = 2; M(a, b) tends to zero as a and b increase.

Theorem 2.4. W̃ −M(a, b)I is closable, and its closure is the infinites-
imal generator of a contraction semigroup (S(t))t≥0 on L2([0, 1],C). The

closure of W̃ , (W̃ −M(a, b)I) +M(a, b)I, thus generates a C0-semigroup
(U(t))t≥0 connected with S(t) through U(t) = eM(a,b)tS(t). The norm of
U(t) is ‖U(t)‖ = eM(a,b)t.

Proof. Let µ > 0; then the complexified operator µI−Ã is bijective (with
range C ([0, 1],C)). Pick f ∈ C ([0, 1],C) and u ∈ DV (Ã) with µu− Ãu = f .

Since C 2([0, 1],C) is a core for Ã, there exists a sequence un ∈ C 2([0, 1],C),
n ≥ 1, such that un → u and Ã(un) → Ã(u). Thus un ∈ D(W̃ ) and
µun − W̃ (un) = µun − Ã(un) → µu − Ã(u) = f . This means that
(µI − W̃ )(un) ∈ R(µI − W̃ ) and (µI − W̃ )(un)→ f . We conclude that

• R(µI − W̃ ) is uniformly dense in C ([0, 1],C), and therefore
• R(µI − W̃ ) is dense in L2([0, 1],C).
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Let λ > max{0,−M(a, b)}. Then λI−(W̃ −M(a, b)I) = (λ+M(a, b))I−W̃
with λ + M(a, b) > 0 has dense range in L2([0, 1],C), and W̃ −M(a, b)I
is densely defined and dissipative in L2([0, 1],C). By the Lumer–Phillips
theorem the proof is complete.

Since W̃ (1) = 0, the semigroup generated by W̃ is a Markov semigroup:
U(t)(1) = 1 for all t ≥ 0.

By “decomplexification”, the results in this subsection are also valid for
L2([0, 1],R), i.e., the closure of W generates a strongly continuous semigroup
on L2([0, 1],R).

3. Approximation processes for semigroups. A positive approxi-
mation process (Ln) on C ([0, 1],R) is a sequence of positive linear operators
from C ([0, 1],R) in C ([0, 1],R) such that limn→∞ Ln(f) = f for each con-
tinuous function f .

Assume there exists a positive approximation process Ln on C ([0, 1],R)
such that a Voronovskaja-type relation exists between Ln and A:

(3.1) lim
n→∞

n(Ln(f)− f) = A(f), f ∈ C 2([0, 1],R).

Under suitable conditions [AR, CM], the semigroup generated by (A,DV (A))
can be approximated by iterates of Ln:

(3.2) T (t)(f) = lim
n→∞

Lk(n)n (f), f ∈ C ([0, 1],R),

where (k(n)) is a sequence of positive integers such that limn→∞ k(n)/n = t.
Possible types of such Ln sequences can be found in e.g. [AR, CMP2, CM,
AC, R].

We shall describe a related approach. A positive approximation process
for the differential operator A given by (2.1)–(2.2) can be built as in [R].
For 0 ≤ s ≤ 1/2, let F (s) : C ([0, 1],R) → C ([0, 1],R) be a positive linear
operator defined by

(3.3) F (s)(f)(x) := 1
2x

a−1(1− x)bf
(
(1−

√
2sx)

)
+ 1

2x
a(1− x)b−1f

(√
2s+ (1−

√
2s)x

)
+ 1

2

(
2− xa−1(1− x)b−1

)
f(x),

where f ∈ C ([0, 1],R), x ∈ [0, 1]. For this process, F (s)(e0) = e0, F (s)(e1)
= e1 and F (s)(e2) = x2 + sxa(1 − x)b, with x ∈ [0, 1] and ei(x) := xi,
i ∈ {0, 1, 2}. Then [R, Theorem 4]

(3.4) lim
n→∞

F (t/n)n(f) = T (t)(f)

for each t ≥ 0 and f ∈ C ([0, 1],R).

The kth iterate of the complexification of L coincides with the complex-
ification of the kth iterate of L. Together with (3.2) and (3.4) this leads
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to

T̃ (t)(f) = lim
n→∞

L̃k(n)n (f), f ∈ C ([0, 1],C),(3.5)

T̃ (t)(f) = lim
n→∞

F̃ (t/n)n(f), f ∈ C ([0, 1],C).(3.6)

The aim of this section is to build a specific approximation process for L2

functions, i.e., we want an L
k(n)
n such that a relation of the type (3.5) holds

on L2([0, 1],C) for (U(t))t≥0. We do this along the general lines presented
in [CMP1].

Consider the differential operator

(3.7) A(u)(x) = p(x)u′′(x), p(x) = 1
2x

a(1− x)b, a, b ≥ 2,

with domain DV (A) given by (2.1).

Choose a parameter η ∈ ]1/2, 1[, and consider an even positive function
φ ∈ L1(−1, 1) satisfying

(3.8)

1�

−1
φ(t) dt = 1 and

1�

−1
t2φ(t) dt = η.

For n ∈ N we define the sequence

(3.9) σn =

√
2p(x)

nη
.

Proposition 3.1. For sufficiently large n,

(3.10) 0 ≤ x− tσn(x) ≤ 1, x ∈ [0, 1], t ∈ [−1, 1].

Proof. It is clear from the definition of p(x) that σn is positive, and since
t is an arbitrary parameter in [−1, 1], it suffices to prove that

(3.11) 0 ≤ x− σn(x) and x+ σn(x) ≤ 1.

Explicitly,

(3.12) 0 ≤ x− xa/2(1− x)b/2
√
nη

and x+
xa/2(1− x)b/2

√
nη

≤ 1.

Since a, b ≥ 2 and x ∈ [0, 1], we have xa/2 ≤ x and (1 − x)b/2 ≤ (1 − x).
Using these and taking n large enough such that

√
nη > 1, we obtain the

desired inequalities.

We are interested in the operators

(3.13) Ln(f)(x) =

1�

−1
f(x− tσn(x))φ(t) dt

in L2([0, 1],C). Notice that for n large enough the sequence is well defined.
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To study these operators, we calculate Ln(ei)(x), where ei(x) = xi for
i ∈ {0, 1, 2}:

Ln(e0)(x) =

1�

−1
φ(t) dt = 1 = e0(x),(3.14)

Ln(e1)(x) =

1�

−1
(x− tσn(x))φ(t) dt = x = e1(x),(3.15)

Ln(e2)(x) =

1�

−1
(x− tσn(x))2φ(t) dt = x2 +

2p(x)

n
(3.16)

= e2(x) +
2p(x)

n
.

It is clear that

(3.17) lim
n→∞

Ln(ei)(x) = ei(x)

in C ([0, 1],C).

Let ω(f, δ) be the first modulus of continuity of f ∈ C ([0, 1],C) with
δ > 0, defined as

ω(f, δ) := sup{|f(x)− f(y)| : x, y ∈ [0, 1], |x− y| ≤ δ}.

Proposition 3.2. Ln is an approximation process in C ([0, 1],C), i.e.,
there exists an absolute constant k > 0 such that for every f ∈ C ([0, 1],C),

(3.18) ‖Ln(f)− f‖∞ ≤ kω(f, 1/
√
n),

hence ‖Ln(f) − f‖∞ → 0. Moreover, the sequence ‖Ln‖2 is bounded in
L2([0, 1],C).

Proof. To show the first property, we compute

Ln(f)(x)− f(x) =

1�

−1
f(x− tσn(x))φ(t) dt− f(x)

1�

−1
φ(t) dt(3.19)

=

1�

−1
[f(x− tσn(x))− f(x)]φ(t) dt.

Then

|Ln(f)(x)− f(x)| ≤
1�

−1
|f(x− tσn(x))− f(x)|φ(t) dt(3.20)

≤ ω
(
f,

√
2‖p‖∞
nη

)
≤ kω(f, 1/

√
n).
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To show the second property, consider a function σ = σn; we want to
show that the operator

(3.21) L(f)(x) =

1�

−1
f(x− tσ(x))φ(t) dt

is bounded. To this end, perform a change of variables t→ s = x− tσ(x):

(3.22) L(f)(x) =

x+σ(x)�

x−σ(x)

f(s)φ

(
x− s
σ(x)

)
1

σ(x)
ds.

Then

(3.23) |L(f)(x)| ≤ ‖φ‖∞
1

σ(x)

x+σ(x)�

x−σ(x)

|f(s)| ds.

Using the maximal function

(3.24) Mf(x) = sup
r>0

1

2r

x+r�

x−r
|f(s)| ds

yields

(3.25) |L(f)(x)| ≤ 2‖φ‖∞Mf(x),

so that, by the properties of the maximal function (see e.g. [CH]),

(3.26) ‖L(f)‖2 ≤ 2c2‖φ‖∞‖f‖2,
where c2 is a constant.

It follows that ‖Ln‖2 ≤ 2c2‖φ‖∞ for n ≥ 1.
We will also need the fact that C 2([0, 1],C) is contained in DV (A) and

is a core for (A,DV (A)), as shown previously.

Theorem 3.3. There exists c > 0 such that for every f ∈ C 2([0, 1],C),

(3.27) ‖n(Ln(f)− f)− pf ′′‖∞ ≤ cω(f ′′, 1/
√
n),

hence n(Ln(f)− f)→ pf ′′ uniformly on [0, 1].

Proof. By using a Taylor expansion, we get

f(x− tσn(x))− f(x)

= (−tσn(x))f ′(x) + 1
2(−tσn(x))2f ′′(x) + 1

2(−tσn(x))2[f ′′(ζx,t)− f ′′(x)].

Multiplying by φ(t) and integrating over t ∈ [−1, 1] we get

(3.28) Ln(f)− f = 1
2f
′′ησ2n +Rn,

where

(3.29) Rn(x) =
1

2

1�

−1
(−tσn(x))2[f ′′(ζx,t)− f ′′(x)]φ(t) dt.
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We will obtain an upper bound for Rn(x).
Since ζx,t is between x and x + tσn(x), it follows that |ζx,t − x| ≤

|t|σn(x) ≤ σn(x). But σn(x) =
√

2p(x)/(nη), where p(x) = xa(1 − x)b/2.

With
√
xa(1− x)b/η ≤ θ (a positive constant), we get

|ζx,t − x| ≤ θ/
√
n.

Together with the definition and properties of the modulus of continuity, we
obtain

|f ′′(ζx,t)− f ′′(x)| ≤ ω(f ′′, |ζx,t − x|) = ω(f ′′, θ/
√
n) = (1 + θ)ω(f ′′, 1/

√
n).

Consequently,

Rn(x) ≤ 1
2(1 + θ)ω(f ′′, 1/

√
n)σ2n(x)

1�

−1
t2φ(t) dt.

By using the definition of σn(x) and the integral properties of φ(t), we get

Rn(x) ≤ 1 + θ

n
p(x)ω(f ′′, 1/

√
n).

With (1 + θ)p(x) ≤ c (some positive constant) we obtain

(3.30) Rn(x) ≤ c

n
ω(f ′′, 1/

√
n).

In the limit n→∞, we have nRn → 0, and thus n(Ln(f)− f)→ pf ′′.

Theorem 3.4. With φ(t) as in [CMP1, (57)], successive iterations of
Ln are stable, i.e.,

(3.31) ‖Lkn‖2 ≤ eMk/n.

Proof. The proof runs as the proof of [CMP1, Lemma 5.10] once the
term τn = a′/n in that proof is set to zero.

With all the concepts gathered so far, an application of Trotter’s theo-
rem [T] yields

Theorem 3.5. For every t ≥ 0, if (k(n)) is a sequence of positive inte-
gers such that k(n)/n→ t then

(3.32) lim
n→∞

Lk(n)n = U(t)

strongly on L2([0, 1],C).

Similarly, the same conclusions are valid for L2([0, 1],R).

Remark 3.6. A series of properties of the complexified operator T̃ (t)
may be obtained by using known results for T (t), e.g., from [R].

Let c := (a−1)a−1(b−1)b−1

(a+b−2)a+b−2 and q := max{a, b}, 0 < p < 1. Moreover,

suppose |f(x) − f(0)| ≤ Cfx and |f(1) − f(x)| ≤ Kf (1 − x) for x ∈ [0, 1].
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In [R] it is shown that

(3.33) |T (t)(f)(x)− f(x)| ≤ 1
2(1− e−ct)x(1− x)‖f ′′‖

for f ∈ C 2([0, 1],R), t ≥ 0, x ∈ [0, 1], and

(3.34) |T (t)(f)(x)− T (f)(x)|
≤ (Cf +Kf )

(
x(1− x)e−t

p
+ (q − 1)qq/(1−q)t(p−1)/(q−1)

)
for f ∈ C ([0, 1],R), t ≥ 0, x ∈ [0, 1].

Consider these properties in a general framework of an operator L sat-
isfying |L(u)(x)| ≤ ϕ(x)‖u′′‖ for u ∈ C 2([0, 1],R) and x ∈ [0, 1]. We want
to find a similar relationship for its complexification L̃ acting on functions
f ∈ C 2([0, 1],C), f = u+ iv, u, v ∈ C 2([0, 1],R). We have

|L̃(f)(x)| = |L(u)(x) + iL(v)(x)| =
√

(L(u)(x))2 + (L(v)(x))2.

Since |L(u)(x)| ≤ ϕ(x)‖u′′‖ (and similarly for v(x)), we get

|L̃(f)(x)| ≤
√
ϕ2(x)(‖u′′‖2 + ‖v′′‖2) = ϕ(x)

√
‖u′′‖2 + ‖v′′‖2.

But

‖u′′‖ = max
x∈[0,1]

|u′′(x)| ≤ max
x∈[0,1]

√
(u′′(x))2 + (v′′(x))2 = max

x∈[0,1]

√
|f ′′(x)|2

≤ max
x∈[0,1]

|f ′′(x)| = ‖f ′′‖.

Similarly, ‖v′′‖ ≤ ‖f ′′‖ and thus

|L̃(f)(x)| ≤ ϕ(x)
√
‖u′′‖2 + ‖v′′‖2 ≤

√
2ϕ(x)‖f ′′‖.

With (3.33), (3.34) and with the above by complexification we get

(3.35) |T̃ (t)(f)(x)− f(x)| ≤
√

2

2
(1− e−ct)x(1− x)‖f ′′‖

for f ∈ C 2([0, 1],C), t ≥ 0, x ∈ [0, 1].
Let f ∈ C ([0, 1],C) with

|f(x)− f(0)| ≤ Cfx, |f(1)− f(x)| ≤ Kf (1− x);

then

(3.36) |T̃ (t)(f)(x)− T̃ (f)(x)|
≤
√

2(Cf +Kf )
(
x(1− x)e−t

p
+ (q − 1)qq/(1−q)t(p−1)/(q−1)

)
.
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