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NUMBER OF SOLUTIONS IN A BOX OF A LINEFAR
EQUATION IN AN ABELIAN GROUP

BY

MACIEJ ZAKARCZEMNY (Krakéw)

Abstract. For every finite Abelian group I'" and for all g,a1,...,ar € I if there
exists a solution of the equation ZLI a;x; = g in non-negative integers x; < b;, where
b; are positive integers, then the number of such solutions is estimated from below in the
best possible way.

1. Introduction. We have proved in [3] the following conjecture of
A. Schinzel [2]: For every finite Abelian group I' and all ay,...,ax € T,
the number of solutions of the equation aix1 + -+ 4+ agrr = 0 in non-
negative integers x; < b;, where the b; are positive integers, is at least
21=D(I) Hle(bi +1), where D(I') is the Davenport constant of the group I’
(see Definition below).

The present paper is a sequel to [3], and the notation of that paper is used
throughout. The aim of this paper is to deal with the inhomogeneous case.
We shall prove the following two statements.

THEOREM 1.1. For every finite Abelian group I" and all g,a1,...,a; €T,
if there exists a solution of the equation Zle a;T; = ¢ in non-negative
integers x; < b;, where the b; are positive integers, then the number of such

solutions is at least

k
(1.1) 3P0+ ).
i=1
THEOREM 1.2. For every finite Abelian group I and all g,a1,...,ar €T,
if there exists a solution of the equation Zle a;T; = g in non-negative

integers x; < b;, where b; € {2° —1 : s € N}, then the number of such
solutions is at least

k

(1.2) 21 =PI T (ks + 1).

=1
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REMARK 1.3. Let I' = nZy be the direct product of n cyclic groups of
order two, and arq, ..., ay, a basis for I'. Then the number of solutions of the
equation Z?:l a;xr; = Z?:l a; in non-negative integers z; < b; = 2 equals 1.
Since D(I') = n 4 1 (see Olson [1]) and 1 = 3'=PUI [T (2 + 1), we see
that in Theorem 31-D(I) ig the best possible coefficient independent of
a;, b;, g and depending only on I

2. Lemmas and definitions. Let I" be a finite Abelian group with
multiplicative notation.

DEFINITION 2.1. Define the Davenport constant D(I") to be the smallest
positive integer n such that for any sequence g1, ..., g, of group elements
there exist indices 1 <41 < --- < 4 < n for which

Giy oo Gip = 1.

DEFINITION 2.2. For an element dep Nyg of the group ring Q[I'] and
a number n € Q we write

ZNgg =n if N;>n.
gel’
LEMMA 2.3. For every finite Abelian group I’ and all aq,...,ak,g € T,
the number of solutions of the equation Hle a;’ = g in non-negative integers
x; < b; is equal to N1, where

k
g [ +ai+ - +al) =" Nyh
i=1 hel’
is an identity in Q[I].

Proof. We interpret the equation g—! Hle(l—i-ai—i-- . '—I—a?i) = ner Nnh
combinatorially. For g € I" look at all sequences aj, .. .,ai’“ whose prod-
uct is g, where z; < b; are non-negative integers. Then N; counts these
sequences. Therefore the number of solutions of the equation Hle a;' =g
in non-negative integers x; < b; is equal to Ni. =

LEMMA 2.4. Theorem with multiplicative notation is equivalent to
the statement: for every finite Abelian group I' and all g,aq,...,a; € I, if
there exists a solution of the equation Hle a;’ = g in non-negative integers
x; < b;, where the b; are positive integers, then

k k
(21) g ' [T +ai+-+al) =8 PO T (0 + 1),
=1 i=1

where D(I) is the Davenport constant of the group I.
Proof. This follows from Lemma and Definition .
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LEMMA 2.5. Theorem with multiplicative notation is equivalent to
the statement: for every finite Abelian group I, all g,a1,...,a; € I' and all
positive integers bl, .., bp € {2° — 1 : s € N}, if there exists a solution of
the equation H = g in non-negative integers x; < b;, then

k
(2.2) g*IH(1+a,- +oal) = 2 PO (b + 1),
i i=1

Proof. This follows from Lemma [2.3] and Definition

LEMMA 2.6. For every finite Abelian group I'andall g,a1,...,a; € I, if
there exists a solution of the equation H,L 1@ = g in non-negative integers
x; <1, then

zlz

k
(2.3) g ]+ ai) = 27P0) . 2%,
i=1
Proof. We may assume that ngl a; = g, where 1 <t < k. We have the
identities

k t t k
g1 H(l +a) =g " Hai H(l +a;h) H (14 ai)
i=1 i=1 =1 i=t+1
t k
=[[a+a" ] 0 +a.
i=1 i=t+1
By [3, Theorem 1.1],
t k
[Ta+ah T 1+ ai) =2 P2k
i=1 i=t+1

This implies
—11_[ 1+ a;) =217 PIgk o
LEMMA 2.7. If 0 <t < b, where t, b are integers, then

b—t+12<§>t(b+1).

Proof. We verify by differentiation that the function f(x

3
=2(5
is increasing in the interval (1,00). Since f(0) = f(1) = () and f(

)m—x—Q
2) =1/2

we get 2(%)t2 t + 2 for non-negative integers t. Hence

t
ot ()
b+1— t+2 7 \3

which yields the desired conclusion. =
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LEMMA 2.8. For s > 1 we have the following identity in Q[I]:

S
(2.4) 1—|—1:—|—:E2+---—|—:172S_1:H(1+:I:2971).
j=1
Proof. We proceed by induction on s. The case s = 1 is obvious. Assume
the identity is true for s — 1, where s > 1. Then

1+z+a?+ - +2¥ 7 =1+2" A +a+a?+- +27 7

s—1 s
=(1+ x2s_1) H(l + :L’QJ_I) = H(l + 1:2]_1). n
j=1 g=1

3. Proofs of theorems

Proof of Theorem[I.1. We may find 0 <t; <b;, where 1 <14 <k, such that

a’il . a}i" = ¢. By definition of the Davenport constant we may assume that

k
(3.1) >t <D(I)-1.

Suppose t; = b; for 1 <1 < s<k,andt; <b; for s+1<i<k;ift; <Ub;
for 1 <i <k, then we take s = 0. We have the identities

s k
g [Ja+ai+-+al) I (@f +af™ + - +af)
i=1 i=s+1
s k s k
:Ha;”i I e T[a+ai+--+a¥) ] (af +ali*' +---+a))
; i=s+1 i=1 i=s+1
k
_H 1+a;! +@a ) [ Q+ait--+a)™™).
i=s5+1
By [3l Theorem 1.1],
s k
[TO+a7" ++ @) [T O+ai+-+a™)
i=1 i=s5+1
s k
=2 POT s +1) I it + 1)
i=1 i=s+1
Lemma [2.7] yields
s k s k
2 POTIw+ 1) I i —ti+1) 227 PO [+ [T G) i+ 1)
i=1 1=s5+1 i=1 i=s+1

k
> 9l- D(FH%
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From 1} it follows that

k k
ol- DF)H% (bi+1) > 21~ D(T %D(F 1Hb+1 — 3l-D(I )H(b +1).
=1

i=1
Hence
s k k
g [Ja+ai+-+al) [ (af +ai™ +-- +a)) = 37 PO T (0 +1).
’ i=s+1 i=1
Finally
k k
g [ +ai+--+al) =3 PO (b + 1)
i=1 i=1

Proof of Theorem[I.2 Let b; = 2% —1, where s; € N. We take 0 < ¢; < b,
where 1 < i < k, such that aff - 'a',ff = g. Since 0 < t; < 2% — 1 we may
find €;; € {0,1} such that

Si

t;, = Z einjil

j=1
for 1 <i < k. Using ({2.4) we obtain

S; o
a;ti(l"i‘ai +“_+a?i) _ ai—tz‘ H(l—i—a?f 1)
_ H 7 4 ) H L o
_ H 77]12]

where 7;; = 1 — 26ji e {-1, 1}. Thus

i k  s; ,
9—1H(1+(Ii+-.-+a Ha (I+a;+-- +a :HH(l_i_aZjinfl)

i=1 i=1j=1
By [3, Theorem 1.1],

k
HH1+ i’ >21D HH2_21D H281 21— D<FHb+1
=1

i=1j=1 i=1j=1

which implies
k k

g [ +a+--+al) =2 PO (b + 1)

i=1 =1
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