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Abstract. Let X and Y be complex Banach spaces of dimension greater than 2. We
show that every 2-local Lie isomorphism φ of B(X) onto B(Y ) has the form φ = ϕ + τ ,
where ϕ is an isomorphism or the negative of an anti-isomorphism of B(X) onto B(Y ), and
τ is a homogeneous map from B(X) into CI vanishing on all finite sums of commutators.

1. Introduction and preliminaries. Let A be an associative algebra.
A linear bijection φ from A onto another algebra is called a Lie isomorphism
if φ([A,B]) = [φ(A), φ(B)] for all A,B ∈ A. Here [A,B] = AB − BA is the
usual Lie product, also called a commutator. The study of Lie isomorphisms
of associative algebras and operator algebras, primarily focusing upon their
relations to associative (anti-)isomorphisms, has a long history. See [2, 3, 6,
14, 15, 16] and the references therein.

A well known direction in the study of the local action of maps is the
local map problem. Let A be an algebra. Recall that a linear map θ of A is
called a local isomorphism (respectively, local derivation) if for each A ∈ A,
there exists an isomorphism (respectively, a derivation) θA, depending on
A, such that θ(A) = θA(A). Those two notions were introduced in 1990
independently by Kadison [9] and Larson and Sourour [11]. Since then, local
isomorphisms and local derivations have been studied for various algebras:
see for example [17, 5, 21, 7, 8] and the references therein.

In 1997, Šemrl [19] introduced the notion of 2-local maps. A map δ of an
algebra A (without assumption of the linearity) is called a 2-local isomor-
phism (respectively, 2-local derivation) if for any A,B ∈ A, there exists an
isomorphism (respectively, a derivation) δA,B of A such that δ(A) = δA,B(A)
and δ(B) = δA,B(B). 2-local maps have been studied on different operator
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algebras by many authors [1, 19, 10, 12, 13]. In [19], Šemrl described 2-local
derivations and 2-local isomorphisms on the algebra of all bounded linear
operators on an infinite-dimensional separable Hilbert space. A similar de-
scription for the finite-dimensional case appeared later in [10]. In [12], 2-local
derivations have been described on matrix algebras over finite-dimensional
division rings.

Obviously, we can define (2-)local Lie isomorphisms and Lie derivations
in a natural way. In the previous paper [4], we characterized (2-)local Lie
derivations of operator algebras on Banach spaces. In the present paper, we
will study 2-local Lie isomorphisms. Formally, we say that a map φ of an
algebra A is a 2-local Lie isomorphism if for any A,B ∈ A, there exists a Lie
isomorphism φA,B of A such that φ(A) = φA,B(A) and φ(B) = φA,B(B).

Throughout, X is a complex Banach space with topological dual X∗. If
x ∈ X and f ∈ X∗, the rank at most one operator x⊗ f is defined to be the
map y 7→ f(y)x for y ∈ X. It is easy to see that the trace of x⊗f is f(x), that
is, trace(x ⊗ f) = f(x). As usual, if X and Y are Banach spaces, B(X,Y )
denotes the set of all bounded linear operators from X to Y , and B(X,X)
is denoted simply by B(X).

Proposition 1.1 ([3]). Let X and Y be complex Banach spaces of di-
mension greater than 2. Suppose that φ is a Lie isomorphism of B(X)
onto B(Y ). Then one of the following holds.

(1) There is an invertible operator T in B(X,Y ) and a linear map τ
from B(X) into CI vanishing on each commutator such that φ(A) =
TAT−1 + τ(A) for all A ∈ B(X).

(2) There is an invertible operator S in B(X∗, Y ) and a linear map γ
from B(X) into CI vanishing on each commutator such that φ(A) =
−SA∗S−1 + γ(A) for all A ∈ B(X).

Lemma 1.2 ([20]). Let A,B,E, F be in B(X) and suppose that E and
F are non-zero idempotents. If EAETF = ETFBF for all T ∈ B(X), then
EAE = λE and FBF = λF for some λ ∈ C. In particular, if EAETF = 0
for all T ∈ B(X) then EAE = 0; and if ETFBF = 0 for all T ∈ B(X)
then FBF = 0.

Lemma 1.3 ([20]). Suppose that E and F in B(X) are idempotents and
satisfy EF =FE. Then the statement “either EF =0 or (I−E)(I−F ) = 0”
is true if and only if [[E, [E, [T, F ]]], F ] = [E, [T, F ]] for all T ∈ B(X).

2. 2-local Lie isomorphisms. Our main result reads as follows.

Theorem 2.1. Let X and Y be complex Banach spaces of dimension
greater than 2. Let φ be a surjective 2-local Lie isomorphism from B(X)
onto B(Y ). Then one of the following holds.
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(1) φ = ϕ + τ , where ϕ is an isomorphism from B(X) onto B(Y ), and
τ is a homogeneous map from B(X) into CI vanishing on all finite
sums of commutators.

(2) φ = −ϕ+ τ , where ϕ is an anti-isomorphism from B(X) onto B(Y ),
and τ is a homogeneous map from B(X) into CI vanishing on all
finite sums of commutators.

The proof will be given in several steps. The main idea is to divide B(X)
into the three-by-three block matrix algebra and to identify the behavior of
φ on each block.

We begin with a trivial step. The proof is a direct verification and we
omit it.

Lemma 2.2.

(1) φ is injective and homogeneous;
(2) φ−1 is also a 2-local Lie isomorphism;
(3) φ preserves commutativity;
(4) φ(CI) = CI and φ(0) = 0.

We will make a crucial use of the following result.

Lemma 2.3.

(1) Let A and B be in B(X). Then φ(A+B)− (φ(A) + φ(B)) ∈ CI.
(2) Let C and D be in B(Y ). Then φ−1(C + D) − (φ−1(C) + φ−1(D))
∈ CI.

Proof. We only prove (1); the proof of (2) is similar. Suppose that f ∈ X∗
and x ∈ ker(f) and set F = x ⊗ f . We claim that trace(φ(C)φ(F )) =
trace(CF ) for all C ∈ B(X). Indeed, by Proposition 1.1 and noting that F
is a commutator, either there is an invertible operator T in B(X,Y ) and a
scalar λ such that

φ(C) = TCT−1 + λI and φ(F ) = TFT−1,

or there is an invertible operator S in B(X∗, Y ) and a scalar η such that

φ(C) = −SC∗S−1 + ηI and φ(F ) = −SF ∗S−1.
(In either case, we see that φ(F ) is of rank one.) If the former case occurs,
we have φ(C)φ(F ) = TCFT−1 + λTFT−1 and then trace(φ(C)φ(F )) =
trace(CF ); if the latter case occurs, we have φ(C)φ(F ) = S(FC)∗S−1 −
ηSF ∗S−1 and then trace(φ(C)φ(F )) = trace(FC) = trace(CF ).

Therefore

trace(φ(A+B)φ(F )) = trace((A+B)F ) = trace
(
(φ(A) + φ(B))φ(F )

)
,

and so trace((φ(A+B)− (φ(A) + φ(B)))φ(F )) = 0. Hence

trace
(
φ−1(φ(A+B)− (φ(A) + φ(B)))F

)
= 0.
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That is,
f
(
φ−1(φ(A+B)− (φ(A) + φ(B)))x

)
= 0

for all f ∈ X∗ and x ∈ ker(f). This implies that φ−1(φ(A + B) − (φ(A) +
φ(B)) ∈ CI. So φ(A+B)− (φ(A) + φ(B)) ∈ CI.

Since the dimension of X is greater than 2, there exist three non-trivial
idempotent operators P1, P2, P3 on X such that P1 + P2 + P3 = I and
PiPj = 0 for all i 6= j. For each i ∈ {1, 2, 3}, by Proposition 1.1, there
exists an idempotent operator Qi in B(Y ) such that φ(Pi) − Qi is a scalar
multiple of I. Since Pi is non-trivial, it follows from Lemma 2.2 that Qi is
also non-trivial. Therefore, such a Qi is unique. In the foregoing, we shall fix
those Pi and Qi.

In the rest, for A,B ∈ B(X), the symbol φA,B stands for a Lie iso-
morphism from B(X) onto B(Y ) such that φ(A) = φA,B(A) and φ(B) =
φA,B(B).

Lemma 2.4. Either QiQj = 0 for all i 6= j, or (I −Qi)(I −Qj) = 0 for
all i 6= j.

Proof. Since any two of {P1, P2, P3} commute, it follows that any two
of {Q1, Q2, Q3} commute. Making use of the necessity of Lemma 1.3, we
have [[Pi, [Pi, [T, Pj ]]], Pj ] = [Pi, [T, Pj ]] for all T ∈ B(X), i 6= j. Applying
the Lie isomorphism φPi,Pj to both sides of this identity and noting that
φPi,Pj is surjective, we find that [[Qi, [Qi, [S,Qj ]]], Qj ] = [Qi, [S,Qj ]] for all
S ∈ B(Y ). Making use of the sufficiency of Lemma 1.3, either QiQj = 0
or (I − Qi)(I − Qj) = 0. If (I − Q1)(I − Q2) = (I − Q1)(I − Q3) = 0 but
Q2Q3 = 0, then I − Q1 = (I − Q1)Q2 = (I − Q1)(I − Q3)Q2 = 0. This
conflicts with the fact that Q1 6= I, completing the proof.

In the following, we say that φ is 1-type if QiQj = 0 for all i 6= j, and
2-type if (I −Qi)(I −Qj) = 0 for all i 6= j. If φ is 1-type, we define Q′i = Qi,
i = 1, 2, 3; when φ is 2-type, we define Q′i = I − Qi, i = 1, 2, 3. Note that
Q′1 +Q′2 +Q′3 is idempotent.

Lemma 2.5.

(1) Q′1 +Q′2 +Q′3 = I.
(2) If φ is 1-type, then φ(Pi) ∈ Q′i+CI and φ−1(Q′i) ∈ Pi+CI, i = 1, 2, 3.
(3) If φ is 2-type, then φ(Pi) ∈ −Q′i + CI and φ−1(Q′i) ∈ −Pi + CI,

i = 1, 2, 3.

Proof. We distinguish two cases.

Case 1: φ is 1-type. Then by the definition, φ(Pi) ∈ Qi+CI = Q′i+CI.
Hence φ−1(Q′i) ∈ φ−1(φ(Pi) + CI) = Pi + CI by Lemmas 2.3(2) and 2.2.



2-local Lie isomorphisms 5

Moreover, by Lemmas 2.3(1) and 2.2,

Q′1 +Q′2 +Q′3 ∈ φ(P1) + φ(P2) + φ(P3) + CI
⊆ φ(P1 + P2 + P3) + CI = φ(I) + CI = CI.

It follows from idempotency that Q′1 +Q′2 +Q′3 = I.

Case 2: φ is 2-type. Then φ(Pi) ∈ Qi+CI = −Q′i+CI. Hence φ−1(Q′i) ∈
φ−1(−φ(Pi) + CI) = −Pi + CI by Lemmas 2.3(2) and 2.2. Moreover, by
Lemmas 2.3(1) and 2.2,

Q′1 +Q′2 +Q′3 ∈ CI − (φ(P1) + φ(P2) + φ(P3))

⊆ CI − φ(P1 + P2 + P3) = CI − φ(I) = CI.

It follows from idempotency that Q′1 +Q′2 +Q′3 = I.

Now, let Aij = PiB(X)Pj and Bij = Q′iB(Y )Q′j , 1 ≤ i, j ≤ 3. Then
B(X) =

∑3
i,j=1Aij and B(Y ) =

∑3
i,j=1 Bij . We will identify the behavior

of φ on Aij .

Lemma 2.6.

(1) If φ is 1-type, then φ(Aij) = Bij for i 6= j.
(2) If φ is 2-type, then φ(Aij) = Bji for i 6= j.

Proof. Let i, j ∈ {1, 2, 3} and i 6= j.
(1) Suppose that φ is 1-type. Let A ∈ Aij . Then by Lemma 2.5(2),

φ(A) = φA,Pj (A) = φA,Pj ([A,Pj ])(2.1)

= [φA,Pj (A), φA,Pj (Pj)] = [φ(A), Q′j ],

and for k 6= i, j, by Lemmas 2.2(4) and 2.5(2),

(2.2) 0 = [φ(A), φ(Pk)] = [φ(A), Q′k].

Combining (2.1) and (2.2), we get φ(A) = Q′iφ(A)Q
′
j ∈ Bij . Therefore,

φ(Aij) ⊆ Bij . On the other hand, considering φ−1 we have φ(Aij) ⊇ Bij . So
φ(Aij) = Bij .

(2) Suppose that φ is 2-type. Let A ∈ Aij . Then by Lemma 2.5(3),

φ(A) = φA,Pj (A) = φA,Pj ([A,Pj ])(2.3)

= [φA,Pj (A), φA,Pj (Pj)] = [φ(A),−Q′j ],

and for k 6= i, j, by Lemmas 2.2(4) and 2.5(3),

(2.4) 0 = [φ(A), φ(Pk)] = [φ(A), Q′k].

Combining (2.3) and (2.4), we get φ(A) = Q′jφ(A)Q
′
i ∈ Bji. Therefore,

φ(Aij) ⊆ Bji. On the other hand, considering φ−1 we have φ(Aij) ⊇ Bji. So
φ(Aij) = Bji.
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Lemma 2.7. For i ∈ {1, 2, 3}, there is a homogeneous map fi : Aii → C
such that φ(Aii) − fi(Aii)I ∈ Bii. Moreover, for each Bii ∈ Bii there is
Aii ∈ Aii such that φ(Aii) = Bii + fi(Aii)I.

Proof. We only consider the case i = 1. The proofs for the other cases
are similar.

Let A be in A11 and write φ(A) =
∑3

i,j=1Bij corresponding to the de-
composition of B(Y ). For each j ∈ {1, 2, 3}, since A and Pj commute, it
follows that φ(A) and φ(Pj) commute. Thus, if φ is 1-type, we have

0 = [φ(A), Q′j ] =
∑
k 6=j

(Bkj −Bjk);

if φ is 2-type, we have

0 = [φ(A),−Q′j ] = −
∑
k 6=j

(Bkj −Bjk).

Consequently, we always have
∑

k 6=j(Bkj − Bjk) = 0. From this, we get
Bkj = 0 for all k 6= j. Thus φ(A) = B11 +B22 +B33.

For R23 ∈ B23, by Lemma 2.6 there exists T ∈ A23 or T ∈ A32 such
that φ(T ) = R23. Since A and T commute, it follows that φ(A) and φ(T )
commute. Thus

B22R23 −R23B33 =
[ 3∑
i=1

Bii, R23

]
= [φ(A), φ(T )] = 0.

So, by Lemma 1.2, B22 = f1(A)Q
′
2 and B33 = f1(A)Q

′
3 for some f1(A) ∈ C.

Thus

φ(A) = B11 + f1(A)(Q
′
2 +Q′3) = B11 − f1(A)Q′1 + f1(A)I.

From this, we see that φ(A)− f1(A)I ∈ B11.
To see that f1 is homogeneous, we let A be in A11 and λ be a scalar.

Then φ(A) − f1(A)I ∈ B11 and φ(λA) − f1(λA)I ∈ B11. It follows from
the homogeneity of φ that (f1(λA) − λf1(A))I ∈ B11. This forces that
f1(λA)− λf1(A) = 0.

Finally, let Bii ∈ Bii. Applying the preceding result to φ−1, there exists
an Aii ∈ Aii and a scalar λ ∈ C such that φ(Aii+λI) = Bii. By Lemmas 2.2
and 2.3, we can suppose that φ(Aii + λI) = φ(Aii) − µI for some µ ∈ C.
Then φ(Aii) = Bii + µI. This implies φ(Aii) − µI ∈ Bii. So µ = fi(Aii),
completing the proof.

Now for
∑3

i,j=1Aij ∈
∑3

i,j=1Aij , we define

ψ
( 3∑
i,j=1

Aij

)
=

3∑
i,j=1

φ(Aij)−
3∑

k=1

fk(Akk)I.
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Lemma 2.8.

(1) ψ(Aij) = φ(Aij), i 6= j.
(2) ψ(Aij) = Bij for all i, j ∈ {1, 2, 3} if φ is 1-type; ψ(Aij) = Bji for

all i, j ∈ {1, 2, 3} if φ is 2-type.
(3) ψ(

∑3
i,j=1Aij) =

∑3
i,j=1 ψ(Aij).

(4) ψ(Pi) = Qi for all i ∈ {1, 2, 3}.
(5) ψ is homogeneous and bijective.

Proof. If i 6= j, then ψ(Aij) = φ(Aij) by the definition, and hence by
Lemma 2.6, ψ(Aij) = Bij if φ is 1-type and ψ(Aij) = Bji if φ is 2-type.
By the definition again, ψ(Aii) = φ(Aii) − fi(Aii)I. So ψ(Aii) = Bii by
Lemma 2.7 and

ψ
( 3∑
i,j=1

Aij

)
=

3∑
k=1

(φ(Aii)− fi(Aii)I) +

3∑
i 6=j

φ(Aij) =

3∑
i,j=1

ψ(Aij).

So far, we have proved the first three parts. Now the last part is an easy
consequence of (2) and (3).

Lemma 2.9. ψ is additive on Aij for 1 ≤ i, j ≤ 3.

Proof. Let A12 and B12 be in A12. Making use of Lemma 2.3, we see that

ψ(A12 +B12)− (ψ(A12) + ψ(B12))

= φ(A12 +B12)− (φ(A12) + φ(B12)) ∈ CI.

This together with the fact that ψ(A12) = B12 or B21 gives ψ(A12 +B12)−
(ψ(A12) + ψ(B12)) = 0. So ψ is additive on A12.

Now let A11 and B11 be in A11. By the definition of ψ and Lemma 2.3,

ψ(A11+B11)−ψ(A11)−ψ(B11)

= φ(A11+B11)−φ(A11)−φ(B11)+f1(A11)I+f1(B11)I−f1(A11+B11)I

∈ CI.

This together with the fact that ψ(A11) = B11 implies that

ψ(A11 +B11)− (ψ(A11) + ψ(B11)) = 0.

So ψ is additive on A11.
The rest can be proved in a similar way.

Proposition 2.10. ψ is linear.

Proof. By Lemma 2.8, it suffices to show that ψ is additive. Let

A =
3∑

i,j=1

Aij and B =
3∑

i,j=1

Bij
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be in B(X). Then Lemmas 2.8 and 2.9 imply that

ψ(A+B) = ψ
( 3∑
i,j=1

(Aij +Bij)
)
=

3∑
i,j=1

ψ(Aij +Bij)

=

3∑
i,j=1

(ψ(Aij) + ψ(Bij)) = ψ
( 3∑
i,j=1

Aij

)
+ ψ

( 3∑
i,j=1

Bij

)
= ψ(A) + ψ(B).

Lemma 2.11. One of the following holds.

(1) There exists an isomorphism ϕ of B(X) onto B(Y ) and a linear map
τ1 from B(X) into CI such that ψ = ϕ+ τ1.

(2) There exists an anti-isomorphism ϕ of B(X) onto B(Y ) and a linear
map τ1 from B(X) into CI such that ψ = −ϕ+ τ1.

Proof. By the definition of ψ and Lemma 2.3, ψ(A)− φ(A) ∈ CI for all
A ∈ B(X). Thus, if [A,B] = 0 for A,B ∈ B(X), then

[ψ(A), ψ(B)] = [φ(A), φ(B)] = [φA,B(A), φA,B(B)] = φA,B([A,B]) = 0.

So ψ is a bijective linear map preserving commutativity. It follows from
[3, Theorem 2] that

ψ = αϕ+ τ1,

where α is a non-zero scalar, ϕ is an isomorphism or an anti-isomorphism of
B(X) onto B(Y ), and τ1 is a linear map from B(X) into CI.

For i ∈ {1, 2, 3}, we have

(2.5) Qi = ψ(Pi) = αϕ(Pi) + βiI

for some βi ∈ C. Since both Qi and ϕ(Pi) are idempotents, we have

αϕ(Pi) + βiI = (α2 + 2αβi)ϕ(Pi) + β2i I.

Since ϕ(Pi) /∈ CI, we have

α2 + 2αβi − α = 0 and β2i − βi = 0.

So either α = 1 and βi = 0 for all i ∈ {1, 2, 3}, or α = −1 and βi = 1 for all
i ∈ {1, 2, 3}.

Let A12 be a non-zero element in A12. Then ψ(A12) = αϕ(A12) + βI for
some scalar β. Since both ψ(A12) and ϕ(A12) are square-zero, it follows that

2αβϕ(A12) + β2I = 0.

Hence since ϕ(A12) /∈ CI, we get β = 0. So

(2.6) ψ(A12) = αϕ(A12).

Case 1: α = 1 and βi = 0 for all i ∈ {1, 2, 3}. We will show that ϕ is
then an isomorphism.
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By (2.5), Qi = ϕ(Pi) and QiQj = ϕ(Pi)ϕ(Pj) = 0 for i 6= j. So φ is
1-type and so ψ(A12) ∈ B12 by Lemma 2.8. If ϕ is an anti-isomorphism,
then, noting ψ(A12) = ϕ(A12) by (2.6), we have

ψ(A12) = Q1ψ(A12) = ϕ(P1)ϕ(A12) = ϕ(A12P1) = 0.

This contradiction shows that ϕ is an isomorphism.

Case 2: α = −1 and βi = 1 for all i ∈ {1, 2, 3}. We will show that ϕ is
then an anti-isomorphism.

By (2.5), Qi = −ϕ(Pi) + I and then

(I −Qi)(I −Qj) = ϕ(Pi)ϕ(Pj) = 0 for i 6= j.

So φ is 2-type and hence ψ(A12) ∈ B21 by Lemma 2.8. If ϕ is an isomorphism,
then noting ψ(A12) = −ϕ(A12) by (2.6), we have

ψ(A12) = ψ(A12)(I −Q1) = −ϕ(A12)ϕ(P1) = −ϕ(A12P1) = 0.

This contradiction shows that ϕ is an anti-isomorphism.

Proof of Theorem 2.1. Without loss of generality, we assume that Lemma
2.11(1) holds. For A ∈ B(X), define τ(A) = φ(A)− ϕ(A). Then φ = ϕ+ τ .
Then homogeneity of φ and ϕ gives the homogeneity of τ . Obviously, τ(A) ∈
CI for all A ∈ B(X). Since each isomorphism of B(X) onto B(Y ) is spatially
implemented [18], there is an invertible operator T in B(X,Y ) such that
φ(A) = TAT−1 + τ(A) for all A ∈ B(X).

Now let P0 be an fixed idempotent with rank one. Let B in B(X) be a
finite sum of commutators. Then by Proposition 1.1, either

TP0T
−1 + τ(P0) = S1P0S

−1
1 + λ1I and TBT−1 + τ(B) = S1BS

−1
1

for some invertible operator S1 in B(X,Y ) and saclar λ1, or

TP0T
−1 + τ(P0) = −S2P ∗0 S−12 + λ2I and TBT−1 + τ(B) = −S2B∗S−12

for some invertible operator S2 in B(X∗, Y ) and scalar λ2. If the second case
occurs, we have in particular

TP0T
−1 + τ(P0) = −S2P ∗0 S−12 + λ2I.

Since the dimension of Y is greater than 2, it follows that TP0T
−1 =

−S2P ∗0 S
−1
2 . Taking the trace, we find that 1 = −1, a contradiction. So the

first case holds. Then

TBT−1 + τ(B) = S1BS
−1
1 .

This implies that σ(B) + τ(B) = σ(B). Since the spectrum σ(B) of B is a
compact set, it follows that τ(B) = 0.
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